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Abstract—The approximate distribution of the current density
induced on the tape surface by guided electromagnetic waves supported
by an infinite open tape helix is estimated from an exact solution of
a homogenous boundary value problem for Maxwell’s equations. It is
shown that the magnitude of the surface current density component
perpendicular to the winding direction is at least three orders of
magnitude smaller than that of the surface current density component
parallel to the winding direction everywhere on the tape surface. Also,
the magnitude and phase distribution for the surface current density
components parallel and perpendicular to the winding direction are
seen to be nearly uniform at all frequencies corresponding to real values
of the propagation constant.

1. INTRODUCTION

Ever since the pioneering work of Samuel Sensiper on Electromagnetic
Wave Propagation on Helical Conductors [1] until very recently,
almost all the published derivations of the dispersion equation for
electromagnetic waves guided by a tape helix [2–7] except that of
Chernin et al. [8] involved an ad hoc assumption about the tape-
current distribution. As a consequence, the tangential electric field
boundary conditions on the tape surface could be satisfied only in some
approximate sense. The necessity of such an ad hoc assumption on the
tape-current distribution was due to the inherent inability of the series
expansion for the tape-current density to correctly confine the surface
current to the region of tape only. In other words, the infinite series
for the tape-current density ought to have summed automatically to
zero at any point in the gap region (the region on the surface of the
infinite cylinder between the tapes).
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All previous work on the tape-helix model except [8] has made
use of the ‘narrow tape’ assumption which amounts to neglecting
the component of the tape-current density perpendicular to the
winding direction. Within the narrow-tape assumption, a variety of
distributions for tape current has been proposed in the literature,
the record being held by Zhang and Li who propose not less than
six different models for tape-current distribution in their book [4].
Basu [5], on the other hand, restricts his analysis to the more
popular model wherein the tape-current density parallel to the winding
direction is assumed to have a constant amplitude over the tape width
with a phase that varies in the winding direction according to the
factor exp(jβ0z) where β0 is the propagation constant and the axial
coordinate z corresponds to a point moving along the center line of the
tape.

Although the derivation of the dispersion equation presented
by Chernin et al. involves neither any a priori assumption about
the tape-current distribution except for its behavior near the tape
edges nor any approximations in satisfying the tangential electric field
boundary conditions on the tape surface, their surface-current density
expansions, which are assumed to have a form identical to those of
the field components when restricted to the surface of the infinite
cylinder containing the tape helix, do not again seem to be capable
of limiting the support of the surface-current density to the region
of the tape only. Moreover, reexpansions of the tape current density
components in terms of Chebyshev polynomials resorted to by Chernin
et al., seem to be motivated by the anticipated singularity of the surface
current density component parallel to the winding direction near the
tape edges. Such an a priori assumption regarding the edge behavior
of the surface current density component is totally unnecessary as an
ordinary Fourier-series expansion is pretty well capable of bringing
out any such singular behavior, if present, as long as the singularity
is integrable. Another anomalous behavior displayed by the surface-
current density plots obtained by Chernin et al. concerns the lack of
symmetry about the center line of the tape.

In this paper, amplitude and phase plots of the tape-current
distribution following from the exact analysis developed in [9] are
presented for a finite order of truncation of the Fourier-series
representation of the tape-current density. The main conclusions that
may be drawn are (i) the magnitude and the phase distribution of the
surface current density components parallel and perpendicular to the
winding direction are nearly uniform at all frequencies corresponding
to the allowed portions of the dispersion curve even for tapes which
are not narrow and (ii) the magnitude of the surface current density
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Figure 1. Geometrical relations and surface current density
components in a developed tape helix.

component perpendicular to the winding direction is at least three
orders of magnitude smaller than that of the surface current density
component parallel to the winding direction everywhere on the tape
surface.

2. REVIEW OF BASIC THEORY

We make use of the tape-helix model introduced in [9]. Accordingly, we
consider a perfectly conducting tape helix of infinite length, constant
pitch, constant tape width and infinitesimal thickness surrounded by
free space. We take the axis of the helix along the z-coordinate of a
cylindrical coordinate system (ρ, ϕ, z). The radius of the helix is a, the
pitch is p, and the width of the tape in the axial direction is w. The
pitch angle ψ is therefore given by cotψ = 2πa/p.

