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Abstract—The following paper deals with the problem of computing a
safety perimeter, i.e., where the electromagnetic field due to a radiating
system exceeds a certain electromagnetic value. The flexibility of
the source reconstruction method (SRM) is employed to compute
the fields almost everywhere around the antenna. Techniques for
fast computing of the fields in the spectral and spatial domains
exploiting the characteristics of the SRM are considered in order to
avoid expensive integrations over the sources surface. Results for a log-
periodic antenna and a base station antenna for cellular phone systems
are shown, and compared with the usual far-field approximation.

1. INTRODUCTION

After the boom of the cellular phone systems and the consequent
installation of base stations, a certain social alarm was created due
to the fear of possible human hazards. As a result of this social
concern, several studies were carried out in order to evaluate the limits
for human exposure. Guidelines were proposed by the ICNIRP [3]
establishing the maximum reference values in terms of electric field
strength, magnetic field strength, and power density for human
exposure. These guidelines have been recommended by the European
Commission [1] and they have been assumed as officially normative in
multiple countries such as Spain [5] and Italy [2]. In the United States,
the Federal Communications Commission (FCC) has also provided
similar directives for human exposure to electromagnetic fields [4].

For this reason, the volume around an antenna, where the limits
are exceeded, has to be delimited to avoid the entry by people. This
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delimited area, usually approximated by a canonical surface such as a
rectangular box or a cylinder, is known as the safety perimeter.

The determination of this exclusion volume can be done in
an anechoic chamber by measuring the antenna in multiple points
determining where the limits are reached. However, this procedure is
very time-consuming and it can not be applied if the exclusion volume
is larger than the measurement facility.

Several previous works [13, 22, 25] have focused on deriving
analytical formulations to estimate the fields in the vicinity of collinear
arrays. Although these formulations cover many usual cases of mobile
telephony base stations, they are not general and they may not be
accurate for many modern antennas.

Another important research line is focused on applying near-
field to near-field (NF-NF) transformations to the measured field
(e.g., [11, 18, 19]. One of the most important advantages of these
methods is that they do not require any assumption regarding the
characteristics of the antenna (e.g., assuming a collinear array).
Among these techniques, the spherical wave expansion (SWE) is
probably the most common because its corresponding measurement
range does not introduce truncation errors. This powerful technique
is very efficient but it is not able to reconstruct the field inside the
minimum sphere enclosing the antenna [15], despite a new formulation
combining spherical and plane wave expansion with applications to
antenna diagnostics presented in [16, 17]. Another successful attempt
to overcome this limitation has been done in [6] for certain class of
collinear arrays by exploiting the a priori knowledge of the element
positions. Therefore, this approach can not be applied in a general
case. The rest of the usual NF-NF transformations (e.g., plane to
plane techniques) also suffer similar limitations when estimating the
field everywhere outside the antenna.

In this paper, we propose a different approach based on the
source reconstruction method (SRM) [33] and its three-dimensional
application [8], which has been extensively compared with the SWE
in [9]. This method calculates a current distribution on an arbitrary
domain enclosing the antenna. This current distribution radiates the
same field that the antenna outside the reconstruction domain radiates.
Although the SRM method involves a computational complexity higher
than the NF-NF transformations based on wave mode expansion, the
method makes possible to calculate the fields radiated by the antenna
not only on the reconstruction surface (e.g., on the radome [30])
but also everywhere outside the reconstruction domain, and it can
be applied both to measurements from canonical ranges (such as a
plane [26, 34], a cylinder [34] or a sphere [16, 17, 34]) and from arbitrary



Progress In Electromagnetics Research, PIER 103, 2010 373

acquisition systems. Additionally, several techniques have been
recently developed to reduce the computational complexity [10, 28].

