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Abstract—The effect of optical radiation on a uniformly doped
nanoscale FinFET considering quantum mechanical effects has been
theoretically examined and analyzed. The device characteristics are
obtained from the self-consistent solution of 3D Poisson-Schrödinger
equation using interpolating wavelet method. To our best knowledge
this is the first approach for the self-consistent solution to surface
potential computations of nanoscale FinFET photodetector using
interpolating wavelets. This method provides more accurate results
by dynamically adjusting the computational mesh and scales the
CPU time linearly with the number of mesh points using polynomial
interpolation, hence reducing the numerical cost. A fine mesh can be
used in domains where the unknown quantities are varying rapidly and
a coarse mesh can be used where the unknowns are varying slowly.
The results obtained for dark and illuminated conditions are used
to examine the performance of the device for its suitable use as a
photodetector.

Corresponding author: R. Ramesh (ramesh24.dr@gmail.com).



236 Ramesh, Madheswaran, and Kannan

1. INTRODUCTION

The photosensitivity and integrated circuit compatibility of Field-
Effect Transistors (FETs) have extended the potential of these devices
for their use as photodetectors. Among the FETs configuration,
Metal Semiconductor Field Effect Transistor (MESFET) and High
Electron Mobility Transistor (HEMT) have been studied theoretically
as well as experimentally by several researchers for various optically-
controlled applications [1–5]. A three dimensional modeling of a
nano MISFET photodetector without including quantum mechanical
effects [6] has been reported. A transition from bulk to multiple-
gate fully depleted (FD) silicon-on-insulator (SOI) offers drive current
and better short-channel immunity [7]. CMOS designs below 0.1µm
are severely constrained by short channel effects (SCE) and gate
insulator tunneling [8–11]. One of the approaches to circumvent
the gate tunneling restriction is to change the device structure so
that the MOSFET gate length can be further scaled even with
thicker oxide. Double-gate MOSFET (DGFET) is one of the most
promising devices for channel length in the range 10–30 nm [12–15].
The alignment of the top and bottom gates to each other and to
source/drain (S/D) doping is crucial to device performance, because
misalignment may cause extra gate-to-S/D overlap capacitance as well
as S/D series resistance [16]. In order to optimize the performance
of double gate devices, self-aligned processes and structures are
proposed, with FinFET being one of the most promising [17–21].
The FinFET is a symmetric three-gate structure, hence requires 3-D
analysis. The variation in the channel potential of FinFET with doped
and undoped channels has been reported [22]. The 3-D analytical
modeling of FinFET by solving the Poisson’s equation has also been
reported [23–25]. The existing literatures reported on analytical
modeling have shown the complexity in evaluating various device
characteristics including QM effects. In addition, it has been found
that many assumptions and approximations have to be incorporated
while the device is analytically modeled. In FinFET devices, quantum
effects and non-equilibrium, ballistic or near-ballistic transport have
great impact on device performance [26]. The carriers transport
ballistically if the channel length is comparable to the carrier scattering
length [27]. An analytical charge model based on self-consistent
solution of Poisson’s and Schrödinger equation for 3-D FinFETs is
carried out [28]. A ballistic quantum-mechanical simulation using CBR
(Contact Block Reduction) method to investigate the behavior of 10 nm
FinFET device is reported [29]. Double-gate FinFET devices with
symmetric and asymmetric poly-silicon gates have been fabricated [30].
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FinFET is developed with special emphasis on process simplicity and
compatibility with conventional CMOS technology [31]. A simple
capacitive model was proposed by [32] to predict the relationship
between Drain Induced Barrier Lowering (DIBL) and subthreshold
swing. Ben Abdallah proposed the modeling of ballistic quantum
transport in nanostructures using the decomposition of the wave
function with reduced simulation time [33]. A numerical scheme for
the 1-D Schrödinger equation used to simulate a resonant tunneling
diode uses the oscillating interpolating function from WKB (Wentzel
Kramers Brillouin) asymptotic [34]. But this method provides less
accurate results since it incorporates 1-D Schrödinger equation. A
3-D quantum simulation of silicon nanowire transistors with the
effective mass approximation using mode space approach producing
high computational efficiency is proposed [35]. A numerical solution of
coupled Poisson-Schrödinger equation for device modeling of nanoscale
FinFET using Newton’s method has been reported [36].

