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Abstract—This paper presents a fast and effective electromagnetic
reconstruction algorithm with phaseless data under weak scattering
conditions. The proposed algorithm is based on the phaseless data
multiplicative regularized contrast sources inversion method (PD-
MRCSI). We recast the weak scattering problem as an optimization
problem in terms of the undetermined contrast and contrast sources.
Using the conjugate gradient iterative method, the problem is
solved by alternately updating the contrast sources and the contrast.
Additionally, this method can combine with the PD-MRCSI method.
Taking advantage of the properties of fast convergence of this algorithm
and stable convergence of PD-MRCSI method, the combined technique
makes image reconstructions more fast and effective. Although the
method is derived from weak scattering situation, it is also useful for
the case which weak scattering approximation is not satisfied. The
synthetic numerical reconstruction results, as well as experimental
reconstruction results, presented that the proposed method is a very
fast and effective reconstruction algorithm.

1. INTRODUCTION

Electromagnetic inverse scattering has found widespread applications
in target identification, non-destructive testing, medical imaging and
numerous other areas of applications. However, the inverse scattering
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problem is commonly nonlinear and ill-posed. Over the years, various
effective algorithms, for examples [1–14], have been proposed to solve
this involved inverse problem with full data (amplitude plus phase) in
different application backgrounds.

In several applied sciences areas, it is difficult or very expensive
to measure the phase of the field. Additionally, in many situations,
the phase of the field is easier to be polluted by the noise than the
amplitude. To overcome it, some approaches which can solve the
inverse problem without phase information have been proposed in
both optics and electromagnetics [15–18]. Among them, the phaseless
data multiplicative regularized contrast sources inversion method (PD-
MRCSI) has been found to be an efficient algorithm for inverse
scattering problem with phaseless data [19, 20].

The main bottleneck in solving inverse scattering problems
with phaseless data is that repeated ‘exact’ filed computations
require an excessive amount of computation time. As it is known,
when dealing with weak scatterers, the Born approximation may
be used advantageously in many inversion algorithms. Here the
Born approximation is introduced in the PD-MRCSI method (PDB-
MRCSI), which can degenerate the nonlinear inverse problem into
a linear one and reduces the computation time drastically. Taking
advantage of the properties of fast convergence of PDB-MRCSI and
stable convergence of PD-MRCSI method, the combined technique
makes image reconstructions more fast and effective. Although the
method is derived from weak scattering situation, it is also useful for
the case which weak scattering approximation is not satisfied.

2. PDB-MRCSI METHOD DESCRIPTION

To illustrate the inversion method, we consider a two-dimensional
problem shown in Fig. 1. Scattering objects with unknown location
and contrast are illuminated by emitter from k (k = 1, 2, . . . , K)
different locations distributed evenly around the object domain D. The
receivers are distributed in the observation domain S. The complex
time factor exp(−i$t) is employed in this paper, where $ is the angular
frequency. For weak scattering or Born approximation, the direct
scattering problem can be modeled via two coupled contrast source
integral relationship, in particular, the data equation and the state
equation, explicitly,

fk (r) = uinc
k (r) + k2

b

∫

D
G

(
r, r′

)
ωk

(
r′

)
dr′ for r ∈ S (1)

uk (r) = uinc
k (r) for r ∈ D (2)
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Figure 1. Geometrical model of the problem.

where fk(r) and uk(r) denote the total electric field in observation
domain and investigation domain, respectively. kb denotes the
wavenumber of the homogeneous embedding and uinc

k (r) denotes the
incident field in observation domain or object domain. G (r, r′) is the
two-dimensional Green function of the background medium where r
and r′ are the position vectors. Here ωk are the so-called contrast
sources, defined as

ωk

(
r′

)
= χ

(
r′

)
uk

(
r′

)
(3)

where the contrast of the objects χ(r′) is defined as χ (r′) = k2 (r′)/k2
b−

1.
For simplicity, Equation (1) is rewritten in more condensed form

using symbolic operator notation

fk = uinc
k + GSωk, r ∈ S (4)

where the operator is defined as

GSωk = k2
b

∫

S
G

(
r, r′

)
ωk

(
r′

)
dr′ r ∈ S (5)

