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École Centrale de Lyon, 36 avenue Guy de Collongue
69134 Ecully, France

P. Dular

Department of Electrical Engineering and Computer Science
University of Liège
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Abstract—A perturbation method based on the decoupling of
propagation and diffusion phenomenons is proposed in order to
calculate losses in microwave structures. Starting from the first
problem in which the conducting regions are not described, a
perturbation is calculated by solving a second problem restricted to
the vicinity of the conductors; iterations between these problems can
be performed when the perturbed solution is not sufficiently accurate.
The perturbation approach is however more accurate than a method
based on a surface impedance model, without introducing the huge
calculations that appear when both conducting region and external
medium are described in a single problem. 2D examples are presented
using the finite element method and the integral equation method.

1. INTRODUCTION

The perturbation method presented here was originally introduced to
solve problems in the low frequency range [1–3] but its scope is larger.
Basically, a complex problem is solved in two steps. First, some details
are removed, and a simplified problem is considered on the global
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computational domain. Then, these details are restored; this operation
makes electromagnetic sources appear, and a second problem is solved
on a local computational domain. If a significant coupling exists
between the problems on the global and local domains, the process
can be iterated, i.e., solutions on the global domain are alternated
with solutions on the local domain until a “sufficient accuracy” was
reached.

The application proposed here concerns a recurrent problem in
the high frequency range, that is the accurate evaluation of losses in
passive structures as for example microwave filters. The solution of this
problem involves resonance phenomenons specific to the wave equation
but also diffusion phenomenons inside the conductors. Two approaches
are possible as will be detailed in the following.

In one approach, no hypothesis is made: the numerical result
will be accurate but the computing cost will be huge. Indeed, a
finite element method implies to mesh the entire structure, including
the interior of conductors. Using an integral equation method, the
interior of conductors is discretized into volume filaments to describe
the volume current; this technique is for example used in the partial
equivalent electric circuit method [4].

In the other approach, the conductors are supposed to be modeled
by a surface impedance that takes into account the skin effect [5, 6]:
the computing cost problem is expected to be reduced but the
result will not be correct in particular in the corners of the metallic
regions. Refinements of the impedance boundary conditions are
however possible with some limitations. Asymptotic expansions of
the surface impedance can be derived near corners and edges but
these expressions are limited to 2D geometries and depend on the
polarizations of the electric field [7]. A better accuracy can be achieved
by changing the local relation on the boundary to a global one but those
approaches are based on 2D approximations of the original problem
and valuable for definite directions of the current [8]. Recently, a
method that combines integral equations for the conducting region
and the external medium has been proposed [9]; the skin effect is thus
well captured but a specific treatment for the Green function integrals
in the conductive medium is required to ensure the efficiency of the
method.

The perturbation method makes possible to exploit the advantages
of both approaches. In a first problem, the conducting regions are
not described; the conductors are supposed to be perfectly metallic or
modeled by a surface impedance. Then, in a second problem restricted
to the vicinity of the conductors, the interior of the conductors is
considered; this change makes surface or volumic current sources
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appear, whose effects correct the solution found in the first problem.
When the first problem is “too far” from the problem with the
whole details, the correction brought by the second problem may
be not sufficient. Then, going back to the problem on the global
computational domain, the solution to the second problem induces new
electromagnetic sources and the method can be iterated until accurate
results are achieved.

In this paper, different cases of the perturbation method are
treated. First, a 1D problem is proposed in order to show how the
perturbation method makes possible to properly decouple wave and
diffusion problems. Then, the perturbation method is applied in a 2D
waveguide in which a conducting plate is introduced as an obstacle;
the finite element method is used for the solution of the different sub-
problems. Finally, the 2D problem is reassessed when the plate is
very thin; an integral equation method can then be used to solve the
problem at the large scale.

2. 1D ANALYTICAL PROBLEM

Consider, as illustrated Fig. 1, the reflection of an incident plane
wave Einc = E0e

−jk0z on a wall of high conductivity σ À ωε0; k0

is the wavenumber in vacuum. For our purpose, the reflection will be
characterized by the impedance Z seen at z = −l.

