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Abstract—This work presents an accurate and realistic positioning
approach for indoor environments based on fingerprinting and ray-
tracing techniques. Fading caused by multipath seriously degrades
the performance of communication systems operating inside buildings.
For this reason, the proposed localization method considers multipath
effects due to reflections and diffraction from walls, roof and floor.
However, fading in indoor environments can also be caused by the
movement of people or the presence of furniture. Because people are
the primary absorption agents in indoor channels, their influence on
the radio propagation channel must be considered. The proposed
localization method takes into account the effects of human body
shadowing to provide a realistic estimation of the mobile station
position. Numerical calculations in real indoor scenarios show
reasonable results.

1. INTRODUCTION

Currently, localization of mobile terminals is one of the most popular
topics in mobile radio research and development. In recent years,
several localization methods have been presented [1–9]. Most of
them consider data from the indoor propagation channel, such as
the received signal strength (RSS), the direction of arrival (DOA),
the time of arrival (TOA), the time differences of arrival (TDOA),
etc. These parameters are obtained by exchanging radio signals with
N fixed base stations or access points, which are placed in known
positions. However, only a few works [10, 11] take into account realistic
considerations existing in indoor environments such as mixed Line of
Sight (LoS) and Non Line of Sight (NLoS) conditions, multipath due
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to reflections and/or diffractions and fading due to moving people or
the presence of furniture. As an example, Nelson et al. in [10] is a
recently published work that describes an expectation maximization
algorithm for localization under lognormal shadowing. On the other
hand, [11] presents an approach based on maximum likelihood methods
for location estimation using received signal strength measurements
in wireless fading/shadowing channels. In both works, shadowing
is modeled by means of a lognormal function, but they do not
define clearly the unwanted effects as “body shadowing”. The only
treatment of body shadowing effects is presented in articles on the
characterization of indoor propagation channels.

Research on the influence of the human body on radio channels
has been in progress in recent years. For example, a statistical model
for human body shadowing in offices and factories that can be included
in an existing propagation prediction method is proposed in [12].
Another deterministic propagation prediction model is introduced
in [13] to investigate the human body-scattering effects in the indoor
channel using the Uniform Theory of Diffraction (UTD). In the model,
the human body is approximated with a perfect conducting circular
cylinder and then combined with the ray tracing technique to deal
with particular indoor propagation scenarios. A very similar approach
is proposed in [14], in which the human body is approximated by
conducting sphere and cylinders, and the ray tracing technique is
used to find the surface diffracted ray path while the UTD surface
diffraction coefficients are used for calculating the RSS. On the other
hand, there are also some works that analyze the effect of the human
body interaction with a close proximity Ultra Wide Band (UWB)
antenna, as in [15]. UWB propagation was investigated again in [16], in
which it is demonstrated that human body shadowing directly affects
the root mean square delay spread.

The main contribution of the current paper is to present a novel
radiolocalization method that focuses on the fading caused by the
presence of people to obtain better performance and minimize errors in
the localization process. In an earlier published work [17] we considered
estimating the locations of multiple mobile stations in the presence of
mixed LoS/NLoS conditions and multipath contributions. However,
we did not consider the influence of human body shadowing. Here,
the old method is improved by including the realistic effects that
exist in any indoor environment. Because people are the primary
absorption agents in the indoor channel, their influence on the radio
propagation channel must be considered. The relevance of this paper
is not only that it considers realistic effects but also that there is not
enough information about this topic in the literature. As mentioned
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before, there are only a very few works that consider the fading
due to the presence of people when developing location approaches.
As discussed above, several propagation prediction methods include
models to describe human body shadowing. However, in this work, the
influence of the movement of people has been considered by means of
a statistical model independent of the propagation prediction method.
It is worth noticing that the proposed method is able to estimate the
location of a mobile station under mixed LoS and NLoS conditions. In
fact, this model is the most representative situation when analyzing
the indoor radio propagation channel. Reflected and diffracted rays
contribute to the computation of the estimated position. In order
to validate the proposed 3D-radiolocalization method, several realistic
indoor scenarios have been analyzed. Numerical results demonstrate
higher positioning accuracy with respect to traditional approaches.

This paper is organized as follows. In Section 2, the basic
concept of the statistical model to characterize the attenuation due
to shadowing and fading is explained. The main features of the
localization approach are described in Section 3. In Section 4, the
estimation results obtained from the experimental data analysis are
shown. Finally, Section 5 contains concluding remarks and directions
for future work.

