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With an appropriate choice of the parameters, we show that it is
possible to realize an absolute (or omnidirectional) band gap for either
transverse electric (TE) or transverse magnetic (TM) polarizations of
the electromagnetic waves. A combination of two multilayer structures
composed of RHM and LHM is proposed to realize, in a certain range of
frequency, an omnidirectional reflector of light for both polarizations.

1. INTRODUCTION

Left handed materials (LHM), in which the dielectric permittivity
ε and magnetic permeability µ are simultaneously negative, have
received a great deal of attention during the last few years [1]. This
is due to the unusual physical properties of these materials that have
raised strong theoretical interest and may lead to potential applications
in optical devices. Some peculiar properties of LHM have already been
discussed some thirty years ago by Veselago [2] for instance a negative
index of refraction in such a medium, a Poynting vector directed
opposite to the propagation wave vector k, the reversal of Doppler and
Cerenkov effects. Because of the absence of naturally existing LHM,
the experimental realization of an artificial heterogeneous medium
exhibiting a negative index of refraction has been performed only
recently [3]. The realization of such media [3, 4] is based on the
propositions of Pendry et al. for specific structures exhibiting negative
ε(ω) and µ(ω) [5]. Recent interest in these metamaterials has been
directed towards the theoretical and experimental study of Snell’s law
of refraction at the boundary with a LHM [6–10], the focusing and
imaging properties of a metamaterial lens [11–13], the tunnelling in the
presence of a LHM layer [14], the emission in a LHM metamaterial [15],
etc.

Assuming the possibility of realizing such LHM under the form
of layered media, a few recent works have investigated the photonic
band structure of one dimensional layered structures constituted by
a periodical repetition of RHM and LHM [16–24]. Some peculiar
properties related to the presence of LHM layers have been underlined,
for instance the possibility of gap widening with respect to usual
superlattices constituted only by RHM [16], the theoretical and
experimental investigation of a new type of gap when the average index
of refraction in the superlattice vanishes [17] and the possibility of
discrete and photon tunnelling modes [19]. These works have mainly
concentrated on propagation along the axis of the superlattice, i.e.,
normal incidence.

The object of this paper is to present theoretically a detailed study
of the dispersion relation and photonic band structure in superlattices
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constituted by alternate layers of LHM and RHM, with the aim of
giving the different trends that can occur and emphasizing the new
behaviors that have not been predicted before. We present and discuss
the band structure with various physical parameters of the LHM
layer. In these calculations, the dielectric permittivity ε and magnetic
permeability µ are frequency dependent. We discuss, in particular,
the photonic bands of the superlattice originating from the interface
modes at the boundary between a RHM and a LHM, and those bands
that are confined in one type of layer in the superlattice. We also
show that for some particular choices of the physical and geometrical
parameters, the RHM-LHM superlattice can exhibit an absolute (or
omnidirectional) band gap for either TE or TM polarization of the
electromagnetic field. This situation is without analogue in the case
of usual superlattices. Thus, a combination in tandem of two LHM-
RHM superlattices enables us to propose an omnidirectional reflector
structure for both polarizations of the light. We note that the search
of omnidirectional reflection gaps has been the object of several recent
works [16, 25–30].

The confined modes of finite LHM layer embedded between two
infinite RHM as well as the dispersion relation for infinite superlattice
composed of LHM and RHM can actually be derived by using
either the transfer matrix or the Green-function methods. This
last one enable to investigate other vibrational properties of semi-
infinte or finite superlattices such as the local and total densities of
states, and therefore the spatial distribution of the states and, in
particular, the possibility of resonant waves. We present in this paper
explicit expressions of the Green function in these heterostructures.
The knowledge of this Green’s function enables us also to obtain
the reflection and transmission coefficients of optical waves in one-
dimensional heterostructure systems [27, 28].