The exact solution of this problem is well known. On one hand, the
electromagnetic field inside the conductor obeys a diffusion equation
whose solution is

Ex = Ex|z=0 e−
1+j

δ
z, (1)

where δ =
√

2/(σωµ0) is the skin depth.
The impedance Zs at the surface of the conductor is given by

Zs =
(

Ex

Hy

)

|z=0

=
1 + j

σδ
. (2)

0-l z

Ex

Hy

(a) Initial problem

0-l z

-Jx

(b) Perturbed problem

σ σ

Figure 1. Application of the perturbation method in a 1D problem.
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On the other hand, the electromagnetic field in the vacuum region
is governed by a wave equation. Then, using the transmission line
theory, one can express the impedance Z seen at z = −l:

Zexact = Z0
Zs + jZ0 tan (k0l)
Z0 + jZs tan (k0l)

. (3)

where Z0 is the impedance of a plane wave in vacuum.
In the application of the perturbation method, the wall is supposed

in a first step to be a perfect conductor. One immediately finds the
electromagnetic field {E1,H1} of the first problem:

{
E1 = E0e

−jk0z −E0e
+jk0z z < 0

H1 = E0/Z0e
−jk0z + E0/Z0e

+jk0z z < 0.
(4)

This field induces at the interface vacuum/metal a surface current
Jx = Hy |z=0×nz = 2E0/Z0 that does not appear in the exact solution.
The perturbed problem consists then in canceling this surface current
as illustrated Fig. 1. From a circuit point of view, this problem is
equivalent to the situation where a current source −Jx feeds two loads
Z0 and Zs connected in parallel. When the metal is highly conducting,
Z0 À Zs; then, the load Z0 is insignificant, that is the radiating
part of the field can be neglected in the perturbed problem. This
assumption is an extension of the image theory which states that an
electric current radiates no field when it is adjacent and tangential to
a perfectly conducting plate [10]; an electric current radiates nearly no
field when it is adjacent and tangential to a highly conducting plate.
It is then possible to decouple the wave and the diffusion problems.
Thus, the electromagnetic field {E2,H2} of the perturbed problem is
given by {

E2 = ZsH2 z > 0
H2 = 2E0/Z0e

− 1+j
δ

z z > 0.
(5)

The solution of the whole problem is equal to the sum of the
electromagnetic fields {E1,H1} and {E2,H2}. The impedance Z can
then be calculated from Poynting’s theorem, that is to say by a volumic
calculation of the magnetic and electric energies in the whole problem
and of the power dissipated inside the conductor:

Zperturbe = jZ0 tan (k0l) +
Zs

cos2 (k0l)
, (6)

where the first term is the impedance seen in the simplified problem
and the second term is the contribution of the perturbed problem.

One can demonstrate that Zperturbe is exactly equal to the Taylor
series of Zexact at the first order following Zs/Z0 × tan (k0l); this
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equality is consequently valid when Zs/Z0 ¿ 1 and tan (k0l) ¿ 1. The
term tan (k0l) is due to a spurious resonance that appears at l = λ0/4
in the first problem. The physical interpretation of this result is that
the current Jx induced in the first problem increases dramatically
near the resonance; then the radiating part in the perturbed problem
increases in the same way and cannot finally be neglected. Thus, one
can define Zs/Z0 as the small parameter of the perturbation method:
the perturbation remains small as long as Zs/Z0 is small except near
the spurious resonances that appear in the solution of the problem.

Figure 2 gives a comparison of Zperturbe to Zexact in the microwave
frequency range when the wall is made of copper (σ = 5.7 107 S/m)
and l = 7λ0/8. It appears that the error increases slightly with the
frequency; this behavior is expected since Zs varies following

√
ω.

However, the relative error remains lower than 0.01% until 10 GHz.
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Figure 2. Relative error of Zperturbe when the wall is made of copper
and for l = 7λ0/8.
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Figure 3. Geometry of the 2D numerical problem.