A two-dimensional version of the SRM together with a brute-
force field computation was employed in [27] to evaluate the exclusion
volumes. In this paper, the flexibility of defining an arbitrary 3D
reconstruction domain, as well as the shape of the basis functions,
will be exploited for the fast computation of the fields radiated in
the proximity of the antenna. Since the SRM has been extensively
treated in the references [7–9, 27, 29], we will mainly focus on the
fast calculation of the near-field once the equivalent currents have
been computed. For this purpose, typical approaches are based on
adapting acceleration schemes for the method of moments. The most
common technique is probably the fast multipole method (FMM) [23]
and its multilevel version (MLFMA) [32], whose application to the
calculation of the near field has been shown in [20]. However, the
technique presented here is adapted from the Conjugated Gradient-
Fast Fourier Transform (CG-FFT) [24, 31] instead of FMM due to two
main aspects: i) it does not require any special treatment for near
interactions; ii) it does not depend on control parameters such as the
number of multipoles or integration points. A method also exploiting
the invariance of the Green’s functions will be presented in the spatial
domain. Although the application of these techniques is probably not
new for near-field calculation, it has not been previously applied in this
context with the SRM to the authors’ best knowledge.

Once the field in the vicinity of the antenna has been computed,
the determination of the safety perimeter is reduced to finding the
isosurface where the limit value is reached. In this paper, we will only
consider limits in terms of maximum electric field strength reference
values as given in [3]. Nonetheless, we do not foresee any problem
in the application to other limits (magnetic field strength or power
density).

The paper is arranged as follows. First, the estimation based
on the far-field approximation is presented in order to understand
its limitations. Next, the determination of the near-field from the
equivalent sources is considered. The appropriate setup for the SRM as
well as the observation points (in order to take advantage of the Green’s
function properties) are discussed and the approaches in the spatial and
spectral domain are detailed. Next, their computational complexities
are numerically estimated and compared with theoretical ones. In
order to illustrate and compare the techniques, two examples, one
involving a wideband log-periodic antenna and the other a base station
antenna using real measured date are given in Section 3. The discussion
and conclusions are given in the last section. The paper ends with two
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appendices gathering some important numerical aspects regarding the
implementation of the spatial and spectral domain approaches.

2. EFFICIENT TECHNIQUES

A first approximation to compute the exclusion volume is to suppose
that the field limit falls in the far-field region of the antenna. Thus,
the square of the field strength is proportional to the radiation pattern
of the antenna:

‖E (R, θ, φ)‖2 =
PradD (θ, φ)

4πR2
2η, (1)

where R is the distance to the antenna, Prad is the power radiated by
the antenna, D (θ, φ) is the directive gain of the antenna, and, η is the
free space impedance.

If we define a limit value for the electric field strength as Emax,
then the limit of the safety perimeter, for a certain direction, is given
by:

R (θ, φ) =
1

Emax

√
PradD (θ, φ) 2η

4π
. (2)

Since this formulation is only valid if the antenna distance R is in
the far-field region, it is necessary to employ more refined techniques
to evaluate the safety perimeters in close proximity of the antenna.
However, it is useful to remark that this formulation is accurate for
the main lobe of the antenna and high equivalent isotropically radiated
power (EIRP) values.

In the remainder of this paper, the safety perimeter will be
evaluated numerically from the field calculated on a regular grid. As
will be explained later, it is convenient to reconstruct the equivalent
sources of the antenna over a rectangular box with the same spacing
for their basis functions as for the observation grid (see Fig. 1). It is
also important to remark that the maximum spacing for the equivalent
sources is λ/2 [9] and, therefore, the minimum resolution for the field
observation grid is also λ/2.

2.1. Calculation in the Spatial Domain

Free-space Green’s functions are invariant with the position of the
source, i.e., they only depend on the relative positions of the source and
observation points. This enables us to express the field radiated by a
certain electric or magnetic current source distribution, J (r) and M (r)
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Figure 1. Approximation of the safety perimeter with a regular grid
with the same spacing as the source grid. For the sake of clarity, the
x-dimension of the observation grid has been omitted.

respectively, in free-space as a convolution of the Green’s functions with
the current distribution:

E (r) = −jωµG(e) (r) ∗ J (r) , (3)

E (r) = G(m) (r) ∗M (r) , (4)
where ω is the angular frequency, µ is the free-space magnetic
permeability, and G(e) and G(m) are the free-space dyadic Green’s
function for electric and magnetic currents [14, 21]:

G(e) (r) =
(
I +

∇∇
k2

0

)
g (r) , (5)

G(m) (r) = −∇× (
g (r) I

)
, (6)

where k0 is the wavenumber, I is the unit dyadic, and g (r) is the
free-space scalar Green’s function:

g (r) =
1
4π

e−jk0‖r‖

‖r‖ . (7)

If electric and magnetic currents are considered simultaneously, then
the total field is given by the superposition of the fields from (3)
and (4).
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∆

∆

∆

∆

t

t

Sources domain
n

vu

v

v

u

u

Figure 2. Translation invariance for a current distribution on a plane.