The model and method of calculation are presented in Section 2.
Section 3 contains the numerical illustrations as well as the discussion
of the dispersion curves. Finally in Section 4, we propose a new
solution to create complete gap for both wave polarizations in the
one dimensional photonic crystal by the association of two semi
infinite superlattices composed by LHM-RHM. Conclusion is given in
Section 5.

2. MODEL AND THEORY ANALYSIS

2.1. Green Function Approach

We first consider a semi-infinite homogeneous medium (i) of relative
dielectric permittivity εi and magnetic permeability µi, separated from
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vacuum by a surface defined by the equation z = f(x, y). The
electric and magnetic fields at the interface can be related by Maxwell’s
equations:

1
εi

θ(z − f(x, y))~∇∧ ~H =
∂ ~E

∂t
(1)

1
µi

θ(z − f(x, y))~∇∧ ~E = −∂ ~H

∂t
(2)

where θ(z − f(x, y)) =
{

1, for z ≥ f(x, y)
0, for z < f(x, y) .

Taking the planar surface at z = f(x, y) = 0 and applying the
nabla operator, we find

~∇∧ (2) ⇒ 1
µi

[
~∇θ(z) ∧ ~∇∧ ~E + θ(z) ∧ ~∇∧ ~E

]

= − ∂

∂t
~∇∧ ~H = −θ(z)εi

∂2 ~E

∂t2
(3)

1
µi

θ(z)

[
~∇∧ ~∇∧ ~E + εiµi

∂2 ~E

∂t2

]
+

1
µi

~∇(θ(z)) ∧ ~∇∧ ~E = 0 (4)

where
~∇θ(z) ∧ ~∇∧ ~E = −δ(z − f(x, y))~Vi(k///z) ~E (5)

1
µi

θ(z)

[
~∇∧~∇∧ ~E+εiµi

∂2 ~E

∂t2

]
− 1

µi
δ(z−f(x, y))~Vi(k///z) ~E =0 (6)

We use the Fourier transformation (t → ω), and we define the response
functions

↔
Gi(ω/~r, ~r ′) and ↔

g si(ω/~r, ~r ′) respectively for infinite and
semi-infinite system as:

1
µi

[
ω2

c2
εiµi −

↔
H

0
(k///z)

]
↔
Gi(ω/~r, ~r ′) =

↔
I δ(~r − ~r ′) (7)

c is the speed of light in vacuum, εi and µi are the relative dielectric
permittivity and magnetic permeability of the material, and the index
of refraction is defined by ni = ±√εiµi with the plus or minus sign
being used, respectively, for RHM and LHM. We assume that the z-axis
is along the normal to the interface, and the wave vector component
k||, parallel to the interface, is along the x-axis.

1
µi

{
θ(z)

[
ω2

c2
εiµi−

↔
H

0
(k///z)

]
+δ(z)

↔
V i

}
↔
g si(ω/z, z′)=

↔
I δ(z−z′) (8a)
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where

↔
H

0
(k||/z) =




− ∂2

∂z2 0 ik|| ∂
∂z

0 k2
|| − ∂2

∂z2 0
ik|| ∂

∂z 0 k||




and
↔
V /(k||/z) =




∂
∂z 0 ik||
0 ∂

∂z 0
0 0 0


 ; z ≥ 0 (8b)

The determination of the matrix elements of
↔
Gi is greatly simplified by

the fact that (
↔
Gi)21 and (

↔
Gi)32 satisfy homogenous equations. These

four matrix elements therefore vanish in
↔
Gi and also in ↔

g si, and the
2×2 matrix elements decouple from the others. We can regard in what
follows g11 and g22 as the primary elements of ↔g si and g31 and g33 as
derived elements through Eq. (8). Eq. (8) can be rewritten as three
independent equations for the 22, 11 and 13 elements ↔

g si, namely:

1
µi

{
θ(z)

(
∂2

∂z2
− α2

i

)
+ δ(z)

∂

∂z

}
(gsi)22 = δ(z − z′) (9a)

