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Abstract—Two different approaches for compensating the probe
positioning errors in a near-field–far-field transformation with
cylindrical scanning using a nonredundant number of measurements
are presented and experimentally validated in this paper. In order
to evaluate the uniformly distributed samples from the irregularly
spaced ones, the former makes use of the singular value decomposition
method, whereas the latter employs an iterative technique. In both
the cases, the near-field data needed by a standard near-field-far-
field transformation are efficiently evaluated via an optimal sampling
interpolation algorithm.

1. INTRODUCTION

In the last fifteen years, the theoretical results on the nonredundant
representations of electromagnetic (EM) fields [1] have allowed the
development of efficient near-field-far-field (NF-FF) transformation
techniques, which generally require a number of NF data remarkably
lower than the standard ones. As a matter of fact, the NF data needed
by the standard NF-FF transformations are accurately recovered by
interpolating the minimum set of measurements via optimal sampling
interpolation (OSI) expansions. A substantial time saving can be
so achieved making these transformations more and more appealing,
since nowadays the measurement time is very much greater than the
computational one.

The mathematical foundation to achieve this result relies on
the quasi-bandlimitation properties of EM fields [2] and their
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nonredundant sampling representations [1]. In fact, according to [1],
the EM fields radiated by finite size sources enclosed in a convex
domain bounded by a rotational surface Σ and observed on a surface M
having the same rotational symmetry can be very well approximated
by spatially bandlimited functions, provided that a proper phase factor
is singled out by the field expression and proper parameterizations
are employed to describe M. Since, as shown in [3], the voltage
acquired by a nondirective probe has the same effective bandwidth
of the field radiated by the antenna under test (AUT), these sampling
representations can be applied also to the voltage measured by such a
kind of probe.

From a practical viewpoint, it may be impossible to get regularly
spaced NF measurements due to an inaccurate control of the
positioning systems. On the other hand, the actual measurement
positions can be accurately read by optical devices. Moreover, the
finite resolution of the positioning devices prevents the possibility to
locate exactly the receiving probe at the points fixed by the sampling
representation. In light of these considerations, the development of
an accurate and stable reconstruction algorithm from nonuniformly
distributed data becomes relevant.

The problem of the interpolation from nonuniform samples has
been well investigated in the (one-dimensional) case of bandlimited
functions defined over the real axis. Several sufficient conditions
ensuring the possibility of recovering a function from its nonuniform
samples have been stated in [4]. The stability in a nonuniform
sampling process, i.e., the requirement that small errors affecting the
sample values produce small errors in the recovered functions, has been
exhaustively investigated in [5, 6], wherein it has been shown that
a stable sampling cannot be performed at an “average” rate lower
than the Nyquist one. Some closed-form expressions, which allow
the interpolation of bandlimited functions from nonuniform samples,
have been reported in [7]. However, they are valid only for particular
sampling points arrangements, are cumbersome and not user friendly.
Moreover, they become more and more unstable as the sample points
distribution deviates from the uniform one. The two-dimensional
nonuniform sampling has not attracted an equal consideration in
literature. However, it has been shown [8] that also in such a case a
stable sampling cannot be performed at a rate lower than the Nyquist
one. As it is clearly pointed out in [9], wherein a more exhaustive
discussion can be found, a nonuniform sampling algorithm, useful for
practical applications, must be computationally manageable, stable,
and accurate. Therefore, it is more convenient to recover the uniform
samples from the irregularly spaced ones than to resort to a direct
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interpolation formula. As a matter of fact, once the uniform samples
have been determined, the value at any point of the scanning surface
can be recovered by an accurate and stable OSI formula.

In this framework, two different approaches have been proposed.
The former [10, 11] relies on the singular value decomposition (SVD)
method and has been applied when the two-dimensional problem can
be reduced to find the solution of two independent one-dimensional
ones. Moreover, it may take advantage of data redundancy for
increasing the algorithm stability [10, 11]. The latter [9, 12] is based
on an iterative technique which has been found convergent only if it
is possible to build a biunique correspondence, associating at each
uniform sampling point the nearest nonuniform one.

The aim of this paper is to present and experimentally validate
these two techniques in the case of the cylindrical scanning. The
choice of such a scanning is mainly due to the availability of a NF
cylindrical facility at the Antenna Characterization Lab of University
of Salerno, but such a validation implicitly confirms the applicability
of these approaches to other NF scanning geometries. It is worthy to
note that, unlike done in [12], the iterative technique is here applied
to a nonredundant NF-FF transformation with cylindrical scanning.