This property means that if a set of sources is moved a direction
t, then the field radiated is also moved in the same direction. Thus,
if the same spacing is used for the sources and observation grids, it
is possible to evaluate the field due to a certain basis function by
just translating the field (previously calculated) due to another basis
function (see Fig. 2). In other words, it is possible to compute the
field in the entire observation grid by just calculating the field due to
one basis function and appropriately translating (and weighting) this
field. This fact, together with the flexibility of choice for the basis
functions in the SRM, will be exploited to quickly compute the field in
the vicinity of the antenna.

The first step in this strategy is to employ a reconstruction domain
equal to a rectangular box enclosing the radiating system. The surface
of this box is discretized into equal-sized rectangles where pulse basis
functions are employed to expand both magnetic and electric currents.
In order to model the entire tangential current, two orthogonal basis
functions for each kind of current are placed on each rectangle. The
rectangles are choosen to have the same length in a given direction.
This way, the problem is reduced to computing the field radiated for
each face of the rectangular box.

In order to take advantage of this invariance property, the field
will be evaluated in a three-dimensional grid with the same spacing as
the source grid. Let us assume that the currents on a face belonging to
the plane described by two orthogonal vectors û and v̂ are expanded
using Nu basis functions in the u-direction and Nv basis functions in
the v-direction. It will be also assumed that Nu and Nv are odd and
that the center of the face is placed at the origin of the coordinates
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system. Hence, currents are expressed as:

J (r) =
∑

n

∑
m

α(u,e)
nm f (u) (r− n∆uû−m∆vv̂)

+
∑

n

∑
m

α(v,e)
nm f (v) (r− n∆uû−m∆vv̂) , (8)

M (r) =
∑

n

∑
m

α(u,m)
nm f (u) (r− n∆uû−m∆vv̂)

+
∑

n

∑
m

α(v,m)
nm f (v) (r− n∆uû−m∆vv̂) , (9)

where ∆u and ∆v are the spacings in the u and v-direction, respectively,
α

(α,β)
nm are the weights (calculated with the SRM) for the basis function

in the n-m position, in the u- and v-direction, respectively, J (r) and
M (r) are the electric and magnetic currents, respectively, and f (u) and
f (v) are pulses with u- and v-components, respectively. The index n
ranges from −(Nu − 1)/2 to (Nu − 1)/2 and the index m ranges from
−(Nv − 1)/2 to (Nv − 1)/2.

Let us first consider only the field radiated by the electric currents
with u-component. Then, the electric field radiated by J (r) can be
calculated by inserting (8) in (3):

E (r) =
∑

n

∑
m

α(u,e)
nm E(u,e)

0 (r− n∆uû−m∆vv̂) , (10)

where E0 is the field radiated by the basis function in the center of the
face (n = 0 and m = 0),

E(u,e)
0 (r) = −jωµG(e) (r) ∗ f (u) (r) . (11)

Finally, the field on a grid contained in a plane described by the vectors
û and v̂ and the point r0 can be computed as:

E
(
r0 + n′∆uû + m′∆vv̂

)

=
∑
n

∑
m

α(u,e)
nm E(u,e)

0

(
r0 −

(
n− n′

)
∆uû− (

m−m′)∆vv̂
)

=
∑
n

∑
m

α(u,e)
nm E(u,e)

d0

[
n− n′

] [
m−m′] , (12)

where E(u,e)
d0 [n][m] is the sample of the field radiated by f (u) (r) at the

observation point r = r0 − n∆uû−m∆vv̂,

E(u,e)
d0 [n][m] = E(u,e)

0 (r0 − n∆uû−m∆vv̂) . (13)
Thus, it is only necessary to evaluate the field due to the basis function
at the center of the face and, after that, the computation can be
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performed without further integrations in the sources domain. A
similar formulation can be followed for the other component of the
electric current and for both components of the magnetic currents.
Thus, the total field is:

E
(
r0+n′∆uû+m′∆vv̂

)
=

∑
n

∑
m

α(u,e)
nm E(u,e)

d0

[
n− n′

] [
m−m′]

+
∑
n

∑
m

α(v,e)
nm E(v,e)

d0

[
n− n′

] [
m−m′]

+
∑
n

∑
m

α(u,m)
nm E(u,m)

d0

[
n− n′

] [
m−m′]

+
∑
n

∑
m

α(v,m)
nm E(v,m)

d0

[
n−n′

][
m−m′],(14)

where:

E(v,e)
d0 [n] [m] = −jωµG(e) (r) ∗ f (v) (r)

∣∣∣
r=r0−n∆uû−m∆v v̂

, (15)

E(u,m)
d0 [n] [m] = G(m) (r) ∗ f (u) (r)

∣∣∣
r=r0−n∆uû−m∆v v̂

, (16)

E(v,m)
d0 [n] [m] = G(m) (r) ∗ f (v) (r)

∣∣∣
r=r0−n∆uû−m∆v v̂

. (17)

It is important to remark that in order to evaluate all the terms
in the sums of (14), it is necessary calculate the fields radiated by
the centered basis functions not only in the original observation grid
but also on an extension with Nu and Nv points for the u- and v-
directions, respectively. The computation of these variables can be
accelerated using the symmetry properties described in Appendix A.

Although this approach avoids evaluating the integration in the
entire reconstruction surface thus saving time, its complexity is the
same as in the case of direct integration, i.e., O (NobsNsou), where Nobs

is the number of observation points and Nsou is the number of source
points.

2.2. Calculation in the Spectral Domain

As has been shown previously, it is possible to take advantage of the
invariance property of the Green’s functions in free-space to speed up
the computation of the field on a grid. If the same spacing for sources
and observation grid is employed, it is also possible to perform this
calculation on the spectral domain by exploiting the advantages of the
fast Fourier transform (FFT).
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If we consider the Fourier transform of the electric field given by
(3) at the spectral point k = kxx̂ + kyŷ + kz ẑ, it yields:

Ẽ (k) =
∫

V
E (r) e−jk·rdV = −jωµG̃

(e)
(k) · J̃ (k) , (18)

where G̃
(e)

is the Fourier transform of G(e) [21],

G̃
(e)

=
(
I− 1

k2
0

kk
)

g̃ (k) , (19)

and g̃ (k) is the Fourier transform of the free-space scalar Green’s
function,

g̃ (k) =
1

k2
x + k2

y + k2
z − k2

0

. (20)

J̃ (k) is the Fourier Transform on the electric currents in (8). In a
similar fashion, the Fourier transform of (4) yields:

Ẽ (k) = −jg̃ (k)k× M̃ (k) = G̃
(m)

· M̃ (k) , (21)

where G̃
(m)

is the Fourier transform of G(m), which can be expressed
as

G̃
(m)

= −jg̃ (k)

( 0 −kz ky

kz 0 −kx

−ky kx 0

)
(22)

and M̃ (k) is the Fourier Transform of the magnetic currents.
Equations (18) and (21) enable us to calculate the spectrum of

the electric field for any spectral point k. Hence, it is possible to
recover the electric field at any point by performing an inverse Fourier
transform:

E (r) =
(

1
2π

)3 ∫

kx

∫

ky

∫

kz

Ẽ (k) ejk·rdkxdkydkz. (23)

This expression can be evaluated on a regular grid in order to recover
the field on a spatial grid via FFT. However, it is convenient to
consider some numerical aspects to avoid aliasing problems. These
considerations are detailed in Appendix B.

The complexity of this spectral domain approach for an
observation grid with Nobs points and Nsou sources is O((Nsou +
Nobs) log(Nsou+Nobs)) (see Appendix B). Thus, the spectral domain
approach has greater computational complexity than the spatial
domain approach regarding the number of observation points.
Nevertheless, if the number of sources and the number of observation
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points are similar Nobs ≈ Nsou, then the complexity is reduced from
O (

N2
obs

)
to O (Nobs log Nobs). This fact was already observed when the

MLFMA was employed for fast field computation [20]. In the results
section, it is shown how similar Nobs and Nsou values should be used
to take advantage of this approach.