In recent years, modeling and simulation of devices has been
carried out by means of new mathematical tools, such as the wavelet
method [37]. A solution for 2D simulation of a pn-diode without
including quantum mechanical effects has been obtained. Wavelet
coefficients have been used in time-varying problems [38], but this
approach computes the solution on a uniform grid at the finest
resolution [39]. On the other hand, implementing a technique that
adaptively refines the mesh in domains where the unknown quantities
vary rapidly would considerably reduce the number of unknowns.
The wavelet method uses such a technique and corresponds to a
multiresolution analysis of a problem. It was demonstrated [40] that
finite-difference scheme can be derived by wavelet expansions. The
resulting numerical technique is called multiresolution time-domain
technique (MRTD) [41]. This method shows very good performance
as for the accuracy, memory requirements and CPU time. The
MRTD can be regarded as a wavelet-based Galerkin method. For
nonlinear equations used for semiconductor device modeling, this
method can become quite time consuming. A 2D simulation of
MESFET using Poisson’s equation and current continuity equations
is performed using a non-uniform mesh generated by interpolating
wavelet scheme [42]. Hussein et al. proposed a time-domain approach
to solve the hydrodynamic model for the simulation of devices using
self-adaptive grids [43]. They have implemented only the Poisson’s
equation and current continuity equation for their model. Toupikov
et al. proposed a nonlinear modeling of semiconductor devices by
solving 2D Poisson’s equation using sparse point representation based
on interpolating wavelets [44]. All the above literatures did not include
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the quantum mechanical effects for obtaining a self-consistent solution
using wavelets.

In this paper, a self-consistent solution for 3D numerical model of
nanoscale FinFET photodetector including QME using interpolating
wavelets has been developed and presented. The prime focus is to
obtain the device characteristics under illumination, by numerically
solving the 3D Poisson-Schrödinger equations directly until self-
consistency is achieved. The 3-D simulation is necessary to describe
the 3-D characteristics of FinFETs structure. The direct solution
of 3D Poisson-Schrödinger equation provides more accurate results
than the WKB approximation. The finite element (FE) or finite
difference (FD) methods require a large number of grid points for
obtaining self-consistent solution of 3D Poisson-Schrödinger equation
thus unnecessarily increasing the numerical cost. The interpolating
wavelet method reduces the numerical cost of the simulation further
and produces more accurate results with much coarser grids. It
provides a very good performance in terms of CPU time savings and
fast convergence.

Figure 1. Schematic diagram of FinFET.

2. PHYSICS BASED MODELING

The general FinFETs structure is shown in Fig. 1 [25]. The following
are the geometrical parameters.

i) Gate Length (Lg): The physical gate length of FinFETs, defined
by spacer gap.

ii) Fin Height (Hfin): The height of silicon fin, defined by the
distance between the top gate and buried oxide layer (BOX).
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iii) Fin Width (Tfin): The thickness of silicon fin, defined between
the front and back gates.

iv) Top gate thickness (Tox1): The thickness of the top gate oxide.
v) Front or back gate thickness (Tox2): The thickness of the front or

back gate oxide.
vi) Channel Length (Leff ): The channel length is estimated by the

metallurgical junction for abrupt junctions.

Geometrical channel width is defined as W = 2×Hfin + Tfin.
When Tfin is much larger than Hfin or when top gate oxide is

much thinner than the front and back oxides, FinFET can be treated
as single-gate fully depleted SOI MOSFET (FDFET) as long as the
silicon fin remains fully depleted [23]. When Hfin is much larger than
Tfin or top gate oxide (Tox1) is much thicker than the front and back
oxides (Tox2), FinFET can be treated as DGFET [23]. It is difficult to
assume a simple potential distribution because of its asymmetric 3-D
structure. The electrostatic potential in the subthreshold region can
be described by the 3-D Poisson’s equation.