We now briefly recall those aspects of the analysis presented in [9]
that will have a direct bearing on the computation of the current
distribution on the tape helix. The axial component Jz(z, ϕ) and the
azimuthal component Jϕ(z, ϕ) of the surface current density, which are
confined only to the tape surface, admit the representations

Jm(z, ϕ) = J̃m(z, ζ) = e−jβ0zfm(ζ)

= e−jβ0z
∞∑

l=−∞
1[lp−w/2,lp+w/2](ζ)

∞∑
n=−∞

Jmne−j2πnζ/p,

m = z, ϕ, (1)

where
ζ = z − ϕp/2π, (2)
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β0 = β0(ω) is the guided wave propagation constant at the radian
frequency ω, and for l ∈ Z

1[lp−w/2,lp+w/2](ζ) 4 1 if ζ ∈ [lp− w/2, lp + w/2],
0 if ζ /∈ [lp− w/2, lp + w/2]

The (complex) constant coefficients Jzn and Jϕn, n ∈ Z, appearing
in the expansion (1) of the surface current density components are
determined (in terms of any one of the constants Jz0 and Jϕ0) by the
tape-helix boundary conditions. The enforcement of these boundary
conditions lead to two infinite sets of linear homogeneous equations for
determining the two infinite sets of coefficients Jzq and Jϕq, q ∈ Z:

AµJz −AνJϕ = 0 (3a)
AνJz −AηJϕ = 0 (3b)

where 0 denotes the column vector of infinite number of zeros. In (3)

Jm = [. . . , Jm2̄, Jm1̄, Jm0, Jm1, Jm2, . . .]T , m = z, ϕ

where n̄4− n for n ∈ Z/{0} and

Aµ = [µkq]k,q∈Z , Aν = [νkq]k,q∈Z and Aη = [ηkq]k,q∈Z
are infinite-order matrices with entries

µkq =
∞∑

n=−∞
µn sinc(k − n)ŵ sinc(q − n)ŵ (4a)

νkq =
∞∑

n=−∞
νn sinc(k − n)ŵ sinc(q − n)ŵ (4b)

ηkq =
∞∑

n=−∞
ηn sinc(k − n)ŵ sinc(q − n)ŵ (4c)

where

µn4 τ2
naInaKna (5a)

νn4 nβnaInaKna (5b)

ηn4 k2
0aI

′
naK

′
na + (nβna/τna)

2 InaKna (5c)

and ŵ 4 w/p . In (5)

k0a 4 ak0 = aω
√

µε, β0a = aβ0,

βna = β0a + n cotψ, τ2
na = β2

na − k2
0a

and we have used the following abbreviations

Ina4In(τna), Kna4Kn(τna),
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I ′na4I ′n(τna), K ′
na4K ′

n(τna),

for the modified Bessel functions and their derivatives evaluated at
ρ = a. Solving (3a) for Jϕ in terms of Jz as

Jϕ = A−1
ν AµJz (6)

and substituting into (3b), we have the infinite set of equations
[
Aν −AηA−1

ν Aµ

]
Jz = 0 (7)

for determining the infinite set of coefficients Jzq, q ∈ Z. For a
nontrivial solution for Jz, it is necessary that∣∣Aν −AηA−1

ν Aµ

∣∣ = 0 (8)

The determinantal condition (8) gives, in principle, the dispersion
equation for the cold-wave modes supported by an open perfectly
conducting infinite tape helix of infinitesimal thickness and finite
width.

3. NUMERICAL COMPUTATION OF THE
TAPE-CURRENT DISTRIBUTION

As in [9], the infinite-order matrices Aµ,Aν and Aη are symmetrically
truncated to (2N +1)×(2N +1) matrices Âµ, Âν and Âη. It is readily
seen from (4a)–(4c) that only the main lobes of the sinc functions
contribute significantly to the values of µkq, νkq and ηkq, k, q ∈ Z.
Thus, for the choice of axial width-to-pitch ratio ŵ = 1/2, the infinite-
series for them get truncated to [9]

bkq 4 µ̂kq =
min(k,q)+1∑

n=max(k,q)−1

µnsinc
(

k − n

2

)
sinc

(
q − n

2

)
(9a)

ckq 4 ν̂kq =
min(k,q)+1∑

n=max(k,q)−1

νnsinc
(

k − n

2

)
sinc

(
q − n

2

)
(9b)

dkq 4 η̂kq =
min(k,q)+1∑

n=max(k,q)−1

ηnsinc
(

k − n

2

)
sinc

(
q − n

2

)
(9c)