It is important to remark that this method is based on performing
the numerical convolution related to (3) and (4) via an FFT (see
Appendix B for further details) and, therefore, it will yield the same
results as we would obtain in the case of using the direct method or
the method in the spatial domain.

2.3. Computational Complexities

In order to empirically check the computational complexity of the
previous approaches, we will perform two kinds of analyses varying
the number of observation points and the number of sources. All the
times shown in this paper are measured on a workstation equipped
with an AMD Opteron 880 at 2.4 GHz and 64 GB of RAM memory.

For the first case, we consider a 31 × 31 grid that supports 1922
basis functions for electric currents and the same number for magnetic
currents. The observation grid is composed of 11 × 11 × Nz points,
where Nz is the number of points along the z-direction that are going
to be progressively increased through the analysis.

The results for both methods are compiled in Fig. 3 with good
agreement with the theoretical complexities. Thus, the spectral
domain has a higher computational complexity in the asymptotic limit.
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Despite this, the spectral domain is slightly faster for the sizes of the
problems under consideration here.

Figure 4 shows the results of the complexity when the number
of sources is increased and the number of observation points remains
fixed. In this case, we consider an observation grid with 211×211×211
points, while the sources are placed on a square grid with variable
size in the XY plane. In the case of the spatial domain approach,
the computational time has a linear dependence on the number of
sourcežs as predicted by the theory. On the other hand, the time
complexity of the spectral domain approach does not suffer a significant
change with the number of sources for the range under consideration.
The increase in computational time is due to the increase in the
observation points to avoid aliasing problems (see Appendix B). This
change in computational time is in good agreement with the theoretical
complexity given by O ((Nsou + Nobs) log (Nsou + Nobs)) and labelled
as “Spectral domain complexity” in Fig. 4.

3. NUMERICAL RESULTS

3.1. Log-periodic Antenna

In our first example, we consider the analysis of a wideband antenna to
observe the differences of the safety perimeters at different frequencies.
For this purpose, we consider the logperiodic antenna analyzed in [29]
at 1030MHz, 1800 MHz and 2500 MHz. Maximum root mean square
(RMS) electric field strengths according to [3] as well as the directivity
of the antenna are compiled in Table 1.

The antenna is surrounded by a 30 cm× 2 cm× 60 cm rectangular
box that is discretized employing a 11, 1 and 21 pulses for the x, y,
and z, directions, respectively. Thus, the size of the pulses ranges
from 0.07λ to 0.23λ. The iterative algorithm employed in the SRM [8]
is stopped when the root mean square error between the measured
field and the field radiated by the sources is less than 0.1% for two
consecutive iterations. Table 2 contains the employed observation

Table 1. Directivity for the logperiodic antenna and maximum electric
fields values according to [3].

f (MHz) D (dBi) Max Erms (V/m)
1030 8.6 44.1
1800 9.0 58.3
2500 9.4 61
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Table 2. Setup of the SRM to compute the currents of the logperiodic
antenna.

f (MHz) Obs. points iter. t (s)
1030 21,960 16 528
1800 32,760 17 1037
2500 8,280 20 220

points, the required number of iterations, and the total time employed
by the SRM. In order to perform the analysis, the equivalent currents
amplitude has been scaled to radiate with an EIRP equals to 100 W.

It is important to remark that the EIRP is a far-field measure
and, therefore, it is not significant close to the antenna. However, this
parameter is widespread to specify the power radiated by an antenna.
For that reason, we have chosen to specify the power radiated by the
antennas described in this paper in terms of the EIRP.

The observation grid is chosen to include the reconstruction
surface and the safety perimeter calculated using the far-field
approximation. Although we estimate these observation grids only
for the worst case that corresponds to 1030MHz, it is also possible to
make finer adjustments by changing the grid size with the frequency.
Values were rounded to the next 0.5m multiple in order to have a
safety margin. Thus, the values for the x, y and z axis ranges from
−1m, to 1m, −0.5m to −0.5m, and −0.5 m to 1.5 m, respectively.

Safety perimeters are calculated using both spatial and spectral
domains without visible discrepancies. For the sake of clarity, only the
results from the spectral domains will be shown. These approaches
consume 66 s in the spatial domain and 19 s in the spectral domain
versus the 344 s for the direct calculation.