∂2U (x, y, z)
∂x2

+
∂2U (x, y, z)

∂y2
+

∂2U (x, y, z)
∂z2

=
q[Na(x, y, z)− n(x, y, z) + p(x, y, z)]

εs
+ ∆n (1)

where U(x, y, z) is the surface potential at a particular point (x, y, z),
and Na(x, y, z) is the uniform channel doping concentration. q is the
electronic charge, and εs is the permittivity of silicon. n(x, y, z) is
the electron concentration, and p(x, y, z) is the hole concentration.
∆n is the excess carriers generated per unit volume. The boundary
conditions are

U
∣∣
y=Heff

= Vg − Vfb. U
∣∣∣z=−Teff /2

= Vg − Vfb.

U
∣∣∣z=Teff /2

= Vg − Vfb. U |x=0 = Vbi + Vop

U
∣∣
x=Leff

= Vbi + Vds + Vop U
∣∣
y=−Heff

= Vg − Vfb.

The electron concentration can be obtained from

n(x, y, z) =
3∑

j=1

∞∑

i=1

nij |ψ(x, y, z)|2 (2)

where j is the valley and i is the subband.

nij =
nvjmdjkBT

π~2
ln

[
1 + exp

(
EFn −Eij

kBT

)]
(3)
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where (3) expresses the number of electrons occupying the ijth electron
energy level. mdj is the electron density-of-states mass, and nvj is
the valley degeneracy. Efn is the electron quasi-Fermi level, and Eij

is the electron energy states and explained in [49]. The Fermi-Dirac
distribution at the source and drain ends are given in [26].

The excess carriers generated per unit volume due to the
absorption of incident optical power density are given by [6]

∆n =
1

Wm

Wm∫

0

Gop (x) τLdy (4)

where Wm is the maximum width of the depletion layer and given by

Wm = [4εs ln(Na/ni)/qβNa]1/2 (5)

where Na is the acceptor concentration. Gop(x) is the excess carrier
generation rate at any point x in the semiconductor and is given by

Gop(x) =
popt

hγ
(1−Rm) (1−Ri) (1−Rs)αe−αy (6)

where Popt is the incident optical power density, and h is the Planck’s
constant. γ is the operating frequency, and α is the absorption
coefficient of the semiconductor at the operating wavelength. Rm, Ri

and Rs are the reflection coefficient at the metal gate entrance, gate-
insulator interface and insulator-semiconductor interface respectively.

3. MULTIRESOLUTION ANALYSIS AND WAVELETS

For semiconductor device simulation using partial differential equa-
tions, the grid generation is very important. Grid points must be
present accurately approximate to any physical quantity to be mea-
sured. The grid layout should be chosen carefully since the compu-
tational cost grows with the number of grid points. The difficulty in
semiconductor device simulation is due to the different mesh sizes be-
tween substrate and doped regions. Finer mesh is needed in doped
regions and junctions and coarse mesh for substrate regions, to reduce
the number of unknowns and also the simulation time. Hence wavelets
with MRA concept are used to achieve this goal. The Wavelet-Galerkin
method uses the finite difference method with grid refinement. So, in-
stead of letting the magnitude of wavelet coefficients choose the basis
function in Galerkin approach, let the same coefficients choose grid
points [45].

MRA is an important concept in wavelet theory. Many useful
orthonormal wavelets are constructed within this framework. In
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order to give a good explanation of the relationship between MRA
and wavelet basis, a brief summary of Daubechies wavelets are
given [46, 47]. The usefulness of wavelets for solving partial differential
equations relies on the definition of MRA. An MRA is based on two
fundamental concepts: nested subspaces and orthonormal bases. The
first decomposes information into different scales; the second allows
stable and fast algorithms. The space of square integral functions on
the real line is denoted by L2(R). The orthonormal basis of wavelets
of L2(R) is formed by dilations and translations of a single function
Ψ(x), called a mother wavelet.