2. SAMPLING REPRESENTATION OF THE VOLTAGE
ON A CYLINDER

Let us consider an AUT as enclosed in a convex domain bounded by a
rotational surface Σ and a non directive probe scanning a cylinder of
radius d in the NF region. According to [1], the “reduced voltage”

Ṽ (ξ) = V (ξ) ejγ(ξ), (1)

where γ(ξ) is a proper phase function and ξ is an optimal parameter
used to describe each of the curves C (generatrices and azimuthal rings)
representing the cylindrical surface M, can be well approximated by
a spatially bandlimited function. The related bandlimitation error
becomes negligible as the bandwidth exceeds a critical value Wξ [1] and,
accordingly, it can be effectively controlled by choosing a bandwidth
equal to χ′Wξ, where χ′ > 1 is the bandwidth enlargement factor.

When C is a generatrix, by adopting Wξ = β�′/2π (β is the
wavenumber and �′ is the length of the curve C′′ obtained as intersection
between the meridian plane passing through the observation point P
and Σ), we get:

γ =
β

2
[
R1 + R2 + s′1 − s′2

]
; ξ =

π

�′
[
R1 − R2 + s′1 + s′2

]
(2)
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where R1, 2 are the distances from P to the tangency points P1, 2 on C′′
and s′1, 2 are their arclength coordinates.

When C is a ring, γ is constant and then it is possible to choose for
it the value relevant to the generatrix passing through P . Moreover,
it is convenient to choose the azimuthal angle ϕ as parameter. The
corresponding bandwidth is given [1] by

Wϕ =
β

2
max

z′

(√
(z − z′)2+(d + ρ′(z′))2−

√
(z − z′)2 + (d − ρ′(z′))2

)
(3)

ρ′(z′) being the equation of Σ in cylindrical coordinates.
In the following, for sake of simplicity, Σ is assumed coincident

with the smallest spherical surface of radius a able to contain the AUT
(see Fig. 1). In such a case, for a generatrix, it results [1, 13]

Wξ = βa; γ = β
√

r2 − a2 − βa cos−1(a/r); ξ = ϑ (4)

whereas, the azimuthal bandwidth (3) becomes Wϕ = βa sin ϑ.
By taking into account these results, the reduced voltage at P

on the generatrix fixed by ϕ can be evaluated via the following OSI
expansion:

Ṽ (ϑ,ϕ) =
n0+q∑

n=n0−q+1

Ṽ (ϑn, ϕ)ΩN (ϑ − ϑn) DN ′′ (ϑ − ϑn) (5)

where n0 = Int [(ϑ − Δϑ/4)/Δϑ] is the index of the sample nearest to
the output point, 2q is the number of retained samples, and

ϑn = nΔϑ + Δϑ/4; Δϑ = 2π
/(

2N ′′ + 1
)

(6)

N ′′ = Int
(
χ N ′) + 1; N ′ = Int

(
χ′Wξ

)
+ 1 (7)

χ > 1 being the oversampling factor needed to control the truncation
error. Moreover,

DN ′′ (ϑ) =
sin [(2N ′′ + 1)ϑ/2]
(2N ′′ + 1) sin(ϑ/2)

;

ΩN (ϑ) =
TN

[
2 cos2 (ϑ/2)

/
cos2 (ϑ0/2) − 1

]
TN

[
2
/
cos2 (ϑ0/2) − 1

]
(8)

are the Dirichlet and Tschebyscheff Sampling functions, respectively,
TN (·) being the Tschebyscheff polynomial of degree N = N ′′ −N ′ and
ϑ0 = qΔϑ.

It is worth noting that the OSI expansion (5) is different from that
used in [13], in order to have a symmetrical distribution of rings with
respect to z = 0.
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The intermediate samples Ṽ (ϑn, ϕ) can be evaluated by
interpolating the samples measured on the rings via a quite analogous
OSI formula.

The following two-dimensional OSI expansion thus results:

Ṽ (ϑ,ϕ) =
n0+q∑

n=n0−q+1

{ΩN (ϑ − ϑn)DN ′′ (ϑ − ϑn)

·
m0+p∑

m=m0−p+1

Ṽ (ϑn, ϕm,n) ΩMn(ϕ−ϕm,n)DM ′′
n
(ϕ−ϕm,n)

}
(9)

where m0 = Int(ϕ/Δϕn), 2p is the number of retained samples along
ϕ

ϕm,n = mΔϕn = 2mπ
/
(2M ′′

n + 1); M ′′
n = Int

(
χM ′

n

)
+ 1 (10)

M ′
n = Int (χ∗Wϕn) + 1; χ∗ = 1 +

(
χ′ − 1

)
(sin ϑn)−2/3 (11)

Mn = M ′′
n − M ′

n, and the other symbols have the same meaning as
in (5).