Remark: Unlike the σn of [10] that decay asymptotically with respect
to |n|, the µn, νn and ηn appearing in (5) exhibit an asymptotic growth
with respect to |n|. Hence, the contributions to the values of µkq, νkq

and ηkq, k, q ∈ Z, from the side lobes of the sinc functions may not
be as insignificant as would have been the case had the asymptotic
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behavior of µn, νn and ηn been the same as that of σn with respect to
|n|.

When the contributions from the main lobes of the sinc functions
only are retained in the expressions for bkq, ckq and dkq,−N ≤ k, q ≤ N ,
there will only be three types of non-zero entries in the (2N+1)×(2N+
1) symmetric matrices Âµ, Âν and Âη for the choice ŵ = 1/2, viz.,

bk,k = µk + (2/π)2(µk−1 + µk+1) −N ≤ k ≤ N,

bk,k+1 = bk+1,k = (2/π)(µk + µk+1) −N ≤ k ≤ N − 1,

bk,k+2 = bk+2,k = (2/π)2µk+1 −N ≤ k ≤ N − 2

with similar relations for ck,k+i and dk,k+i, i = 0, 1, 2. Thus,
the truncated coefficient matrices Âµ, Âν and Âη will be banded
symmetric matrices with nonzero entries only along the main diagonal
and the four symmetrically located subdiagonals adjacent to the main
diagonal. Thus, the approximate dispersion equation corresponding to
a truncation order equal to N becomes∣∣∣Âν − ÂηÂ−1

ν Âµ

∣∣∣ = 0 (10)

Exhaustive numerical simulation of (10) to find a real root k̂0a(β0a) of
the approximate dispersion equation for k0a as a function of β0a carried
out in [9] for various truncation orders reveals that a truncation order
of N = 3 is adequate to deliver a fairly accurate estimate of k̂0a(β0a)
for the parameter value of ŵ = 1/2 and ψ = 10◦.

Although a truncation order as low as N = 3 was found to
be adequate for securing an accurate estimate for k̂0a(β0a), fairly
large number N of the ‘current density coefficients’ Ĵzn and Ĵϕn, 0 ≤
|n| ≤ N , corresponding to β̂0a(k0a) (where β̂0a(k0a) is the estimate of
the normalized propagation constant corresponding to the normalized
frequency k0a, that is, the unique root of the equation k̂0a (β0a) = k0a

for β0a) are needed in the series representation (1) of the surface current
density components Jz(z, ϕ) and Jϕ(z, ϕ) in order to be assured of a
reasonably good approximation for the tape-current density.

Stacking the first (2N + 1) (for N large enough) lowest order
coefficients in the expansion (1) of the surface current density
components into the two (2N + 1)-dimensional vectors Ĵm =[
ĴmN , Ĵ

m(N−1)
, . . . , Ĵm1, Ĵm0, Ĵm1, . . . , Ĵm(N−1), ĴmN

]T
, m = z, ϕ, the

truncated versions of (6) and (7) may be expressed as

Ĵϕ = Â−1
ν ÂµĴz (11)
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and [
Âν − ÂηÂ−1

ν Âµ

]
Ĵz = 0 (12)

where 0 denotes the column vector of (2N + 1) zeros. Thus, the task
before us is to find the null-space vector of a (2N + 1) × (2N + 1)
(N large) rank-deficient matrix corresponding the the already located
root k̂0a(β0a) of the determinantal Equation (10). A direct method of
doing this is likely to be computationally very intensive because of the
large size of the coefficient matrix in (12). Fortunately, an alternative
computationally more efficient method for iteratively computing the
null-space vector is available [9]. Since the logical basis of this method
has already been spelt out in detail [9], only the main steps in the
implementation of the algorithm will be outlined here.