−ω2εi

α2
i c

2

{
θ(z)

(
∂2

∂z2
− α2

i

)
+ δ(z)

∂

∂z

}
(gsi)11 = δ(z − z′) (9b)

−ω2εi

α2
i c

2

{
θ(z)

(
∂2

∂z2
− α2

i

)}
(gsi)13

−δ(z)
{

δ(z − z′) +
iω2εi

k//c2

∂

∂z
(gsi)13

}
=

∂

∂z
δ(z − z′) (9c)

So considering Eq. (9), one sees that all three are isomorphic to the
same basic equation:

Fi

αi

{
θ(z)

[
−α2

i +
∂2

∂z2

]
+ δ(z)

∂

∂z

}
gsi(z, z′) = δ(z − z′) (10a)

where α2
i = k2

// − ω2

c2
εiµi and

Fi =
αi

µi
for g22 (TE wave); (10b)

Fi = − εi

αi

ω2

c2
for g11(TMwave). (10c)

So, it is sufficient to obtain the basic element of the response function
g, starting with Eq. (10). The g13, g31 and g33 are then easily obtained
with the help of the equations following Eq. (8).
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In our work, we have studied the optical waves in lamellar periodic
structures in the framework of a Green’s function method called also
the interface response theory [31]. The object of this theory is to
calculate the Green’s function of a composite system containing a large
number of interfaces that separate different homogeneous media. In
this theory the Green’s function of a composite system can be written
as [31, 32]

g(DD) = G(DD) + G(DM){[G(MM)]−1g(MM)
[G(MM)]−1[G(MM)]−1}G(MD) (11)

where D and M are respectively the whole space and the space of
the interfaces in the lamellar system. G is a block-diagonal matrix in
which each block Gi corresponds to the bulk Green’s function of the
subsystem i. All the matrix elements g(DD) of the composite material
can be obtained from the knowledge of the matrix elements g(MM)
of g in the interface space M . The g(MM) is calculated by inverting
the matrix g−1(MM) formed by a linear superposition of the surface
matrix g−1

s (MM) of any independent film bounded by perfectly free
interfaces with appropriate boundary conditions.

2.2. Interface Modes

In this section, we are interested in the interface modes localized at
the boundary z = 0 between two semi-infinite systems. The dispersion
relation derives straightforwardly as:

det(g−1(z, z′); z = z′ = 0) = 0 where g−1(0, 0) = −(F1 + F2)

We easily obtain the equation giving the interface modes, namely:

F1 + F2 = 0 (12)

where Fi = αi
µi

(i = 1, 2) for TE wave and Fi = − εi
αi

ω2

c2
(i = 1, 2) for

TM wave.

2.3. Confined Layer Modes

Now we are interested in the confined modes of a layer extending in the
region 0 < z < d embedded between two semi-infinite systems. The
response function of the system in surface space is given by:

g(MM) =
1
A

∣∣∣∣∣
F1 + F2 coth(α2d) F 2

Sh(α2d)
F 2

Sh(α2d) F1 + F2 coth(α2d)

∣∣∣∣∣ (13)

with
A = F 2

1 + 2F1F2 coth(α2d) + F 2
2 .



Progress In Electromagnetics Research B, Vol. 23, 2010 235

By setting det(g−1(MM)) equal to zero, one obtains the following
dispersion relation:

(F 2
1 + F 2

2 ) sinh(α2d) + 2F1F2 cosh(α2d) = 0 (14)

2.4. Bulk Modes of Infinite Superlattice Composed of Two
Alternating Layers

We shall call d1 and d2 the thicknesses of layers 1 and 2, respectively,
with D = d1 + d2 being the period of superlattice and we assume that
the z axis is along the normal to the interfaces and the wave vector
component k//, parallel to the layers, is along the x axis (see Figure 1).