3. 2D NUMERICAL PROBLEM

3.1. Perturbation Approach Using the Finite Element
Method

Consider, as illustrated Fig. 3, a 2D waveguide with perfect conducting
walls ended by a short circuit and excited by the TE1 mode around
2.45GHz. A high conducting plate of thickness 1/10 mm (≈ 100δ at
2.45GHz) is positioned at 91.0mm (= λg/4 at 2.45GHz) from the
short circuit.

It is expected that the structure exhibits a resonance around
2.45GHz, characterized by a peak of losses since the plate is not
perfectly conducting. Losses can be quantified by the formula 1− |Γ|2
where Γ is the reflection coefficient of the TE1 mode. This problem
is numerically solved using a finite element method with Lagrange
polynomial of degree 2; because of the symmetry, only a half of the
structure is described. Different approaches to solve this problem are
compared.

Firstly, the entire domain — both vacuum and conducting regions
— is meshed in a single problem. The invariance in y direction leads
to the following weak formulation without a proper treatment for the
boundary conditions [11]:∫

Ω

[
~∇W · ~∇Ey−k2

0WEy

]
ds+jωµ0σ

∫

Ωc

WEyds−
∫

∂Ω

W
∂Ey

∂n
dl = 0, (7)

where Ω is the entire domain, n the unit outward normal to ∂Ω, Ωc

the conducting region and W a test function.
The numerical difficulty relies on the difference of scales

between the diffusion phenomenon (δ ≈ 1µm) and the propagation
phenomenon (λ0 ≈ 10 cm). The mesh is built [12] heeding these
characteristic lengths (see Fig. 4). Moreover, due to the skin effect,
the electromagnetic field vanishes in the core of the plate; consequently,
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Figure 4. Mesh of the structure.

the interior of the plate is meshed on about 10δ from the border. The
solution of this problem, referred as the initial problem, implies about
34000 degrees of freedom (that is 34000 unknowns).

Secondly, only the vacuum region is meshed and a surface
impedance condition — see (2) — is applied on the boundary of
the plate. The solution of this problem, referred as the Zs modeling
problem, implies about 18000 degrees of freedom.

Thirdly, the perturbation method is applied. In the first problem,
the plate is supposed to be a perfect conductor. Consequently, only
the vacuum region is meshed. The weak formulation of this problem
is given by∫

Ω1

[
~∇W · ~∇E1 − k2

0WE1

]
ds−

∫

∂Ω1

W
∂E1

∂n
dl = 0, (8)

where Ω1 = Ω \ Ωc is the domain of the first problem.
In a second problem, a current source −J1 is introduced at

the interface vacuum/plate in order to cancel the electric current J1

induced by the first problem. This source term is not calculated from
the normal derivative of E1 on ∂Ωc but from the weak formulation:∫

Ω2

[
~∇W · ~∇E2 − k2

0WE2

]
ds + jωµ0σ

∫

Ωc

WE2ds−
∫

∂Ω2

W
∂E2

∂n
dl

= −
∫

Ω2

[
~∇W · ~∇E1 − k2

0WE1

]
ds +

∫

∂Ω2

W
∂E1

∂n
dl

= +jωµ0

∫

∂Ωc

WJ1ds, (9)

where Ω2 is the domain of the second problem whose definition is
detailed in the following.
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Here, the second problem is not only described inside the
conducting region, but it is also extended in the vacuum region that
surrounds the plate in order to take into account the reactive field
induced in the vicinity of the plate; this is an important difference
compared to the 1D problem solved in Section 2 in which only a plane
wave propagates in the vacuum region. In the present problem, the
extension of the domain in the vacuum region is chosen as a disk whose
size is in relation with the dimensions of the plate; radiation conditions
are enforced on the boundary of the disk. The solution of this problem,
referred as the perturbed problem n◦1, implies about 18000 degrees of
freedom (first problem) + 21000 degrees of freedom (second problem).