We begin by defining the two-component vectors

Jq 4
[
Ĵzq, Ĵϕq

]T
, −N ≤ q ≤ N

and the 2× 2 matrices

akq =
[
bkq −ckq

ckq −dkq

]
, −N ≤ k, q ≤ N

(i) Iterative computation of matrix coefficients

Initialization: a(0)
kl ≡ akl, −N ≤ k, l ≤ N

Recursion:

a(i)
N−i,N−i = a(i−1)

N−i,N−i − a(i−1)
N−i,N−i+1

(
a(i−1)

N−i+1,N−i+1

)−1
a(i−1)

N−i+1,N−i

for 1 ≤ i ≤ N − 1,

a(i)
N−i,N−i−1 = aN−i,N−i−1

− a(i−1)
N−i,N−i+1

(
a(i−1)

N−i+1,N−i+1

)−1
aN−i+1,N−i−1

for 1 ≤ i ≤ N − 1,

a(i)
N−i−1,N−i = aN−i−1,N−i

− aN−i−1,N−i+1

(
a(i−1)

N−i+1,N−i+1

)−1
a(i−1)

N−i+1,N−i

for 1 ≤ i ≤ N − 1,
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a(i)
N−i−1,N−i−1 = aN−i−1,N−i−1

− aN−i−1,N−i+1

(
a(i−1)

N−i+1,N−i+1

)−1
aN−i+1,N−i−1

for 1 ≤ i ≤ N − 2,
(13)

together with a corresponding set of relations with an overbar over the
suffixes.

a(N)
10 =

[(
a(N−1)

11

)−1
a11 − a−1

11
a(N−1)

11

]−1

×
[
a−1

11
a(N−1)

10 −
(
a(N−1)

11

)−1
a(N−1)

10

]
(14)

and the relation for a(N)

10
is derived from (12) by complementing all

suffixes where 141 and 040.
Finally

a(N)
00 = a00 + a(N−1)

01
a(N)

10
+ a(N−1)

01 a(N)
10

−a02

(
a(N−2)

22

)−1
a20 − a02

(
a(N−2)

22

)−1
a20 (15)

(ii) Iterative computation of the current-density coefficients

Let λ
(N)
kl , k, l = 1, 2, be the entries of the rank-one 2 × 2 matrix

a(N)
00 . Set

λ̂N (k0a) 4 λN (β̂0a(k0a)) = −λ
(N)
12 /λ

(N)
11 = −λ

(N)
22 /λ

(N)
21

Initialization:
Ĵ0 = [λ̂N (k0a), 1]T Ĵϕ0, (16)

where Ĵϕ0 is an undetermined (complex) constant.

Recursion:

Ĵ1 = a(N)
10 Ĵ0 and Ĵ1 = a(N)

10
Ĵ0 (17)

ĴN−i = −
(
a(i)

N−i,N−i

)−1 [
a(i)

N−i,N−i−1ĴN−i−1 + aN−i,N−i−2ĴN−i−2

]

for 0 ≤ i ≤ N − 2 (18)

together with a corresponding set of relations with an overbar over the
suffixes.
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(iii) Computation of the tape-current distribution

The coefficients Ĵ||n and Ĵ⊥n for −N ≤ n ≤ N of the surface
current density components Ĵ||(z, ζ) = e−jβ0z f̂||(ζ) and Ĵ⊥(z, ζ) =
e−jβ0z f̂⊥(ζ) parallel and perpendicular to the winding direction are
obtained in terms of the current-density coefficients Ĵzn and Ĵϕn,−N ≤
n ≤ N as[

Ĵ||n
Ĵ⊥n

]
=

[
sinψ cosψ
cosψ − sinψ

] [
Ĵzn

Ĵϕn

]
, −N ≤ n ≤ N,

where

f̂||(ζ) =
N∑

n=−N

Ĵ||ne−j2πnζ/p, −p/4 ≤ ζ ≤ p/4,

and f̂⊥(ζ) =
N∑

n=−N

Ĵ⊥ne−j2πnζ/p, −p/4 ≤ ζ ≤ p/4,

are the truncated Fourier series of the restrictions of the periodic
functions

∞∑

l=−∞
1[lp−w/2,lp+w/2](ζ)

N∑

n=−N

Ĵ||ne−j2πnζ/p

and
∞∑

l=−∞
1[lp−w/2,lp+w/2](ζ)

N∑

n=−N

Ĵ⊥ne−j2πnζ/p

of period p to the interval [−p/4, p/4]. We may now define normalized
surface current density components parallel and perpendicular to the
winding direction as