The bulk Green function of system (i) is given by:

Gi(z, z′) = − 1
2Fi

exp[−αi

∣∣z − z′
∣∣] (15)

and the inverse interface response function g−1
i (MM) of layer (i) of

thickness di in the interface space M ≡ { − di/2, di/2} can be written
as:

g−1
i (MM) =

[
Ai Bi

Bi Ai

]
(16)

where Ai = −FiCi
Si

, Bi = Fi
Si

, Ci = cosh(αidi) and Si = sinh(αidi).
By the superposition of g−1

si (MmMm) corresponding to each layer
(i), one easily obtains the Green function of superlattice in the interface
space g−1(MmMm), namely written under three diagonal matrix form
as:

g−1(MmMm)=




. . .
. . .

B2 A2+A1 B1

B1 A1+A2 B2

B2 A2+A1 B1

. . .
. .

.
.
. .




(17)
The periodicity of the system enables us to introduce the Bloch wave
vector kz along the axis of the superlattice, we obtain:

[g(kz,M,M)]−1 =
(

A1 + A2 B1 + B2e
−ikzD

B2e
ikzD + B1 A1 + A2

)
(18)

By setting the determinant of [g(kz,M, M)]−1 equal to zero the
dispersion relation derives straightforwardly as:

cos(kzD) = C1C2 +
1
2

(
F1

F2
+

F2

F1

)
S1S2 (19)
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Figure 1. Diagram of infinite superlattice composed by alternating
two layers.

3. NUMERICAL RESULTS AND DISCUSSION

3.1. Interface Modes

First, we are interested in the interface modes localized at the boundary
z = 0 between a LHM and RHM. Such a wave should be exponentially
decaying on both sides of the interface and, therefore, its frequency
lies below the light lines of both media (i.e., both α1 and α2 are real,
where 1 and 2 refer to the media on both sides of the interface). By
taking the square in dispersion Eq. (12) we obtain:

ω2

k2
||

=
ε1
µ1
− ε2

µ2

1
µ2

1

− 12
µ2

2

for TE modes and
ω2

k2
||

=
µ1

ε1
− µ2

ε2

1
ε2
1

− 12
ε2
2

for TM modes (20)

One easily derives the condition for the existence of interfaces
modes as follows:

For TE modes: either ε2µ2 < ε1µ1 and µ2
2 > µ2

1 or ε2µ2 > ε1µ1

and µ2
2 < µ2

1

For TM modes: either ε2µ2 < ε1µ1 and ε2
2 > ε2

1 or ε2µ2 > ε1µ1

andε2
2 < ε2

1.
Unlike the case of an interface between two RHM, the RHM-LHM

interface can support a localized mode of TE polarization. However,
one can notice that the TE and TM interface modes can never exist
simultaneously; i.e., the interface supports at most one localized mode
of either TE or TM polarization.

3.2. Confined Modes of Layer

We consider a LHM layer of thickness d sandwiched between vacuum.
Their permittivity and permeability are frequency dependent under
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the following forms [17, 33–35]:

ε(ω) = 1− ω2
p

ω2
and µ(ω) = 1− F × ω2

ω2 − ω2
0

(21)

where ω0 and ωp are the effective magnetic and electric plasma
frequencies.

Let us mention that the authors of Ref. [34] have considered a
multilayered structure constituting of alternating air and metamaterial
slabs. These last ones are composed of metallic split ring resonators-
wire metamaterial. The authors of this reference have reported how
the effective parameters of the metamaterial can be derived from
a microscopic structure of wire and split-resonators possessing the
left-handed characteristics in the frequency ranges. The effective
plasma frequency ωp depend on the wire conductivity and the effective
cross section of a wire and the skin-layer thickness, while ωo and F
depend on the inductance, resistance and capacitance of the split ring
resonators wire considered. In the aim of giving different trends and
emphasizing the new behaviors that can occur when varying these
physical parameters, we give in what follows the evolution of the modes
dispersion curves of single LHM layer and for infinite superlattice when
the LHM’s physical parameters are modulated.