2. STATISTICAL MODEL TO DESCRIBE BODY
SHADOWING

Although there are several works that analyze the influence of the
human body on the radio propagation channel, there are not enough
contributions dealing with the effects of human body shadowing on
localization methods. Due to the fact that most of the papers related
to positioning methods in the literature do not consider the influence of
the presence of people in indoor environments, the proposed approach
focuses on this important and fundamental aspect. Therefore, it can
be stated that the proposed approach is more realistic because the
presence of moving people is very common in indoor environments
such as offices, airports, hotels, etc. It is almost impossible for those
places to be empty, without people or furniture.

Positioning accuracy is the main goal for the location approaches.
Erroneous locations are due to parameter estimation errors, over-
simplified assumptions about the propagation channel, multipath
effects and NLoS conditions. Usually, the mobile station may
not be visible from a determinate access point. Furthermore, in
indoor scenarios characterized by dense multipath and mixed LoS
and NLoS conditions, these errors become more critical. For these
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reasons, a positioning method that considers these unwanted effects is
compulsory.

It is well known that the movement of people within indoor
scenarios can cause temporal channel variations. That is to say,
the presence of people in the indoor scenario can influence the RSS
distribution in different ways: it may cause the RSS to decrease,
increase or remain constant. The explanation of these changes is
the scattering and shadowing effects of human bodies in indoor
environments. The user acts as an obstacle that obstructs the
propagation path between the access point and the mobile station and
therefore causes changes in the RSS value. Moreover, the WLAN signal
is absorbed when the body obstructs the signal path, causing extra
attenuation leading to a lower RSS value.

It is worth noticing that the influence of body shadowing is
included independently of the ray tracing technique. It is considered
through a statistical model that is applied to every received ray in
mobile stations and fingerprints. The RSS value is attenuated by
a certain level that represents the effects of body shadowing. The
statistical model applied is based on [18]. In this paper, the effects of
random human traffic on path loss in the communications channel at
1.8GHz have been experimentally measured. Such effects account for
an increase in path loss up to 5 dB when the transmitting and receiving
antennas are not in very close proximity to the human body.

The parameters of the Gamma probability density function have
been extracted from a measurement campaign. According to [18],
before each measurements session, samples were taken in the absence
of human traffic to know the attenuation in these conditions and then
calculate the attenuation in excess. The attenuation in excess over the
average without traffic yielded the following parameters statistics:

Mean attenuation in excess: 2.6 dB, standard deviation: 2.09 dB,
maximum attenuation in excess: 9.18 dB, minimum attenuation in
excess: −1.02 dB. The parameters of the Gamma distribution are
obtained as follows:

E[X] = k · θ = 2.6 (1)
V (X) = k · θ2 = 2.092 (2)

The resulting values are:
k = 1.54 (3)
θ = 1.68 (4)

Figure 1 shows the statistical behavior of the attenuation in excess
in terms of the Gamma probability density function.

As mentioned before, [18] demonstrates that the Gamma
distribution models the attenuation in excess due to body shadowing



Progress In Electromagnetics Research Letters, Vol. 15, 2010 5

Figure 1. Statistical behavior of the attenuation in excess.

quite well. It is worthwhile to point out that the results are very
similar under LoS or NLoS conditions. Therefore, the attenuation due
to the presence of people in the area of propagation is independent of
the direct vision conditions between the access points and the mobile
stations.

3. LOCALIZATION APPROACH

Normally, propagation prediction models are given either through
measurement campaigns or by analytical models. In this case, a ray
tracing technique that provides information about multipath effects is
used to model the indoor radio channel via deterministic methods [19].
The ray tracing tool is based on geometric optics and the uniform
theory of diffraction (UTD). The electric field levels can be obtained
using the direct, reflected, transmitted and diffracted fields. Therefore,
taking into account this variety of effects, the tool provides good
predictions. The proposed indoor localization method is based on
the fingerprinting technique because fingerprints may store information
about multipath effects, and therefore the estimation position will be
more accurate. As explained above, the ray tracing model is used
to provide the information about multipath effects required in the
fingerprinting technique. This information is stored in a dataset during
the first stage of the fingerprinting method. The localization estimation
is calculated while taking into account the Euclidian distance between
the RSS from each unknown position and the information of the
fingerprints. The location of a mobile station is evaluated using the
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following cost function, which uses the RSS of the received signals:

D(X, Y, Z) =
N∑

n=1

(
ˆRSSn −RSSRT

n

)2
(5)

where
ˆRSSi =

√
|Em

x (i)2 + Em
y (i)2 + Em

z (i)2| (6)

RSSi
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√
|Ef

x (i)2 + Ef
y (i)2 + Ef

z (i)2| (7)

Em is the received electric field value in the mobile station,and Ef is
the received electric field value in the fingerprint.

