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Abstract—Understanding the propagation of light in continuous
inhomogeneous materials is important to design optical structures and
devices. To have accurately numerical calculations Berreman’s 4 × 4
propagation matrix method is generally used, and layer approximation,
i.e., the whole one-dimensional continuous inhomogeneous material is
divided into many small homogeneous layers, is assumed. However,
this layer approximation is only correct up to the second-order of the
layer thickness. To efficiently solve Berreman’s first-order differential
equation, a simple fourth-order symplectic integrator is presented. The
efficiency of the fourth-order symplectic integrator was studied for
a cholesteric liquid crystal. Numerical results of reflectance spectra
show that the fourth-order symplectic integrator is highly efficient in
contrast to the extensively used fast 4× 4 propagation matrix.

1. INTRODUCTION

Fast and accurately numerical calculations of the propagation of light
in one-dimensional continuous inhomogeneous optical materials are
important to design many applications such as the electro-optical liquid
crystal displays and photonic structures with defects. Approaches,
for example, the propagation matrix and finite element methods,
of numerically calculating electromagnetic waves in such materials
have been developed. To accurately calculate electromagnetic fields
propagated in a one-dimensional continuous inhomogeneous material,
layer approximation is usually used. The whole medium is evenly
divided into many small layers, and when the layer thickness is small
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enough the inhomogeneous layer is replaced by a homogeneous layer.
The original Berreman’s 4 × 4 propagation matrix method [1] is
time-consuming for inhomogeneous materials because of the inefficient
calculation of the exponential of a 4 × 4 propagation matrix for
a homogeneous layer. To overcome this problem, analytical 4 × 4
propagation matrices of homogeneous layers for arbitrary uniaxial or
biaxial materials derived by Abdulhalim [2] have been applied. The
computation time using the analytical homogeneous layer propagation
matrix was shortened nearly a half [2]. However, in a recent study, we
showed that the layer approximation using the analytical homogeneous
layer propagation matrix to approximate the inhomogeneous layer
propagation matrix is only correct up to the second order of the layer
thickness [3]. This suggests that more efficiently numerical calculations
may be obtained by constructing a higher order layer propagation
matrix.

In this letter, we reported a highly efficient fourth-order
propagation matrix using a symplectic integrator that is able
to perform both fast and accurately numerical calculations in a
relatively large layer thickness (small numbers of layers). Symplectic
integrators are effective in numerically integrating the time-dependent
Schrödinger equation and have been used in the quantum Monte
Carlo method [7]. Advantages of using symplectic integrators (i.e.,
the unitary property of propagation matrix is conserved) are two-
fold: (1) for a lossless optical material, it means that the sum
of reflectance and transmittance spectra is conserved, though the
symplectic propagation matrix is the approximation of the unknown
exact inhomogeneous propagation matrix; (2) because the symplectic
integrator has a better error structure, the convergence of symplectic
propagation matrix is significantly improved. As a matter of fact,
for a small inhomogeneous layer, the analytical propagation matrix of
a homogeneous layer using Lagrange-Sylvester [2] or Cayley-Hamilton
theorem [4] is the second-order symplectic propagation matrix [3]. The
one-dimensional continuous inhomogeneous optical materials are those
in which the permittivity and/or permeability tensors are continuous
functions of position z. These optical materials can be either formed
by self-assembly, e.g., cholesteric liquid crystal, or fabricated by
techniques such as glancing angle deposition (GLAD) [5, 6]. With
this consideration, multi-layer optical systems stacked by various
homogeneous layers are excluded in this study.
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2. THE FOURTH-ORDER SYMPLECTIC
PROPAGATION MATRIX

The formulation of Berreman’s 4 × 4 propagation matrix method [1]
for a one-dimensional inhomogeneous optical medium is described by

dΨ(z)
dz

= ik0∆(z)Ψ(z), z ∈ [z0, zd]. (1)

The electromagnetic wave fields inside the medium are represented by
a 4× 1 column vector, Ψ(z)T = (Ex,Hy, Ey,−Hx)T ; the 4× 4 matrix,
∆(z), is a function of the material permittivity and permeability
tensors; the vacuum wave-vector is represented by k0. As an analogy
of the time-dependent Schrödinger equation in quantum mechanics [8],
the vector wave function Ψ(z) of the Berreman’s equation (Eq. (1))
may be expressed as Ψ(z) = P (z, z0)Ψ(z0), where P (z, z0) is the exact
4× 4 propagation matrix that propagates Ψ(z0) to Ψ(z). Substituting
the Ψ(z) = P (z, z0)Ψ(z0) into Eq. (1), we have,

dP (z, z0)
dz

= ik0∆(z)P (z, z0). (2)