3. FROM NONUNIFORM TO UNIFORM SAMPLES

Two different approaches, which allow the reconstruction of the
uniform samples from the nonuniform acquired ones, will be described
in this section by highlighting all their features.

3.1. SVD Approach

Let us now suppose that the nonuniformly distributed samples lie on
rings not regularly spaced (see Fig. 1). This represents a realistic
hypothesis in a cylindrical NF facility, where the acquisition is made
by rings as required to exploit the possibility of reducing the number of
NF data on non-central rings, offered by the described non-redundant
representation. In such a hypothesis, the starting two-dimensional
problem is reduced to find the solution of two independent one-
dimensional problems.

In particular, the uniformly spaced samples on each nonuniform
ring are recovered as follows. Given a sequence of Jk ≥ 2M ′′

k + 1
nonuniform sampling points (θk, φj) on the nonuniform ring at height
z(θk), the reduced voltage Ṽ (θk, φj) at each nonuniform sampling point
can be expressed in terms of the unknown uniform ones by means of
the OSI expansion along ϕ, thus obtaining a linear system that can
be rewritten in matrix form as A x = b, where b is the sequence
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Figure 1. Geometry of the problem.

Ṽ (θk, φj) of the known nonuniform samples, x is the sequence of
the unknown uniformly distributed samples Ṽ (θk, ϕm), and A is the
Jk×(2M ′′

k +1) matrix, whose elements are given by the weight functions
in the considered OSI expansion:

ajm = ΩMk
(φj − ϕm)DM ′′

k
(φj − ϕm) (12)

Note that, for a fixed row j, these elements are equal to zero if m is
out of the range [m0(φj) − p + 1,m0(φj) + p].

Once the uniform samples on the irregularly spaced rings have
been recovered via the SVD algorithm, the OSI expansion along ϕ
is employed for determining the intermediate samples Ṽ (θk, ϕ) at the
intersection points between the nonuniform rings and the generatrix
through P . Since these samples are again nonuniformly distributed,
the voltage at P can be found by recovering the regularly spaced
intermediate samples again via SVD and then interpolating them by
means of the OSI formula (5).

In both the one-dimensional problems, the displacements between
the uniform and nonuniform samples are assumed such that to each
uniform sampling position must correspond at least a nonuniform one
whose distance is less than one half the uniform sampling spacing (Δϑ
or Δϕn) in order to avoid a strong ill-conditioning of the related linear
system [10, 11].
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To minimize the computational effort for recovering the uniformly
spaced samples on the uniform rings, it is convenient to reconstruct
the same number Nϕ of samples on each of them. Thus, the samples
are aligned along the generatrices and, as a consequence, the number
of systems to be solved is minimized. Obviously, Nϕ is fixed by the
ring corresponding to the maximum azimuthal bandwidth. Once the
uniform samples (nonredundant in ϑ, but slightly redundant in ϕ)
have been determined, the data needed to perform a standard NF-
FF transformation (e.g., [14]) can be evaluated by using the OSI
expansion (9) properly modified to take into account the redundancy
in ϕ.

3.2. Iterative Approach

Let us now remove the hypothesis that the nonuniformly distributed
samples lie on rings not regularly spaced. Thus, the starting two-
dimensional problem can no longer be reduced to find the solution
of two independent one-dimensional ones. Obviously, the SVD-based
approach could be generalized to such a case, but the dimension of
the involved matrix would become very large, thus requiring a huge
computational effort.