The state Equation (2), multiplying both sides of it with χ, can
be expressed in symbolic form as

ωk = χuinc
k , r ∈ D (6)

Introducing the following notations

fk,R =Re (fk) , fk,I =Im (fk) , uinc
k,R =Re

(
uinc

k

)
, uinc

k,I =Im
(
uinc

k

)

GS,R =Re (GS) , GS,I =Im (GS) , ωk,R =Re (ωk) , ωk,I =Im (ωk)
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we can get the representation of (4) as

fk,R = uinc
k,R+GS,Rωk,R−GS,Iωk,I and fk,I = uinc

k,I +GS,Iωk,R+GS,Rωk,I

As the PD-MRCSI method done, the PDB-MRCSI recasts the
inversion problem as a minimization of a cost functional. Before
introducing cost functional, we define F (ωk,n, χn) as a linear
combination of the modified mismatch in data equation FS and the
mismatch in state equation FD. Then the cost functional C can be
expressed as

C (ωk,n, χn) = F (ωk,n, χn) FTV (χn) (7)

with

F (ωk,n, χn) = FS (ωk,n) + FD (ωk,n, χn)

FS (ωk,n) = ηS

∑

k

∥∥M2
k − f2

k,R − f2
k,I

∥∥2

S

FD (ωk,n, χn) = ηD

∑

k

∥∥χuinc
k − ωk,n

∥∥2

D

here Mk is the measured data, in particular, the amplitude of total
wavefield distributed over the observed region; The subscript n denotes
the index of iterative steps. The normalization factors are chosen as

ηS =

(∑

k

∥∥∥
∣∣uinc

k

∣∣2 −M2
k

∥∥∥
2

S

)−1

and ηD =

(∑

k

∥∥χnuinc
k

∥∥2

D

)−1

where ‖ · ‖2
S and ‖ · ‖2

D denote the norm on L2(S) and L2(D),
respectively.

In Equation (7), FTV (χn) are the multiplicative regularized factor,
i.e.,

FTV (χn) =
1
V

∫

D

|∇χn (r′)|2 + δ2
n−1

|∇χn−1 (r′)|2 + δ2
n−1

dv
(
r′

)
(8)

and δ2
n−1 = FD,n−1∆̃2, ∆̃ denotes the reciprocal mesh size of the

discretized domain D, V denotes the area of object domain D.
Then the inverse scattering problem can be solved by minimization

the cost functional. The optimization procedure used in this paper is
to update the two sequences (contrast sources and contrast) alternately
using conjugate gradient method by minimizing the cost functional.

2.1. Updating the Contrast Sources

From Equation (8), we can see that the multiplicative regularized term
FTV (χn−1) equals 1 at the beginning of each iteration; which means
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we can only deal with the term F when updating the contrast sources
ωk,n. Thereafter, the PDB-MRCSI starts with updating of the contrast
sources ωk in the following manner.

Define the modified data equation error and the state equation
error to be

ρk,n = M2
k − f2

k,R,n − f2
k,I,n and rk,n = χnuinc

k,n − ωk,n

Supposing the contrast source and contrast in previous iteration,
i.e., ωk,n−1 and χn−1 are known, one can update ωk by ωk,n =
ωk,n−1+αω

nvk,n, where αω
n is a real constant parameter to be determined

by Equation (10). The update directions are chosen to be the Polak-
Ribiere conjugate gradient directions

vk,n =gω
k,n+

Re
∑

k

〈
gω
k,n, gω

k,n−gω
k,n−1

〉
D

∑
k

〈
gω
k,n−1, g

ω
k,n−1

〉
D

vk,n−1, n≥1 and vk,n =0, n=0

where gω
k,n is the gradient of the cost functional with respect to ωk,n

evaluated at ωk,n−1 and χn−1. Explicitly, the gradient for the updating
of the contrast source is found to be