Ψjk(x) = 2j/2Ψ(2jx− k), j, k ∈ Z. (7)

The function Ψ(x) has a companion, the scaling function ϕ(x). They
both satisfy the following two-scale relation

ϕ(x) =
∑

k

akϕ(2x− k), (8)

Ψ(x) =
∑

k

(−1)ka1−kϕ(2x− k), (9)

where the coefficients ak(k = 0, 1, . . . , L − 1) appearing in the two-
scale relations (8) and (9) are called the wavelet filter coefficients. The
support of the scaling function ϕ is the interval [0, L − 1] while that
of the corresponding wavelet Ψ is the interval [1 − L/2, L/2]. The
Daubechies wavelet filter coefficients for L = 4, 6, 8, 10 are listed in [23].
The theory for Interpolating wavelets can be found in [42, 44, 45].

The 3D effective mass Schrödinger equation along the n-channel
is given by [26]

−
[
~2

2m∗
x

∂2

∂x2
+
~2

2m∗
y

∂2

∂y2
+
~2

2m∗
z

∂2

∂z2
+ qU(x,y,z)

]
ψx,y,z = Eψx,y,z (10)

In the above equation, m∗
x, m∗

y, m∗
z are effective masses in the x, y and

z directions.
m∗

x = ml = 0.916m0,m
∗
y = mt = 0.19m0,m

∗
z = mt = 0.19m0.

E is the eigen energy, and ~ is the reduced Planck’s constant. q
is the charge of an electron. U(x, y, z) is the surface potential,
and ψ(x, y, z) is the eigen wave function. The mixed Dirichlet and
von Neumann boundary conditions were used for solving the 3-D
Schrödinger equation because the Dirichlet boundary conditions force
density of electrons to decrease to zero at contacts while density
increases under von Neumann boundary conditions. For these reasons,
the 3-D Schrödinger equation is solved using Dirichlet and von
Neumann boundary conditions and normalized the states to 1/2. The



242 Ramesh, Madheswaran, and Kannan

mixed Dirichlet and von Neumann boundary conditions are given by∫
|ψn(z)|2dz = 1/2 (11)

This means that a constant function is obtained by summing the cosine
functions from Dirichlet boundary conditions and the sine functions
from von Neumann boundary conditions with normalization to 1/2.
By solving the Schrödinger equation, the quantized states that are
occupied by local quasi-Fermi levels were obtained.

In this section, the direct solution of 3-D Schrödinger equation
(10) with mixed Dirichlet and Von Neumann boundary conditions is
obtained using wavelet method. The wavelet approximation to the
solution ψj(x, y, z) at scale j is

ψj(x, y, z) =
∑

k

∑

l

∑
m

c̃k,l,m2j/2

ϕ(2jx−k)2j/2ϕ
(
2jy−l

)
2j/2ϕ

(
2jz−m

)
k, l, m ∈ Z (12)

where c̃k,l,m are the wavelet coefficients, i.e., they define the solution
in wavelet space.

Equation (12) can be simplified to
∑

k

∑

l

∑
m

c̃k,l,mϕjk(x)ϕjl(y)ϕjm(z) (13)

where

ϕjk(x) = 2j/2ϕjk(2jx− k), ϕjl(y) = 2j/2ϕjl(2jy − l),

ϕjm(z) = 2j/2ϕjm(2jz −m), j > 0,

k, l, m = 2−N, 3−N, . . . , 2j − 1 are 2j + N − 2 unknown coefficients.
j fixes the level of resolution. The larger the value of j is, the
more accurate a solution can be obtained. But the number of
equations required to solve the unknown coefficients is increased. In
Equation (13), the parameter N represents the wavelet associated
with the set of N Daubechies filter coefficients used as the solution
bases. Substituting the wavelet series approximation ψj(x, y, z) in
Equation (13) for ψ(x, y, z) yields [48]

∑

k

∑

l

∑
m

c̃k,l,m

(
− ~

2m∗
x

d2

dx2
ϕjk(x)− ~

2m∗
y

d2

dy2
ϕjk(y)

− ~
2m∗

z

d2

dz2
ϕjk(z) + (qUx,y,z − E)ϕjk(x)ϕjl(y)ϕjm(z) = 0

)
(14)
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To determine the coefficient ck,l,m, we take the inner product of both
sides of Equation (14) with ϕjn

∑

k

∑

l

∑
m

c̃k,l,m

(
− ~2

2m∗
x

) Leff∫

0

ϕ′′jk(x)ϕjn(x)

− ~2

2m∗
y

Heff∫

0

ϕ′′jl(y)ϕjn(y)− ~2

2m∗
z

Teff∫

0

ϕ′′jm(z)ϕjn(z)

+(qUx,y,z − E)ϕjk(x)ϕjl(y)ϕjm(z) = 0

for n = 2−N, 3−N, . . . , 2j − 1 (15)

where prime ′ denotes differentiation with respect to the indicated
independent variable. Leff is the length of the channel, and Heff is the
height of the fin. Teff is the thickness of the fin.