The results of the different methods are reported Fig. 5; moreover,
the electric field in the initial problem and in the perturbed problem n◦1
are given Fig. 6. In Fig. 5, it appears that there is a difference of the
results given by the Zs modeling problem and the initial problem that
reaches 0.16 dB at the resonance, that is about 4%. The perturbed
problem n◦1 gives better results except near a frequency slightly lower
than the resonance frequency: there is a spurious resonance. This
frequency coincides with the resonance of the first problem where
no losses are introduced; at this point, the induced current increases
dramatically — like in the analytical problem presented in Section 2 —
and the radiated field in the second problem becomes non-negligible.
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Figure 5. Results of the 2D numerical problem using the finite
element method. The acronym “dof” means degrees of freedom.
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(a) Initial problem

(b) Perturbed problem n  1 o

Figure 6. Electric field in different problems at 2.37 GHz when the
TE1 mode is set at z = 0 with an amplitude of 1 V/m.

To avoid this difficulty, the first problem can be modified such
that the plate is characterized by a surface impedance Zs. In this
situation, the second problem makes two kind of sources appear at
the interface vacuum/metal: an electric current like in the perturbed
problem n◦1 but also a magnetic current since the electric field is not
zero at the surface of the plate. Numerically, this problem is solved by
introducing a function g continuous in Ω2 \ Ωc such that the solution
E1 + g is continuous everywhere in Ω2:{

g (x, z) = −E1 (x, z) ∀ {x, z} ∈ ∂Ωc,

g (x, z) = 0 ∀ {x, z} ∈ Ωc.
(10)

Thus the magnetic source is canceled. Then, the electric current
due to E1 + g is treated in a similar way as (9). The results of
this problem, referred as the perturbed problem n◦2, are improved
compared to the ones of perturbed problem n◦1 (see Fig. 5). This
was expected since the perturbation method improves the accuracy of
the first problem that is the Zs modeling problem here. However, there
remains a residual error near the spurious resonance.

To cancel it, one has to iterate the perturbation method. Without
iteration, the solution E2 is not zero on the boundary of Ω2 and
consequently there are magnetic and electric currents on the border of
the disk. Those currents can be canceled in a third problem described
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in Ω1. Then, the solution of this third problem can be corrected in
the neighborhood of the plate like in the second problem and so on.
A detailed algorithm is reported in Appendix A. The results of the
perturbed problem n◦2 iterated once are given Fig. 5: they show that
one iteration is enough to make the effects of the spurious resonance
completely disappear.

3.2. Perturbation Approach Using an Integral Equation
Method

When the thickness of the plate is not larger than a few skin
depths δ, an integral equation formulation can be applied. In this
approach, the plate is supposed infinitely thin; the problem consists
then in calculating the surface current J1 induced on the plate.
Here, the solution can be more properly expanded using trigonometric
polynomials instead of Lagrange polynomials. Applying the Method
of Moments [11], the integral formulation is given by

∫

Γc

V E0dl +
∫

Γc

V G ∗ J1dl = Z ′s

∫

Γc

V J1dl, (11)

where Γc is the surface of the equivalent plate without thickness, E0

the electric field due to the source when there is no plate, G the Green
function for the model considered, Z ′s the surface impedance and V a
test function.

The surface impedance Z ′s in (11) gives the relation between the
total electric field and the surface current. Its expression is different
from (2); considering a 1D plate with a thickness e, the surface
impedance is derived assuming the diffusion phenomenon on both sides
of the plate [8]:

Z ′s =
1 + j

2σδ

/
tanh

(
1 + j

2δ
e

)
. (12)

In addition, the Green function [13] can be reduced in the present
case to a single series:

G(x, z = l1, x
′, z′ ≤ l1)

=− 2
a
×

∑

m=1,3,...

Zm cos
(mπ

a
x
)

cos
(mπ

a
x′

) sinh (γmz′)
sinh (γml1)

,

G(x, z = l1, x
′, z′ ≥ l1)

=− 2
a
×

∑

m=1,3,...

Zm cos
(mπ

a
x
)

cos
(mπ

a
x′

) sinh (γm (l − z′))
sinh (γml2)

,

(13)
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Figure 7. Results of the 2D numerical problem using an integral
equation method. The acronym “dof” means degrees of freedom.

with

Zm =
jωµ0

γm

(
1

tanh (γml1)
+

1
tanh (γml2)

)−1

,

γm =

√(mπ

a

)2
− k2

0,

where a is the width of the waveguide, l1 the distance of the plate to
the origin, l2 the distance of the plate to the short circuit and l = l1+l2.