Î||(ζ) =
∣∣∣Î||(ζ)

∣∣∣ ejϕ||(ζ)4 Ĵ||(z, ζ)/Ĵ||(z, 0) = f̂||(ζ)/f̂||(0)

and Î⊥(ζ) =
∣∣∣Î⊥(ζ)

∣∣∣ ejϕ⊥(ζ)4 Ĵ⊥(z, ζ)/Ĵ||(z, 0) = f̂⊥(ζ)/f̂||(0)

The magnitude and the phase of the normalized surface density
components Î||(ζ) and Î⊥(ζ) are computed for the choice of values 3, 8
and 14.25 of the normalized propagation constant β0a corresponding to
the first,the second and the third allowed region in the k0a−β0a plane
for a truncation order N = 80. The roots of the dispersion equation
for k̂0a(β0a) corresponding to the above three values of β0a are 0.52215,
1.39015 and 2.43885 respectively. The variation of the magnitude and
the phase of the normalized surface current density components Î||(ζ)
and Î⊥(ζ) with respect to ζ/p are plotted in Figs. 2–4.



90 Kalyanasundaram, Naveen Babu, and Tulsian

|I 
  (

ζ
)|

⊥
φ

  
(ζ

) 
(d

eg
re

e)
⊥

Figure 2. Distribution of surface current density components for
β0a = 3.

Figure 3. Distribution of surface current density components for
β0a = 8.
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Figure 4. Distribution of surface current density components for
β0a = 14.25.

4. DISCUSSION AND CONCLUSIONS

The following conclusions may be drawn from the plots of Figs. 2–
4: (i) The magnitude and the phase of the current distribution on
the tape surface are nearly uniform at all frequencies falling within
the allowed regions even for tapes which are not narrow. (ii) The
magnitude of the surface current density component perpendicular to
the winding direction is at least three orders of magnitude smaller
than that parallel to the winding direction for all ζ ∈ [−p/4, p/4]. (iii)
The ratio |Î⊥(ζ)/Î||(ζ)| of the current density component magnitudes
tends to increase with an increase in the frequency. (iv) None of the
surface current density components exhibits any singular behavior near
the tape edges; however, since the current density is seen to drop
discontinuously to zero beyond the tape edges, the continuity equation
implies that the surface charge density will be singular at the tape
edges. This nonphysical situation leading to the discontinuity of the
surface current density at the tape edges arises out of our assumption
of an infinitesimally thin tape. In the realistic case of a tape of
finite thickness and rounded edges, the continuity of current, which
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is confined essentially to a thin layer adjacent to the tape surface,
will be maintained across the tape edges and there will not be any
discontinuity in the current flow. However, the development of an
adequate model for a tape of finite thickness that is amenable to an
exact analysis still remains as a challenging open problem.

The observation made in the last paragraph regarding the
relative magnitudes of the two current-density components makes the
anisotropically conducting model of the tape helix that neglects the
perpendicularly directed component of the surface current density
appear quite plausible. Unfortunately, such a model that has been
in vogue for not less than five decades for narrow tapes turns out to be
mathematically ill-posed for the following reason: The coefficients Ĵn,
n ∈ Z, of the tape current density expansion computed on the basis
of an exact analysis of the anisotropically conducting model [10] tends
to grow in magnitude with |n|. This undesirable asymptotic behavior
of the current-density coefficients is directly linked to the asymptotic
behavior of the σn, n ∈ Z, (Please refer to (46) of [10] for the definition)
which tends to decay in magnitude with respect to |n|. In contrast, the
analogous parameters µn, νn and ηn, n ∈ Z, featuring in the perfectly
conducting tape-helix model being made use of in this paper tend to
grow linearly with |n|. Since the current-density coefficients Ĵn, n ∈ Z,
appearing in [10], serve as the Fourier coefficients in a Fourier-series
expansion of the tape-current density and since the Fourier coefficients
of any periodic function that is absolutely integrable (L1) over a period
must tend to zero as |n| → ∞ in accordance with Riemann-Lebesgue
lemma [11], the inexcapable inference is that a model of the tape
helix that neglects the perpendicularly directed component of the tape
current density is not capable of leading to a well-posed mathematical
problem.
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