gω
k,n = −2ηS [fk,n−1G

∗
S ]T ρk,n−1 − ηD,nrk,n−1 (9)

here G∗
S and χ∗n−1 are the complex conjugate of GS and χn−1,

respectively, and [x]T denotes transpose of [x].
When the update directions are completely specified, the real

parameter αω
n can be determined by

αω
n = arg min

real α
[F (ωk,n−1 + αvk,n, χn−1)] (10)

where

F (ωk,n−1 + αvk,n, χn−1)
= FS (ωk,n−1 + αvk,n−1) + FD (ωk,n−1 + αvk,n, χn−1)

= ηS

4∑

i=0

Aiα
i + ηD

2∑

i=0

Biα
i

and the involved parameters are

A0 =
∑

k

aT
0,ka0,k, A1 = 2

∑

k

aT
0,ka1,k,

A2 =
∑

k

(
2aT

0,ka2,k+aT
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)
, A3 = 2

∑

k

aT
1,ka2,k,

A4 =
∑

k
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2,ka2,k, B0 =

∑

k

‖p1,k‖2,
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B1 = 2
∑

k

Re
(
pH
1,kp2,k

)
, B2 =

∑

k

‖p2,k‖2,

a0,k = (fk,n−1,R)2 + (fk,n−1,I)
2 −M2

k ,

a1,k = 2 [fk,n−1,R (GS,Rvk,R,n −GS,Ivk,I,n)
+fk,n−1,I (GS,Rvk,I,n + GS,Ivk,R,n)] ,

a2,k = (GS,Rvk,R,n −GS,Ivk,I,n)2 + (GS,Rvk,I,n + GS,Ivk,R,n)2 ,

p1,k = χnuinc
k − ωk,n−1, p2,k = −vk,n

Differentiation F (ωk,n−1 + αvk,n, χn−1) with respect to α yields a
cubic equation, explicitly,

ηS

(
4A4α

3 + 3A3α
2 + 2A2α + A1

)
+ ηD (2B2α + B1) = 0 (11)

The real root is the desired minimizer αω
n .

2.2. Updating the Contrast

Using the same method, the contrast χn should be updated as

χn = χn−1 + βχ
ndn,

where dn is the conjugate gradient direction and can be updated as

dn = gχ
n + γχ

ndn−1

here γχ
n is the step length as

γχ
n =

Re
〈
gχ
n , gχ

n − gχ
n−1

〉
D∥∥gχ

n−1

∥∥2

D

gχ
n is the preconditioned gradient of the cost functional C with respect

to χn evaluated at ωk,n and χn−1, and is given by

gχ
n =

gD
n + gTV

n Fn−1∑
k

|uk,n|2

where gD
n is the gradient of FD with respect to χn, explicitly,

gD
n = −nD,n−1

∑

k

(
rk,nu∗k,n

)

gTV
n is the gradient of FTV with respect to χn, explicitly,

gTV
n =

1
2
∇ ·

[ ∇χn−1

|∇χn−1|2 + δ2
n

]
,
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u∗k,n are the complex conjugate of uk,n. After the updating directions
are completely specified, the real parameter βχ

n can be determined by

βχ
n = arg min

real α
[Fn (ωk,n−1, χn−1 + βndn) F TV

n (χn−1 + βndn)
]

(12)

Differentiation the term inside the square bracket of Equation (12)
with respect to β yields a cubic equation and the real one is the desired
minimizer βχ

n .

3. NUMERICAL EXAMPLES

Three examples are given to validate the proposed algorithm in the
present section. The geometrical model of the three examples is shown
in Fig. 1, where an object domain D with size 17 cm by 17 cm is
assumed.