For simplicity, we define the following notations for integrals
appearing in (15)

aj
kn =

Leff∫

0

ϕ′′jk(x)ϕjn(x)dx = 22j [Γ2
k−n(2j − n)− Γ2

k−n(−n)], (16)

bj
kn =

Heff∫

0

ϕ′′jl(y)ϕjn(y)dy = 22j [Γ2
l−n(2j − n)− Γ2

l−n(−n)], (17)

cj
kn =

Teff∫

0

ϕ′′jm(z)ϕjn(z)dz = 22j [Γ2
m−n(2j − n)− Γ2

m−n(−n)], (18)

and

dj
kn =

Leff∫

0

Heff∫

0

Teff∫

0

ϕjk(x)ϕjn(x)ϕjk(y)ϕjn(y)ϕjk(z)ϕjn(z)dxdydz

= Γ0
k−n(2j − n)− Γ0

k−n(−n)], (19)

Using the notations defined in Equations (16)–(19) we write
Equation (15) as

∑

k

∑

l

∑
m

c̃k,l,m

(
aj

kn + bj
kn + (qUx,y,z −E) cj

kn

)
= 0;

n = 2−N, 3−N, . . . , 2j − 1 (20)
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The above Equation (20) can be put into the matrix-vector form

Aψ + Bψ + h(x, y, z)C = 0 (21)

where

A = [aj
kn]2−N≤k,n≤2j−1, B = [bj

kn]2−N≤k,n≤2j−1,

ψ = [ψj,2−L, ψj,3−L, . . . , ψj,2j−1]
τ , C = [cj

kn]2−N≤k,n≤2j−1

ψ2 = [ψ2
j,2−L, ψ2

j,3−L, . . . , ψ2
j,2j−L]τ ,

where τ denotes the transpose matrix.
Equation (21) can be written as

A1ψi+1 −A2ψi + A1ψi−1 (22)

This system may be easily solved by variety of methods. In this
paper, we have used Cholesky’s decomposition method. By solving
this system, we obtain an accurate solution at resolution level j. We
can calculate the absolute error defined as:

Absolute error = |ψexactsolution − ψWavelet|
The drain current ID considering scattering effects is given by [25, 27]

ID =
Wqni(Vgs − VT )

(
1− exp

(
−Vds

VT

))

[
1

υT
+ 1

Deff /`

] Leff∫
0

dx
Hfin/2∫
−Hfin/2

Tfin/2∫
−Tfin/2

exp
[

U(x,y,z)
VT

]
dydz

(23)

where υT =
√

2KBT/πm∗ is the thermal velocity independent of the
Fermi level. Deff = (KBT/q)µeff is the diffusion coefficient. For
low Vds, the critical length ` → L, the channel length. Assuming
that only the lowest side band is occupied, the effective mass is
m∗ = mt = 0.19m0 which gives a thermal velocity υT = 1.2×107 cm/s.
By Mathiessen’s rule µ−1

eff = µ−1
0 + µ−1

B where µB = qL
m∗πυT

is the
ballistic mobility, and µB = qL

m∗πυT
is the low field mobility. λ is the

mean free path, and W = Tfin is the width of the device.
The subthreshold swing S is a measure of the gate control on the

channel. It can be expressed as

S =
∂Vgs

∂ log IDS

S =
ln 10

β
× 1

1− 2Γ11e−α × sin π(xc+a+c)
aeff

× sin π(yc+b+d)
beff

(24)
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In which β and α are defined in [25]. xc and yc describe the
position of the leakage path in the fin cross section. xc could be set
to zero due to symmetry, while yc is determined by the geometrical
features, doping concentration, and applied voltages.