The solution of this problem, referred as the integral problem,
implies about 1500 degrees of freedom. The results of this method
are given Fig. 7. In this numerical example, the thickness of the plate
is e = 3δ. It appears that there is an error of about 1 dB (that is about
25%) compared to the initial problem solved here with e = 3δ.

In order to improve the accuracy of the results, the perturbation
method is applied. The solution E1 of the integral problem is corrected
introducing the thickness of the plate as described Fig. 8. The source
terms of this second problem can be identified from Maxwell-Ampère
equation. Indeed, the solution {E1,H1} of the first problem is such
that in Ωc region:

~∇× ~H1 = jωε0 ~E1 + ~J1. (14)

Then, the solution {E2,H2} of the second problem is built such
that the complete solution {E1 + E2,H1 + H2} is consistent with the
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Figure 8. Second problem in the perturbation method using an
integral method where Ω2 is the computational domain, Ωc the real
conducting domain of the plate and Γc the surface of the equivalent
infinitely thin plate.

electromagnetic properties of the conducting region Ωc:

~∇×
(

~H1 + ~H2

)
= jωε0

(
~E1 + ~E2

)
+ σ

(
~E1 + ~E2

)
. (15)

From (14) and (15), one finds the following equation:

~∇× ~H2 = (jωε0 + σ) ~E2 − ~J1 + σ ~E1. (16)

In this expression, it appears two kinds of sources for the second
problem: a surface current −J1, exactly like in the problem treated
in Subsection 3.1, but also a volumic current σE1. Consequently, the
weak formulation of the second problem is given by∫

Ω2

[
~∇W · ~∇E2 − k2

0WE2

]
ds + jωµ0σ

∫

Ωc

WE2ds−
∫

∂Ω2

W
∂E2

∂n
dl

=−
∫

Ω2

[
~∇W · ~∇E1−k2

0WE1

]
ds−jωµ0σ

∫

Ωc

WE1ds+
∫

∂Ω2

W
∂E1

∂n
dl. (17)

The domain Ω2 is a rectangle here (see Fig. 8). The reason of this
choice is that it simplifies the solution of the iterated problem as it will
be discussed in the following paragraph. Perfect metal conditions are
set on the boundary of this domain for the same reason. The solution of
this problem, referred as the perturbed integral problem, implies about
1500 degrees of freedom (first problem) + 10000 degrees of freedom
(second problem). The results of this method are given Fig. 7. The
perturbation method introduces a spurious resonance larger than the
one observed in the numerical example treated in Subsection 3.1.

To cancel this spurious resonance, one has to iterate the
perturbation method. At this stage, the characteristics of ∂Ω2 plays
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upon the complexity of the third problem that is solved in the entire
domain using an integral formulation. Here, perfect metal conditions
have been required for E2 solution; then, there is only an electric
current source in the third problem and consequently only a single
operator is used in the integral formulation. Moreover, the current
source is defined on the sides of a rectangular; then, the Green function
G′ is reduced to a single series in a similar way as in (13). Thus, the
integral formulation of the third problem is given by

1
jωµ0

∫

Γc

V G′ ∗ ∂E2

∂n
|∂Ω2 dl +

∫

Γc

V G ∗ J3dl = Z ′s

∫

Γc

V J3dl. (18)

Note that the current source on ∂Ω2 is calculated from the derivative
of E2.

The results for different iterations are given Fig. 7. One
iteration is enough to converge except near the spurious resonance;
the convergence around this critical frequency point is reached after
five iterations.

4. CONCLUSION

A perturbation method has been successfully applied to calculate losses
in microwaves resonating problems. On one hand, this approach
properly decouples propagation and diffusion phenomenons and on the
other hand its application in numerical problems makes possible to
exploit the advantages of the different numerical methods, like the use
of the weak formulation in the finite element method or the choice
of the Green function in the integral equation method. However,
contrarily to its application in low frequency problems, the method can
generate spurious resonances, which enforce to iterate several times the
scheme in the neighborhood of those frequency points.