The first case we consider is that of a single dielectric cylinder
with radius 15mm using the 2 GHz experimental data (filename:
dielTM dec8f.exp) provided by the Institut Fresnel, Marseille,
France [21]. The parameters of the experimental setup needed for
inversion as well as the database are described in the reference [21].
To sum it up briefly, the data correspond to K = 36 different source
positions evenly distributed along a circle with radius 72 cm around
the object domain, while M = 36 receivers are also evenly distributed
along an observation domain with radius 76 cm which exits a blind
zone of 120◦ angular section. The object domain D is discretized into
42×42 rectangular subdomains. The relative permittivity of this target
is estimated to εr = 3± 0.3 by an experimental method.
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Figure 2. The reconstruction results of (a) PDB-MRCSI method, (b)
PD-MRCSI method.
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Figures 2(a) and 2(b) are the reconstruction results of PDB-
MRCSI method and PD-MRCSI method, respectively. Both
reconstructions are shown with 256 iterations since there is no obvious
improvement observed on further iterations. From Fig. 2(a), we find
that PDB-MRCSI method arrive at a fairly good reconstruction of
location and shape of the object, while the achieved value of the
contrast (χ = 1.22) are slightly underestimated with respect to the
expected value (χ = 2). The outline of the reconstruction of PDB-
MRCSI (radius equals 22 mm) is a little bigger than that of PD-
MRCSI (radius equals 18 mm) shown in Fig. 2(b). With regard to
the reconstruction time, the PD-MRCSI took 600.675 seconds for 256
iterations to get the satisfied results on a notepad computer with a
Core2 T8100 2.1 GHz processor, while PDB-MRCSI only took 100.433
seconds. We can see that the time that PDB-MRCSI takes is almost
one sixth of PD-MRCSI method. It is obviously that the algorithm
we proposed reduces the computation time drastically. Although the
reconstruction value of the proposed method is slightly underestimated
with respect of PD-MRCSI, considering its good locating and shaping
the objects, and low time cost, the PDB-MRCSI is a good inversion
algorithm with phaseless data.

Although the Born approximation is incorporated in the proposed
method, the PDB-MRCSI method is not limited to the case of weak
scattering. Actually, the example above which kdχ ≈ 2.51 is not a
case of weak scattering that should satisfied the kdχ ¿ 1, where d is
the size of scattering object. The reconstruction results will be better
for the weak scattering situations. The following example is presented
to show empirically the largest kdχ that the method can still work for
considered configuration.

Figure 3. Original profile.
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To conveniently adjust the contrasts χ, the synthetic data is
used in this example. The geometrical model and parameters are
not changed in this example, except that we use 25 emitters and
36 receivers in the new example. Two distinct square homogeneous
cylinders of diameter 0.041 m separated from also 0.041 m are located
in the object domain D which is discretized into 29 × 29 rectangular
subdomains, see Fig. 3. The contrasts χ of the scattering objects are
set to 0.1, 0.5 and 1.0 (i.e., kdχ = 0.4294, 2.1468, 4.2935) to compare
their reconstruction results. The reconstruction results are based on
the synthetic data generated by solving the direct scattering problem
with the help of CG-FFT approach. In order to satisfy the practical
situation, we add 30% random white noise to the real and imaginary
parts of the total field, respectively. Subsequently, the amplitudes of
the total field are computed using the distorted data. The incident
fields are chosen to be excited by line sources parallel to the axis of the
scatterers and the frequency is 5GHz.

(c)

(a) (b)