4. COMPUTATIONAL TECHNIQUE

The 3D Poisson’s equation (1) using the boundary conditions is
solved numerically using Leibmann’s iteration method to determine
the approximate surface potential for a fixed value of gate voltage and
assumed value of drain voltage. This value of surface potential is given
to the 3D Schrödinger equation (10). The 3-D Schrödinger equation
is solved directly using the Dirichlet and von Neumann boundary
conditions by interpolating wavelet method, and the exact value of
surface potential is obtained. The drain current can be estimated by
numerically integrating the Equation (23) using Simpson’s one-third
rule, and the subthreshold values are estimated using Equation (24).
The results obtained are validated with experimental values.

Algorithm:

1. Assign gate length, channel length, device width, height and
thickness of silicon.

2. Apply bias voltages.
3. Determine numerically the surface potential by solving the 3D

Poisson’s equation using boundary conditions.
4. Substitute this surface potential value in the 3D Schrödinger’s

equation.
5. Solve 3-D Schrödinger’s equation numerically using Dirichlet and

von Neumann boundary conditions.
6. Estimate the exact value of surface potential at every point along

the channel length.
7. Obtain subthreshold swing, threshold voltage roll-off, drain

characteristics.

5. RESULTS AND DISCUSSION

Numerical computation has been carried out for the nanoscale FinFET.
The parameters used for the calculation are given in Table 1.

Figure 2 shows the potential profile of the FinFET photodetector
including QM effects obtained using interpolating wavelet method on a
grid of 20×13×10 points. The surface potential U(x, y, z) is calculated
for different values of x and constant values of y and z. The figure also
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Table 1. Parameters and constants.

Parameter Value
Gate Length (Lg) 30 nm

Top gate oxide thickness (Tox1) 5 nm
Front (or) back gate thickness (Tox2) 1 nm

Channel Length (Leff ) 30 nm
Thermal Voltage (VT ) 0.025852V

Intrinsic carrier concentration (ni) 9.65× 109/cm3

Acceptor concentration (Na) 1× 1016/cm3

Flatband voltage (Vfb) −0.48V
Built-in potential (Vbi) 0.6 V

Gate voltage (Vg) 0.2 V

 

Figure 2. Three dimensional potential variation along the channel
length under dark and illuminated conditions. Vg = 0.2V, Hfin =
50nm, Tfin = 20 nm and Leff = 30 nm, Popt = 0.5 W/m2.

shows the dark condition results including quantum mechanical effects
using the same wavelet method for VDS = 1.5V. The surface potential
values under illuminated conditions are calculated for Popt = 0.5W/m2

and VDS = 1.5V. It is found that the surface potential increases with
illumination. This is due to the fact that excess carriers generated due
to illumination increases the conductivity of the channel. Fig. 3 shows
the comparison of surface potential values obtained using interpolating
wavelets with WKB approximation values along the channel length
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Figure 3. Comparison of surface potential for various methods for
VDS = 1.5 V, Vg = 0.2V, Hfin = 50nm, Tfin = 20 nm under dark
condition.

Figure 4. Subthreshold swing of n-channel FinFET photodetector in
terms of Leff /Teff for Lg = 30 nm and VDS = 0.1 V, Popt = 0.5 W/m2.

including quantum mechanical effects for Vds = 1.5V under dark
conditions. It is found that the interpolating wavelet method provides
more accurate results than the WKB approximation because the WKB
approximation underestimates the density of electrons penetrating into
the channel under the potential barrier U(x, y, z) [50]. The S-factor,
which is a measure of the subthreshold behavior of the device, is
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Figure 5. Drain current characteristics of FinFET for various Vgs

values and Popt = 0.5 W/m2. Dark condition results compared with
experimental values [30].