The exact propagation matrix P (z, z0) is then solved by the following
integral equation,

P (z, z0) = 1 + ik0

∫ z

z0

∆(z′)P (z′, z0)dz′, (3)

The exact propagation matrix P (z, z0) is symplectic, i.e., P (z, z0) ·
P (z0, z) = 1. To evaluate reflectance and transmittance spectra,
we need to find out electromagnetic wave fields at both ends of the
medium, i.e., Ψ(z = z0) and Ψ(z = zd). Thus, finding an efficient
algorithm for calculating P (zd, z0) is critical to perform fast and
accurate calculations. Because the analytical solutions of the exact
4 × 4 propagation matrices are not available for most inhomogeneous
media, layer approximation, i.e., the inhomogeneous optical medium
of length d is sliced into N layers (the layer thickness is h = d/N), is
usually applied. The exact propagation matrix P (zd, z0) is now given
by the product of N exact inhomogeneous layer propagation matrices,

P (zd, z0) ≡ P (zd, zN−1) . . . P (zj+1, zj) . . . P (z1, z0). (4)

Although the exact inhomogeneous layer propagation matrix
P (zj+1, zj) (j = 0, 1, . . . , N − 1) in Eq. (4) is still not known, we may
use the layer approximation if the layer thickness h is small enough.
The jth inhomogeneous layer propagation matrix, P (zj+1, zj), there-
fore, is replaced by the propagation matrix of a homogeneous layer:

P (zj+1, zj) ≈ Pa(zj+1, zj) ≡ eik0h∆(zj+h/2). (5)
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The right hand side of Eq. (5), i.e., the exponential matrix,
eik0h∆(zj+h/2), can be analytically evaluated by the exact homogeneous
4 × 4 layer propagation matrix using the Lagrange-Sylvester
interpolation polynomial [2]. However, it was shown that in the
previous study the layer approximation is only correct up to the second
order of the layer thickness [3], i.e.,

P (zj+1, zj) = e(ik0h∆(zj+h/2)) + o(h3). (6)

In this study, we constructed a simple fourth-order symplectic 4 × 4
propagation matrix on the basis of the studies by Chin et al. [9–11].
To efficiently solve the time-dependent evolution equation,

∂ψ

∂t
= H(t)ψ = (T + V (t))ψ, (7)

where T and V (t) denote the time-independent and time-dependent
operators, respectively, Chin et al. [11] proposed an approach to tran-
scribing any time-independent factorization algorithm into a time-
dependent algorithm, using a forward time derivative operator (D =←−
∂
∂t ). A fourth-order time-independent factorization algorithm con-
sisting of three second-order time-independent symplectic integrators
is [10]:

T4 = T2

(
ε

2− s

)
T2

( −sε

2− s

)
T2

(
ε

2− s

)
, (8)

where T2(ε) = e
1
2
εT eεV e

1
2
εT , T2(−ε)T2(ε) = 1, ε = ∆t, and s =

21/3. In contrast to the time-dependent evolution equation (Eq. (7)),
Berreman’s first-order differential equation (Eq. (1)) does not have an
operator independent of position z, i.e., T = 0, and the inhomogeneous
operator V is ik0∆(z). When T = 0, the time-dependent fourth-order
symplectic integrator was obtained from Eq. (8) using the approach by
Chin et al. [11]:

T4 = eb1εV (t3ε)eb2εV (t2ε)eb1εV (t1ε), (9)

where b1 = 1/(2 − s), b2 = −s/(2 − s), t1 = 1/(2(2 − s)), t2 = 1/2,
t3 = 1/2 − (s − 1)/(2(2 − s)). Let the time step ε be the layer
thickness h, the fourth-order symplectic integrator that approximates
an inhomogeneous layer is:

P (zj+1, zj) ≈ Pb(zj+1, zj)

≡ eik0hb1∆(zj+t3h)eik0hb2∆(zj+t2h)eik0hb1∆(zj+t1h), (10)

The fourth-order symplectic 4 × 4 propagation matrix is simply a
product of three second-order layer propagation matrices. The overall
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symplectic propagation matrices from z0 to zd using the second-order
and fourth-order symplectic layer propagation matrices by Eqs. (5) and
(10), respectively, are:

P (zd, z0) ≈ Pa(zd, z0; N) = Pa(zN , zN−1) . . . Pa(z1, z0), (11)

and

P (zd, z0) ≈ Pb(zd, z0; N) = Pb(zN , zN−1) . . . Pb(z1, z0). (12)

To test the efficiency of the fourth-order symplectic propagation
matrix, we took a cholesteric liquid crystal under a normally incident
monochromatic light as the example, because the analytical expression
of 4 × 4 propagation matrix for this case is available [4, 12]. We
also compared the fourth-order symplectic integrator (Eq. (12)) with
the fast 4 × 4 propagation matrix (Eq. (11)), and the fourth-order
extrapolation propagation matrix (not symplectic) [3]:

P (zd, z0) ≈ 1
3

(4Pa(zd, z0; 2N)− Pa(zd, z0;N)) . (13)

Figure 1. The absolute errors of reflectance spectra for three
propagation matrices. The parameters of the cholesteric liquid crystal
are: pitch = p = 0.3µm, εe = 3.0, εo = 2.0, and ni = nt = 1.516; the
length of the cholesteric liquid crystal is d = 20p. A normally incident
linear polarization light was assumed.
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3. NUMERICAL RESULTS

Figure 1 shows the absolute errors of reflectance spectra using three
propagation matrices (Eqs. (11), (12), and (13)) with respect to the
ratio of wavelength of the incident light to the pitch of cholesteric liquid
crystal using a relatively large layer thickness (20 layers per pitch,
i.e., h = 15nm). The absolute error was defined as Error(λ/p) =
|R(exact) − R(numerical)|, where the exact reflectance spectra were
calculated using the analytical propagation matrix for the cholesteric
liquid crystal under the normally incident monochromatic light [4, 12].
In Fig. 1, around the both edges of Bragg regime, the reflectance
spectra calculated by the fast propagation matrix (the second-order
symplectic integrator) or the fourth-order extrapolation propagation
matrix methods have relatively large errors, while the reflectance
spectrum calculated by the fourth-order symplectic integrator has
relatively small errors. This shows that in a relatively large layer
thickness (h = 15 nm) only the fourth-order symplectic integrator is
able to perform accurate calculations over a range of wavelengths from
1p to 2p (p < λ < 2p).

Figure 2. The maximal errors of reflectance spectra against different
layer thicknesses (h = 10, 20, 30, 40, 50, 100, 200 layers per pitch) for
three propagation matrices. Note that in the case of h = 10 layers per
pitch the maximal error is not given for the fourth-order extrapolation
propagation matrix method because of the uncontrollable error.
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To examine how the convergence is improved using the fourth-
order symplectic integrator, we plotted the maximal errors of
reflectance spectra (max .Error = max(Error(λ/p)) against the layer
thickness h in Fig. 2. From this figure, we found that the fourth-order
symplectic integrator has a significantly improved convergence within
a wide range of layer thickness, in contrast to the fast propagation
matrix and the fourth-order extrapolation propagation matrix.

Figure 3 illustrates the normalized times (the real CPU time for
calculating the reflectance spectrum with the maximal error 4.71 ×
10−3 using the second-order symplectic integrator was normalized
as 1) spent for the same maximal errors of reflectance spectra
for three propagation matrices respectively. For a maximal error
4.71 × 10−3, the normalized times for the fourth-order symplectic
integrator, the fourth-order extrapolation matrix, and the fast
propagation matrix (the second-order symplectic integrator) are 0.17,
0.36, and 1, respectively. This indicates that using the fourth-order
symplectic integrator is nearly 2 times faster than using the fourth-
order extrapolation propagation matrix, and using the fourth-order
extrapolation propagation matrix is almost 3 times faster than using
the fast 4× 4 propagation matrix.

Figure 3. Comparison of the efficiency of three different propagation
matrices
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4. CONCLUSION

We have presented a highly efficient fourth-order symplectic
propagation matrix to solve Berreman’s first-order differential equation
for one-dimensional continuous inhomogeneous optical materials. This
fourth-order symplectic integrator allows us to perform fast and
accurately numerical calculations in a relatively large layer thickness.
Although we only showed a cholesteric liquid crystal with normal
incidence as our example in this study, the fourth-order symplectic
propagation matrix can be applied for chiral photonic structures
with defects under arbitrary incidence. The fourth-order symplectic
integrator can also be combined with the stable propagation matrix
method [13] to efficiently calculating reflectance spectra in the case of
thick one-dimensional continuous inhomogeneous optical materials.
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