According to the Eq. (14), in Figure 2, we show some possible
behaviors of TE modes dispersion curves by choosing different
parameters of the LHM layer of thickness d, the RHM medium being
vacuum. The panels (1), (2) and (3) in the upper row, present the
confined modes of the embedded LHM layer for different values of F
(namely, F = 0.4, 0.6 and 0.82) with ω0 = 4 and ωp = 10. One notices
the existence of many confined modes around the resonance frequency
ω0 and the transformation of the interface modes to confined modes of
layer when the corresponding branches cross the light line of LHM. The
panels (4), (5) and (6) in the middle row, show the confined modes of
the embedded LHM layer for different values of ω0 (namely, ω0 = 3, 6
and 8) with F = 0.56 and ωp = 10. One emphasizes the tendency
of interference of interface modes. The examples sketched in panels
(7), (8) and (9) in the lowest row, correspond to the confined modes of
the embedded LHM layer for different values of ωp (namely, ωp = 5, 8
and 12) with F = 0.56 and ω0 = 4.

3.3. Superlattice Constituted by Alternate Layers of
LHM-RHM

Several studies of the dispersion relation and photonic band structure
in superlattice constituted by alternate layers LHM-RHM in which
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Figure 2. Dispersion curves of confined TE optical modes in LHM
layer of thickness d = 0.5D sandwiched between vacuum for different
values of parameters F , ω0 and ωp. The straight lines show the light
lines of vacuum (dashed line) and of the LHM layer (full line). The
reduced frequency Ω = ωD/c is presented as function of the reduced
wave vector K// = k//d parallel to the layer.

the dielectric permittivity and magnetic permeability of LHM are
assumed to take constant values have been discussed. Although
these parameters in LHM are in general frequency dependent, the
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object in our case is to investigate the photonic band structure of
one dimensional layer structures constituted by a periodical repetition
of vacuum and LHM’s in which the permittivity and permeability
are given by (21). Assuming the possibility of realizing such LHM
under the model form of layered media [21, 34], we present a detailed
theoretical study of the photonic band structure of a one dimensional
layered material. We investigate and discuss the band structures with
various physical parameters F , ω0 and ωp of the LHM layer.

3.3.1. Photonic Band Structure as a Function of the Parameter F

In the following, we investigate the possible behaviors of TE and TM
modes dispersion curves by choosing different values of the parameter
F . The other parameters are taken to be ω0D/c = 4 and ωpD/c = 10.

(a)

(c) (d)

(b)

Figure 3. Projected photonic band structure of a vacuum-LHM
superlattice for different values of F = 0.3 (a), 0.4 (b), 0.6 (c) and
0.82 (d). The filling fraction of vacuum d1/D = 0.5. The straight
dashed line is the vacuum light line and the heavy solid line defined
by equation α2 = 0, separate the region of propagating and evanescent
waves in LHM.
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Figure 3 shows the dispersion curves Ω = ωD/c versus K// = k//D for
F = 0.3 (a), 0.4 (b), 0.6 (c) and 0.82 (d). One notices the existence
of narrow bands and mini-gaps in the range of frequency around the
magnetic plasma frequency ω0 ≤ ω ≤ ω0√

1−F
where the parameters of

LHM, ε and µ, are simultaneously negative. These bands resulted by
the interaction of confined modes in LHM layer embedded between
vacuum. The novel behaviors resulting from the variation of the
parameter F of the LHM is the modification of the gap frequency
ranges for TE and TM polarizations. In order to have a better insight
about these behaviors, we give in Figure 4 the variation of the photonic
band structure Ω versus F for different values of the reduced wave
vector K//, namely K// = 0, 2, 4 and 6, which allow us to estimate the
width of the pass band and mini-gaps for given value of F .