In order to overcome this drawback, it is convenient to resort to the
iterative technique [12] and, accordingly, let us assume in the following
that the nonuniformly distributed samples are such that it is possible to
build a biunique correspondence, associating at each uniform sampling
point the “nearest” nonuniform one. In such a case, by expressing
the reduced voltage at each nonuniform sampling point (θk, φj,k) as a
function of the unknown values at the nearest uniform ones (ϑn, ϕm,n)
via the two-dimensional OSI expansion (9), we get:

Ṽ (θk, φj,k) =
n0+q∑

n=n0−q+1

{ΩN (θk − ϑn) DN ′′ (θk − ϑn)

·
m0+p∑

m=m0−p+1

Ṽ (ϑn, ϕm,n) ΩMn (φj,k − ϕm,n)DM ′′
n

(φj,k − ϕm,n)
}

(13)

The resulting linear system can be rewritten as Ax = b, where b

is the sequence Ṽ (θk, φj,k) of the known nonuniform samples, x is the
sequence of the unknown uniformly distributed samples Ṽ (ϑn, ϕm,n),
and A is the matrix whose elements are given by the weight functions
in the considered OSI expansion. Its dimension is Q×Q, Q being the
overall number of nonuniform/uniform samples.
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By splitting the matrix A in its diagonal and nondiagonal parts,
A

D
and Δ, respectively, multiplying both members of the matrix

relation Ax = b by A−1
D

and rearranging the terms, it results:

x = A−1
D

b − A−1
D

Δx (14)

The following iterative scheme is so obtained:

x(ν) = x(0) − A−1
D

Δx(ν−1) (15)

where x(0) = A−1
D

b and x(ν) is the vector of the uniform samples
estimated at the νth step. Necessary conditions for the convergence of
the above scheme are that the modulus of each element on the principal
diagonal of the matrix A be not zero and greater than those of the other
elements on the same row and column [12]. These conditions are surely
verified in the assumed hypothesis of biunique correspondence between
each uniform sampling point and the “nearest” nonuniform one.

By straightforward evaluations from (15), it results

Ṽ (ν) (ϑn, ϕm,n) =
1

ΩN (θn − ϑn)DN ′′ (θn − ϑn)ΩMn (φm,n − ϕm,n)DM ′′
n

(φm,n − ϕm,n)

·
{

Ṽ (θn, φm,n) −
k0+q∑

k=k0−q+1
(k �=n) ∧

j0+p∑
j=j0−p+1

(j �=m)

ΩN (θn − ϑk) DN ′′ (θn − ϑk)

·ΩMk
(φm,n − ϕj,k)DM ′′

k
(φm,n − ϕj,k) Ṽ (ν−1) (ϑk, ϕj,k)

}
(16)

The OSI expansion (9) is then used to reconstruct the NF data
needed by a standard probe compensated NF-FF transformation from
the so recovered uniform NF samples.

4. EXPERIMENTAL VALIDATION

The above described NF-FF transformations from irregularly spaced
data have been experimentally validated in the anechoic chamber
available at the UNISA Antenna Characterization Lab. The chamber,
whose dimensions are 8m × 5m × 4m, is equipped with a rotating
table MI-6111B and a vertical scanner, having height 240 cm, supplied
by MI Technologies, LLC. The amplitude and phase measurements
are performed via a vectorial network analyzer Anritsu 37247C. An
open-ended MI-6970-WR90 rectangular waveguide is used as probe.
The considered AUT is a MI-12-8.2 standard gain horn with aperture
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19.4 cm× 14.4 cm, located on the plane x = 0 of the adopted reference
system (Fig. 1) and operating at the frequency of 10 GHz. Such an
AUT has been modelled as enclosed in a sphere having radius equal to
12 cm. The probe output voltages have been collected on a cylinder
having d = 43.8 cm and 2h = 240 cm.

In the first set of measurements, the nonuniformly distributed
sampling points lie on rings not regularly spaced. In particular, the
NF data have been acquired in such a way that the distance between
the position of each nonuniform ring and the associated uniform one
is random variable uniformly distributed in (−Δϑ/2, Δϑ/2). In a
similar way, the distances between the nonuniform sampling points
and corresponding uniform ones on each of these rings are random
variables uniformly distributed in (−Δϕn/2, Δϕn/2).

The amplitudes of the probe voltage relevant to the generatrices
at ϕ = 0◦ and ϕ = 30◦ reconstructed via the SVD-based approach are
compared in Figs. 2 and 3 with those directly measured on the same
generatrices. As can be seen, although the considered values of probe
positioning errors are very pessimistic in an actual scanning, there is
an excellent agreement between the reconstructed voltage (crosses) and
the measured one (solid line), save for the peripheral zone wherein the
error is caused both by the truncation of the scanning zone and the
environmental reflections. The same nonuniform NF data have been
employed to reconstruct the voltage on the generatrix at ϕ = 0◦ by
using the iterative-based approach (see Fig. 4). As can be seen, the
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Figure 2. Amplitude of the probe voltage on the generatrix at ϕ = 0◦.
Solid line: measured. Crosses: recovered from irregurarly spaced NF
data via the SVD-based approach.
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Figure 3. Amplitude of the probe voltage on the generatrix at
ϕ = 30◦. Solid line: measured. Crosses: recovered from irregurarly
spaced NF data via the SVD-based approach.
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Figure 4. Amplitude of the probe voltage on the generatrix at ϕ = 0◦.
Black line: measured. Coloured lines: recovered from irregurarly
spaced NF data via the iterative approach.