Figure 4. The PDB-MRCSI reconstruction results with (a) χ = 0.1,
(b) χ = 0.5 and (c) χ = 1.0.
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Figures 4(a)–(c) are the reconstruction results of PDB-
MRCSI method with contrasts χ = 0.1, 0.5, 1.0 (kdχ =
0.4294, 2.1468, 4.2935), respectively. All the reconstructions are
shown with 256 iterations since there is no obvious improvement ob-
served on further iterations. From Fig. 4(a), (kdχ = 0.4294), we find
PDB-MRCSI method arrive at a fairly good reconstruction of location
and shape and value of the object. In Fig. 4(b), (kdχ = 2.1468), the
location and shape of the objects are successfully reconstructed. How-
ever, the contrast of the object (χ = 0.35) has been underestimated
with respect to the actual value (χ = 0.5). Additionally, there are some
slight smears on the background. From Fig. 4(c), (kdχ = 4.2935), we
can see that the location and shape of the objects are well determined,
while the outline are bigger than the actual target with long trail. As
the contrast, the reconstructed value (χ = 0.27) is almost one fourth
of the actual value (χ = 1). It is clear that as kdχ increases, the re-
construction results of PDB-MRCSI method become worse. It can be
explained that although the PDB-MRCSI method is a good reconstruc-
tion algorithm, after all, it is a linear reconstruction method which can
not solve the case far more than weak scattering (kdχ > 4.3).

Since the PDB-MRCSI achieves a relatively good inversion results
with low time cost, we take it as the initial estimate of PD-MRCSI
method instead of back propagation method. It is called the combined
method for convenience, and the two methods in the combined method
are called PDB-part and PD-part.

The third example is presented to validate that using the combined
method can dramatically reduce the computation time comparing
to the PD-MRCSI method. To better describe the convergence of
the problem, the synthetic data is also used in this example. The
geometrical model and parameters are as same as the second example
with χ = 0.5. In this example, we also use the same method of the
second example to add 30% random white noise to the amplitudes of
total field.

The PDB-part optimization process in combined method will be
terminated if one of the following stopping conditions is satisfied:

(1) The difference between the cost functional C at two successive
iterates, n-th and (n − 1)-th, is within a prescribed error quantity (it
set to be 10−4)

(2) The total number of iterations exceeds a prescribed maximum
Nmax = 128.

We also use ceasing criterion described above as the criterion
of PD-part in combined method but changing the prescribed error
quantity to 10−6 and changing the prescribed maximum to 256. The
PD-MRCSI method which use back propagation method as its initial
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estimate is also presented to compare with the combined method under
the same ceasing criterion of PD-part.

In order to compare convergence effect of the methods proposed
in this paper, we define the so-called “error in contrast” at iteration n
as

ERRχn =
‖χn − χexact‖D

‖χexact‖D

where χn is the contrast distribution of the reconstructed profile at
iteration n, and χexact is the exact one.

Figure 5 gives the reconstruction results of the combined method
and PD-MRCSI method, respectively. From the figure, we can see that
the reconstructed results of the combined method are almost as same
as the PD-MRCSI method. It is easy to understand the phenomenon
because the two methods have the same ceasing criterion. Fig. 6 shows
the error contrast as function of the number of iterations using two
methods, respectively. From Fig. 6, we can see there is an obvious
break around 70 steps on the convergence line of combined method.
Before the break, the PDB-part works; after that, the PD-part works.
And from the Fig. 6, we can get that the PDB-part of combined
method almost has the same convergence gradient with the PD-MRCSI
method and the PD-part has a stable convergence gradient. What
we focus about the combined method is the computation time. The
combined method takes 74.90 s (163 steps) and the PD-MRCSI method
takes 128.98 s (181 steps) on a notepad computer with a Core2 T8100
2.1GHz processor, respectively. We can get that the combined method
almost save half computation time of PD-MRCSI method. It can be
concluded that when PDB-MRCSI serves as initial estimate, its fast
convergence makes the combined method more effective.
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Figure 5. The reconstruction results of (a) the combined method,
(b)PD-MRCSI method.
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Figure 6. Error in contrast as function of the number of iterations
using two methods.

4. CONCLUSION

In this paper, a novel electromagnetic inverse scattering algorithm has
been proposed to solve the weak scattering problem with phaseless
data. The algorithm has been proved to be a fast convergent
and effective inversion algorithm for the weak scattering problem.
Additionally, taking advantage of the properties of fast convergence
of this method and stable convergence of PD-MRCSI method, the
combined technique makes image reconstructions more fast and
effective.
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