APPENDIX A. ALGORITHM FOR THE ITERATIVE
SCHEME OF THE PERTURBATION METHOD USING
THE FINITE ELEMENT METHOD

In order to build the algorithm, the weak formulation of the different
problems has to be explicitly detailed with the proper boundary
conditions to avoid ambiguities. For a sake of simplicity, a formalism
with bilinear forms can be used. In the first problem of the perturbed



352 Voyer, Perrussel, and Dular

problem n◦2, two bilinear forms a1 and a′1 are introduced:

a1 (u, v) =
∫

Ω1

[
~∇u · ~∇v − k2

0uv
]
ds +

jωµ0

Zs

∫

∂Ωc

uv dl,

a′1 (u, v) =
∫

Ω1

[
~∇u · ~∇v − k2

0uv
]
ds−

∫

∂Ω1

u
∂v

∂n
dl,

(A1)

where u, v ∈ H1 (Ω1). Zs is given by (2).
The source term in the first problem of the perturbed problem n◦2

can be introduced via a continuous function E0 that set the TE1 mode
at z = 0. Then, the formulation given by (8) can be summarized as
follow:

a1 (W,E1) = −a′1 (W,E0) . (A2)

In a similar way, the second problem of the perturbed problem n◦2
can be formalized introducing two bilinear forms a2 and a′2:

a2 (u, v) =
∫

Ω2

[
~∇u · ~∇v − k2

0uv
]
ds + jωµ0σ

∫

Ωc

uvds

+ α

∫

C

uv dl + β

∫

C

∂u

∂τ

∂v

∂τ
dl,

a′2 (u, v) =
∫

Ω2

[
~∇u · ~∇v − k2

0uv
]
ds−

∫

∂Ω2

u
∂v

∂n
dl,

(A3)

where u, v ∈ H1 (Ω2). The constants α and β are related to the
second order radiation conditions set on the boundary C of the disk
that partially defines ∂Ω2 (remember that the core of the plate is not
described because of the skin effect); these constants depend on the
radius of the disk and on the wavenumber k0 [14]. τ is the unit tangent
on C .

Then, the second problem of the perturbed problem n◦2 can be
expressed from the weak formulation given in (9) and the function g
given in (10):

a2 (W,E2) = −a′2 (W,E1 + g (E1)) . (A4)

To formalize the third problem, a function f is introduced in order
to cancel the magnetic current due to E2 that appears on C . This
function is continuous in Ω2 and such that:

{
f (x, z) = −E2 (x, z) ∀ {x, z} ∈ C ,

f (x, z) = 0 ∀ {x, z} ∈ Ω1 \ Ω2.
(A5)
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Thus, the third problem can be summarized as follow:

a1 (W,E3) = −a′1 (W,E2 + f (E2)) . (A6)

The iterative scheme can then be built repeating (A4) and (A6)
as presented in Algorithm 1. Note that a quantity ε is introduced in
Algorithm 1 to quantify the convergence; in the present case, ε gives the
relative error in the calculation of losses between two solutions E and
Eold. Moreover, the initial solution E0 is chosen such that f (E0) = 0
so that the algorithm is consistent with (A2).

Algorithm 1 Algorithm of the perturbed problem n◦2
set E0; Eold = 0; ε = εmax

n = 1
while ε ≥ εmax do

a1 (W,En) = −a′1 (W,En−1 + f (En−1))
a2 (W,En+1) = −a′2 (W,En + g (En))
E = Eold + En + En+1 + f (En−1) + g (En)
compute ε (E, Eold)
Eold = E
n = n + 2

end while

Algorithm 1 shows that the perturbation method presents
some similarities with the multi-scale algorithm using patches of
finite elements [15]. This method consists in calculating successive
corrections to the solution in domains meshed at different scales.
However, the multi-scale algorithm using patches of finite elements
is not dedicated specially to the wave equation and consequently does
not exploit the specific boundary conditions required in this kind of
problems; moreover, this approach is limited to the finite element
method, which is not the case of the perturbation method.
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