extracted from the Ids − Vgs characteristics of the FinFET device.
Fig. 4 shows the subthreshold swing for nanoscale FinFET, as a
function of Leff /Teff in comparison with the experimental results.
The simulation results at Vds = 0.1 V exhibit an excellent agreement
under dark conditions with the experimental results [30] and validate
our model. The dark condition results agree well with experimental
results [30]. It is also found that the subthreshold swing increases with
illumination. Fig. 5 shows the comparison of ID − VD characteristics
of nanoscale FinFET at Lg = 30 nm and Tfin = 20nm for Hfin =
50nm. The simulated results under dark condition were compared
with experimental ones [30] to validate our model. The values obtained
under dark condition using wavelet method shows good agreement with
the experimental values. It is also found that the subthreshold leakage
current is well suppressed in spite of low channel doping concentration
(1 × 1016/cm3). Also, there seems to be no kink effect, which comes
from the effect of a floating body. It is shown that for the applied gate-
to-source voltage, the drain current also significantly increases. The
channel width is determined by applied gate-to-source voltages. The
charge carriers pass through the channel, and hence the conduction
takes place. When the drain voltage is further increased, more charge
carriers try to pass through the channel, resulting in an increase in
drain current. But these charge carriers passes through the channel
width that is created earlier. Hence the drain current saturates after a
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certain limit even if the drain voltage is increased further. The drain
current under illuminated condition is higher than dark condition due
to generation of excess carriers under illumination. Figs. 6 and 7 show
the comparison of Id − Vgs characteristics for a nanoscale FinFET
with Lg = 30 nm, Tfin = 20nm and Vds = 1.5V and 0.1 V. Under
dark conditions, the simulated results show a good agreement with
experimental ones [30] and validate our model. The drain current
values increase under illuminated conditions.

Figure 6. Id − Vgs curves for a n-channel FinFET with Lg = 30nm,
Tfin = 20 nm, VDS = 1.5V, Popt = 0.5W/m2. Dark condition results
compared with experimental values [30].

Table 2. Comparisons of the simulation times & mean relative errors
of FDM & Wavelet method for different meshes.

No. of

grid points

in x, y, z

Simulation

Time

wavelet (sec)

Mean rel.

error

Wavelet

Simulation

Time

FDM (sec)

Mean

rel. error

FDM

20× 13× 10 109 0.0195 116 0.2158

45× 32× 23 682 0.0075 712 0.1635

60× 49× 34 1646 0.0043 1824 0.0674

Tables 2 and 3 show that different mesh grid points are used
in the transport direction for the resolution of Poisson-Schrödinger
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Figure 7. Id − Vgs curves for a n-channel FinFET with Lg = 30nm,
Tfin = 20 nm, VDS = 0.1V, Popt = 0.5W/m2. Dark condition results
compared with experimental values [30].

Table 3. Comparisons of the simulation times & mean relative errors
of FEM & Wavelet method for different meshes.

No. of

grid points

in x, y, z

Simulation

Time

wavelet (sec)

Mean rel.

error

Wavelet

Simulation

Time

FEM (sec)

Mean rel.

error

FEM

20× 13× 10 109 0.0195 245 0.0958

45× 32× 23 682 0.0075 1567 0.0135

60× 49× 34 1646 0.0043 4757 0.0077

equation in order to compute accurate solution. For a 20 × 13 × 10
mesh the wavelet method is compared with experimental results under
dark condition for Vds = 1.5V. It is found that interpolation method
is more accurate than the FDM and FEM methods with considerable
reduction in simulation time. The Poisson-Schrödinger equations are
solved on the coarser grid. Then the results for the finer grids are
interpolated from the coarse ones. This multi-grid procedure enables
to use the advantages of interpolating wavelets for obtaining better
solution of the coupled Poisson-Schrödinger equation with reduction
in simulation time. It is found that the simulation time and relative
error reduce considerably with the interpolating wavelet method.
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6. CONCLUSION

The wavelet method for modeling nanoscale FinFET photodetector
including quantum mechanical effects (QME) shows that the FinFET
may retain performance acceptable for OEIC receiver applications even
if the gate length is reduced to nanoscale dimension. It also shows
the increase in efficiency of the wavelet method as compared to WKB
approximation method and FDM and FEM methods. Accurate results
have been obtained with significantly reduced computational time.
The present work is confined to modeling and simulation of a uniformly
doped FinFET. In the future work, three dimensional modeling of non-
uniformly doped FinFET including quantum mechanical effects could
be carried out. The detailed analysis of noise characteristics can also be
obtained, and equivalent circuit model could be developed for accurate
characteristics of the device.
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