(a)

(a) (b)

(c) (d)

Figure 4. Variation of the photonic band structure of a vacuum-
LHM superlattice versus F for different values of K// = 0.3 (a), 0.4
(b), 0.6 (c) and 0.82 (d). The filling fraction of vacuum d1/D = 0.5.
The straight dashed line is the reduced electric plasma frequency
ωpD/c = 10 and the heavy solid line defined by equation α2 = 0,
separate the region of propagating and evanescent waves in LHM.
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3.3.2. Photonic Band Structure as a Function of the Parameter ω0

Now we are interested in the possible behaviors of TE and TM modes
dispersion curves by choosing different values of the parameter ω0. The
other parameters are taken to be F = 0.56 and ωpD/c = 10. Figure 5
shows the dispersion curves Ω versus K// for reduced ω0D/c = 3 (a),
6 (b), 8 (c) and 12 (d). One easily emphasizes that by increasing ω0

we can obtain a wide pass band which gives birth to mini bands and
gaps. The above result can be illustrated in Figure 6 which present
the photonic band structure as the reduced frequency Ω versus ω0 for
different values of the reduced wave vector K//, namely K// = 0, 2, 4
and 6. Let us mention that the band photonic structures are strongly
dependent on the parameter ω0.

3.3.3. Photonic Band Structure as a Function of the Parameter ωp

Finally, we show in Figure 7 the possible behaviors of TE and TM
modes dispersion curves by choosing different values of the parameter

(a)

(c) (d)

(b)

Figure 5. Same as in Figure 3 for different values of ω0D/c = 3 (a),
6 (b), 8 (c) and 12 (d).
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(a)

(c)

(b)

(d)

Figure 6. Variation of the photonic band structure of a vacuum-LHM
superlattice versus ω0D/c for different values of K// = 0 (a), 2 (b), 4
(c) and 6 (d). The filling fraction of vacuum d1/D=0.5. The heavy
solid line is the light line in LHM layer. The straight dashed line is the
reduced electric plasma frequency ωpD/c = 10.

ωp with F = 0.56 and ω0D/c = 4. One can recognize for both
polarizations a burst of pass bands with appearance of mini-gaps for
increasing ωp.

In Figure 8, we present the variation of the reduced frequency Ω
versus ωp for different values of k//.

4. ASSOCIATION OF TWO SUPERLATTICES

An interesting and unexpected result which is due to the presence of
LHM layers is the existence in Figure 3 of an absolute band gap of TE
polarization. Indeed, this frequency interval free of TE modes for any
value of the wave vector K//, depend on the physical parameter F .
Consequently, a wave launched from any substrate with an arbitrary
angle of incidence is prohibited from propagation and will be reflected
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(a)

(c) (d)

(b)

Figure 7. Same as in Figure 3 for different values of ωpD/c = 5 (a),
8 (b), 12 (c) and 15 (d).

back. The superlattice becomes a perfect mirror for TE modes,
or a filter for TM modes, in this frequency range. An interesting
result of Figure 5(b) is the existence of an absolute band gap of TM
polarization, while such an omnidirectional gap cannot exist in ususal
RHM superlattices. In these previous examples of Figures 3 and 5,
we have shown that an appropriate choice of the material parameters
and the LHM/RHM superlattice can display an omnidirectional gap
for either TE or TM polarization. In the following, we propose another
kind of structure to create complete gap for both wave polarizations
in the one dimensional photonic crystal by the association of two
superlattices composed by LHM-RHM. For the sake of briefness in
this paper, we choose vacuum as the RHM and the other parameters
are taken to be:

First superlattice:

LHM

{
ε2(ω) = 1− ω2

p2

ω2

µ2(ω) = 1− F2×ω2

ω2−ω2
02
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(a)

(c) (d)

(b)

Figure 8. Varaitaion of the photonic band structure of a vacuum-
LHM superlattice versus ωpD/c for different values of K// = 0 (a), 2
(b), 4 (c) and 6 (d). The filling fraction of vacuum d1/D = 0.5. The
heavy solid line is the light line in LHM layer.