reconstruction obtained by employing 10 iterations coincides with that
relevant to the use of the SVD approach. Moreover, in the same figure
it is shown the intermediate results when 0 and 1 iterations are used,
in order to give an insight on the convergence of the technique. Note
that all the reconstructions have been obtained by using χ′ = 1.30,
χ = 1.20, and p = q = 6.
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Figure 5. E-plane pattern. Solid line: reference. Crosses: recovered
from irregurarly spaced NF data via the SVD-based approach.
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Figure 6. H-plane pattern. Solid line: reference. Crosses: recovered
from irregurarly spaced NF data via the SVD-based approach.

The overall effectiveness of the described techniques is assessed by
comparing the FF pattern in the principal planes reconstructed from
the collected nonuniform NF data (#2 067) with that obtained from
the data directly measured on the classical cylindrical grid (#11 520).
In both the cases, the software package MI-3000 has been used to
get the FF reconstructions. Obviously, once the uniformly distributed
data have been recovered, the two-dimensional OSI algorithm has been
employed for recovering the cylindrical data needed to perform the
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NF-FF transformation. Figures 5 and 6 are relevant to the SVD-
based approach and refer to the FF pattern reconstructions in the
E and H planes, respectively. As can be seen, these reconstructions
result to be very accurate, thus confirming the effectiveness of the
approach. Practically identical results are obtained when using the
iterative technique.
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Figure 7. E-plane pattern. Solid line: reference. Crosses: recovered
from an increased number of nonuniform NF data via the SVD-based
approach.
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Figure 8. Amplitude of the probe voltage on the generatrix at ϕ = 0◦.
Solid line: measured. Crosses: recovered from irregurarly spaced NF
data via the iterative approach.



Progress In Electromagnetics Research B, Vol. 20, 2010 333

When using the SVD-based technique, it is possible to exploit the
data redundancy to increase the algorithm stability. This is confirmed
by the better E-plane pattern reconstruction shown in Fig. 7, which
has been obtained from an increased number (3 471) of irregularly
spaced data.
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Figure 9. Phase of the probe voltage on the generatrix at ϕ = 0◦.
Solid line: measured. Crosses: recovered from irregurarly spaced NF
data via the iterative approach.
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Figure 10. E-plane pattern. Solid line: reference. Crosses: recovered
from irregurarly spaced NF data via the iterative approach.
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Let us now turn to the validation of the iterative technique
when the hypothesis of nonuniform sampling points that lie on
rings is removed. To this end, the nonuniform samples have been
acquired in such a way that the distances in ϑ and ϕ between the
position of each nonuniform sample and the associated uniform one
are random variables uniformly distributed in (−Δϑ/3, Δϑ/3) and
(−Δϕn/3,Δϕn/3). The amplitude and phase of the reconstructed
probe voltage relevant to the generatrix at ϕ = 0◦ are compared in
Figs. 8 and 9 with those directly measured. Note that the phase
is shown only in the range [−20 cm, 120 cm] in order to improve
the readability. At last, the overall effectiveness of the technique is
confirmed by the E-plane pattern reconstruction shown in Fig. 10.

5. CONCLUSIONS

In this paper, we have presented and experimentally validated two
different techniques to compensate the probe positioning errors in a
nonredundant NF-FF transformation with cylindrical scanning. The
former makes use of the SVD method for recovering the uniformly
distributed samples from the irregularly spaced ones and has been
applied when the two-dimensional problem can be reduced to find the
solution of two independent one-dimensional ones. The latter employs
an iterative technique which requires a one-to-one correspondence,
associating at each uniform sampling point the nearest nonuniform one.
The validation has been performed at the Antenna Characterization
Lab of University of Salerno, where a NF cylindrical facility is available
and implicitly confirms the applicability of these approaches to other
NF scanning geometries. Although the considered probe positioning
errors are very pessimistic in an actual scanning, excellent results have
been achieved both in the NF and FF reconstructions.
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