The safety perimeters are shown in Fig. 5. Although the far-
field approximation provides more conservative safety perimeters in the
main lobe at 1030 MHz and 1800 MHz, i.e., the real safety perimeter is
closer to the antenna than the provided by the far-field approximation,
this is not the case at 2500 MHz where the approximation yields a
smaller exclusion volume than the exact near field calculated with the
SRM. One of the reasons for this behaviour is that the safety perimeter
calculated with (2) tends to become smaller if the maximum electric
field strength is increased, as happens for the considered cases. Thus,
the far-field approximation becomes inaccurate and the offset from the
origin of the antenna also plays a key role. Although the difference is
only 4 cm in the maximum radiation direction, it is important to check
the far-field approximation in those close cases.
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(a) 1030 MHz (b) 1800 MHz

(c) 2500 MHz (d) 2500 MHz
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Figure 5. Safety perimeters for the logperiodic antenna at several
frequencies. The first quadrant is omitted for proper visualization.
The safety perimeter contour in the plane y = 0 is also shown for the
sake of clarity.

For the rest of directions out of the main lobe, far-field
approximation still provides good estimations of the maximum safe
distances except for the back radiation (θ > π/2) where the
radiation close to the antenna is not correctly modeled by the far-field
approximation. It is especially visible at 1030 MHz where the safety
perimeter is larger for this direction.
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3.2. Base Station Antenna

The next example is a base transceiver station (BTS) antenna working
at 1800 MHz (DCS band). The gain of this antenna is 12 dB and the
size of the radome is 0.2m × 1.6m × 0.1 m. Equivalent sources are
reconstructed over a surface fitting the radome and using a grid size
with 3, 21 and 3 pulses for the x, y and z directions, respectively

In order to reconstruct the currents, the radiation pattern of the
antenna was measured using 21,960 acquisition points in a spherical
range at 5 m. The same stop condition as before is used and
convergence is reached after 11 iterations. The total time to reconstruct
the sources is 176 s.

The safety perimeters are computed for several EIRP values and
are compiled in Table 3. The observation grid is again chosen to include
the reconstruction surface and the safety perimeter calculated from the
far-field approximation. The dimensions of this box are also rounded
to the next 0.5 m multiple. The range of values for the observation grid
as well as the resulting number of observation points for each direction
are also shown in Table 3.

Table 4 contains the computational time results for the
aforementioned EIRP values. In this case, the time for the spatial
and spectral domain techniques are very close enabling the calculation
for more than 400,000 observation points in less than 40 s.

Safety perimeters for EIRP equal to 800 W and 3200 W are shown
in Fig. 6 for the limit RMS value Erms = 58.3 V/m following
the [3] guidelines. Graphical inspection reveals that the far-field

Table 3. Grid sizes for the BTS working at different EIRPs.

EIRP
(Watts)

x (m) y (m) z (m) Nx ×Ny ×Nz

800 [− 1.5, 1.5] [− 1.0, 3.0] [− 1.0, 1.0] 47× 121× 27
1600 [− 2.0, 2.0] [− 1.0, 4.0] [− 1.0, 1.0] 61× 151× 27
3200 [− 2.5, 2.5] [− 1.0, 6.0] [− 1.0, 1.0] 77× 211× 27

Table 4. Time values for the Table 2.

EIRP (Watts) Direct Spatial domain Spectral domain
800 101 s 15 s 14 s
1600 163 s 21 s 21 s
3200 287 s 34 s 38 s
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(a) EIRP = 800 W (b) EIRP = 3200 W

Figure 6. Safety perimeters for the BTS antenna for two different
EIRPs.

approximation could be used for large EIRP values where the safety
perimeter is closer to the beginning of the far-field area. If the EIRP
values are low and, therefore the safety perimeter is closer to the
antenna, radiation is not so directive. Thus, the far-field approximation
is more conservative for the main lobe but not for the rest of the
directions.