where F2 = 0.56, ω02D/c = 7.6, ωP2D/c = 10 and d1 = d2 = D/2.
Second superlattice:

LHM

{
ε4(ω) = 1− ω2

p4

ω2

µ4(ω) = 1− F4×ω2

ω2−ω2
04

where F4 = 0.75, ω04D/c = 4, ωP4D/c = 10, d1 = 0.6D and d2 = 0.4D.
The projected photonic band structures for each superlattice are

sketched in Figures 9 and 10, respectively. The shaded and white areas
correspond to the pass bands and the gaps of suprelattice.

Considering the effect that only the wave setting simultaneously
in the pass bands of each superlattice can be propagated through the
composite system, in Figure 11, we show the behaviors of TE modes
(right side) and TM modes (left side) dispersion curves corresponding
to the superposition of two superlattices.
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Figure 9. Photonic band struc-
ture of the first vacuum-LHM in-
finite superlattice. d1 = d2 =
D/2, F2 = 0.56, ω02D/c = 7.6
and ωp2D/c = 10. The straight
dashed line is the vacuum light
line and the heavy solid line is the
light line of LHM layer.

Figure 10. Photonic band
structure of the second vacuum-
LHM infinite superlattice. d1 =
0.6D, d2 = 0.4D, F4 = 0.75,
ω04D/c = 4 and ωp4D/c = 10.
The straight dashed line is the
vacuum light line and the heavy
solid line is the light line of LHM
layer.

Figure 11. Superposition of the projected photonic band structure
of two superlattices sketched in Fig. 9 and Fig. 10. The grey and the
black heavy solid lines are, respectively, the light lines in superlattices
1 et 2. The dashed straight lines show the widths of the gaps.
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An interesting result which is due to the association of two types
of Vacuum-LHM superlattice is the appearance of three absolute
gaps setting, respectively in frequency range: 6.3 ≤ ωD/c ≤ 7.7,
9 ≤ ωD/c ≤ 9.6 and 11.05 ≤ ωD/c ≤ 11.5.

We emphasize that an appropriate choice of thickness of layers
from which the two superlattices are constructed allows us to obtain
a wide absolute gap for both wave polarizations in the way that the
gaps of each superlattice annihilate the pass band setting in the same
frequency range of the other superlattice. Therefore, it should be
possible to realize in a certain frequency range an omnidirectional
reflector of light for both polarizations.

5. CONCLUSION

In this contribution, we have successfully applied the theory of Green’s
function method to determine the response functions

↔
Gi(ω/~x, ~x′),

↔
g s(ω/~x, ~x′), g(z, z′), g(MM) and g(kz,M, M) for infinite, semi-
infinite system, interface between two semi-infinite systems, layer
and superlattice, respectively. Therefore, by using the dispersion
relation associated to each case, we have sketched the behaviors of TE
and TM modes dispersion curves by choosing different parameters of
LHM, more particularly where the dielectric permittivity and magnetic
permeability are frequency dependent in each layer. We have also
illustrated the behaviors of the photonic band structure for different
values of parameters (F , ω0, ωp) which describe the permittivity and
the permeability of dispersive LHM. In particular, we have emphasized
that the novel behavior resulting from the variation of the parameter
F , tied to the magnetic permeability of LHM, is the modification of
the gap frequency ranges for TE and TM polarizations. We have
shown that the band photonic structure strongly depends on the
parameters ωp and ω0. Finally, a new phenomenon associated with
the presence of the LHM is the possibility of absolute band gaps,
of either TE or TM polarization, when the material parameters are
chosen appropriately. This enables us to propose an application of our
structure for realizing an omnidirectional optical mirror that prevents
propagation of optical waves of TE and TM polarizations for a given
frequency range. Combination in tandem of two such multilayers can
yield an omnidirectional reflector of light for both polarizations.
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