4. CONCLUSION

A safety perimeter can be efficiently evaluated with an appropriate
setup of the source reconstruction method. From those sources,
electromagnetic fields can be quickly computed on an observation
grid where the safety perimeter is to be calculated. This calculation
has been done by exploiting the invariance property of the Green’s
function in the spatial and spectral domains. For the spatial domain
approach, computatinal times has a linear dependence on the number
of observation points. Thus, it is attractive for problems where many
observation points are involved. On the other hand, the spectral
domain takes advantage of efficient FFT implementations and it has
been demonstrated to be faster or very competitive for the range of
problems considered here. The validity of the results from the far-field
approximation depends on the desired degree of accuracy.
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APPENDIX A. NUMERICAL CONSIDERATIONS FOR
THE SPATIAL DOMAIN

Computation of the values in (13)–(17) correspond to the field radiated
by a basis function at the origin and evaluated in the position r =
r0 − n∆uû − m∆vv̂ can be accelerated employing some symmetry
properties for the u- and v-components of the field. These properties
are compiled in the following equations:

û ·E(u,e)
d0 [−n] [m] = û ·E(u,e)

d0 [n] [m] , (A1)

v̂ ·E(u,e)
d0 [n] [−m] = −v̂ ·E(u,e)

d0 [n] [m] , (A2)

û ·E(v,e)
d0 [−n] [m] = −û ·E(v,e)

d0 [n] [m] , (A3)

v̂ ·E(v,e)
d0 [n] [−m] = v̂ ·E(v,e)

d0 [n] [m] , (A4)

û ·E(u,m)
d0 [−n] [m] = −û ·E(u,m)

d0 [n] [m] , (A5)

v̂ ·E(u,m)
d0 [n] [−m] = v̂ ·E(u,m)

d0 [n] [m] , (A6)

û ·E(v,m)
d0 [−n] [m] = û ·E(v,m)

d0 [n] [m] , (A7)

v̂ ·E(v,m)
d0 [n] [−m] = −v̂ ·E(v,m)

d0 [n] [m] . (A8)

Therefore, it is only necessary to compute the Ed0 values for n ≥ 0
and m ≥ 0 reducing by approximately four times the time employed
by this stage.

APPENDIX B. NUMERICAL CONSIDERATIONS FOR
THE SPECTRAL DOMAIN

If the field spectrum Ẽ (k) is sampled in order to employ the FFT to
recover the field in the spatial domain, the results will suffer aliasing
problems. This can be avoided by applying a window in the spatial
domain to the Green’s functions [24]. However, the evaluation of the
windowed version of the Green’s Functions in the spectral domain
involves a convolution between the analytical expressions (19) and
(22), and the Fourier transform of the window. Since this operation
can be very time-consuming, we overcome this drawback by sampling
the windowed Green’s function at the points where the field is to be
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Figure B1. Spatial aliasing.

calculated and the FFT is applied to these samples. In other words, we
compute numerically the Fourier transform of the windowed Green’s
function.

A similar procedure is carried out to compute the Fourier
transform of the currents. However, if pulses are used as basis
functions, then this Fourier transform can still be calculated
analytically.

Once the samples of the Fourier transforms of the Green’s
functions and the currents have been calculated, then the samples
of the electric field can be computed by the product of both. It is
important to remark that if a basis function is moved one unit in the
grid, then the recovered field is also moved in the same direction with a
cyclic periodicity in the observation grid. This has been illustrated in
Fig. B1 for the one-dimensional case where DFT and IDFT stands for
Discrete Time Fourier Transform and Inverse Discrete Time Fourier
Transform, respectively. Therefore, if a Nu × Nv grid is considered,
then the observation grid must be extended Nu and Nv cells in the u-
and v-directions in order to avoid this spatial aliasing. These extended
points will be discarded once the field has been recovered. Hence,
the computational complexity and required computing time for this
approach are proportional to O((Nsou + Nobs) log(Nsou + Nobs)).

Finally, we would like to remark that in order to numerically
evaluate (5) and (6), it is convenient to use more suitable expressions
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such as the following ones:

G(e) (r) =
1
k2

0

(
IG1 (r) +

1
r2

G2 (r) rr
)

e−jk0r, (B1)

G(m) (r) = G3 (r)

( 0 −z y
z 0 −x
−y x 0

)
1
r
e−jk0r, (B2)

where r = ‖r‖ and G1, G2 and G3 [12] are given by:

G1 (r) =
−1− jk0r + k2

0r
2

4πr3
, (B3)

G2 (r) =
3 + 3jk0r − k2

0r
2

4πr3
, (B4)

G3 (r) =
−1− jk0r

4πr2
. (B5)
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