As mentioned before, RSS measurements are subjected to random
errors due to channel nonidealities such as multipath and shadowing.
In the absence of such nonidealities, RSS measurements accurately
represent the distances between the unknown node and the reference
nodes. For this reason, a statistical attenuation model must be applied
over the RSS values. Because the cost function in (5) guesses an
ideal channel, a realistic cost function that considers nonidealities must
become a new expression.

Note that Equation (5) compares the non-attenuated RSS values,
that is to say, the RSS is computed by considering the electric field
values received in fingerprints and mobile stations from the access
points without taking into account the presence of moving people.
In order to include these realistic effects, RSS values are attenuated
applying the conclusions obtained in [18]. According to the previous
section, the statistical behavior of the attenuation in excess introduced
by the presence of people in an indoor environment can be modeled
as a Gamma function. Therefore, only a portion of the total power
generated at the access points is received at each fingerprint or
mobile station when considering body shadowing. The percentage
of attenuation is obtained by using the Gamma function as follows:
first, a random number between 0 and 10 is calculated; second,
the Gamma probability density function is evaluated considering the
random number. As shown in Figure 1, the resulting value is between
0 and 0.28; thus the worst scenario for the RSS level is to suffer an
attenuation of 28 per cent. However, this attenuation may happen only
when the random number is near 1. If the random number is higher
than 5, the attenuation percentage will be practically zero. Once these
previous considerations have been performed, the cost function is:

D(X, Y, Z)=
N∑

n=1

(
(1−Gamma(k, θ)) ˆRSSn−(1−Gamma(k, θ))RSSRT

n

)2

(8)
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An attenuation factor modeled by the Gamma statistical
distribution has been added to the initial expression so that the
Gamma distribution fit more closely to the measured data when
considering the presence of people.

Finally, changing (X, Y, Z) inside the testing area, which is the
point that minimizes the cost function, is used to estimate the position
of the mobile station. Therefore, the estimated position is obtained as
follows:

(X̂, Ŷ , Ẑ) = minD(X, Y, Z) (9)

According to this expression, the position of the mobile station
corresponds with the fingerprint whose Euclidian distance is the
smallest.

4. EXPERIMENTAL RESULTS

In order to evaluate the localization performance of the proposed
approach, an indoor environment (Politecnica building in Madrid)
has been analyzed with different grid densities. The 3D view of the
scenario is depicted in Figure 2. The tests were performed for LoS and
NLoS situations and considering the presence of people in movement.
The experiments consider two grids consisting of 36× 36 and 72× 72
fingerprints at a frequency of 1.8GHz. The distance between the
fingerprints is 0.8m in the grid of 36 × 36 fingerprints and 0.4m in
the grid of 72 × 72 fingerprints. The simulations also use 9 access
points and 99 mobile stations randomly distributed over the grids.

These simulations were performed in an earlier published work [17]
without considering the presence of moving people. The localization

Figure 2. 3D view of the Politecnica building. (Taken from [17]).
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method provided quite good results, as it can be observed in Figures 3–
6 (solid red line). However, these results are not very realistic, since
they do not take into account realistic assumptions such as the common
movements of the people inside a public building.

Therefore, in order to compare the results considering or not
considering human body shadowing, two different simulations have
been performed: the first one utilizes expression (5), which is provided
in [17], and the second one utilizes expression (8). Figure 3 shows the
mean error in the location process depending on the number of rays in
both cases for the grid of 36× 36 fingerprints.

The mean error is calculated as the Euclidian distance between
the real position of the mobile station and its estimated position. The
variance of the mean error is shown in Figure 4.

Obviously, it can be observed that the mean error is a bit higher
when considering the influence of body shadowing. People within
indoor environments are not always stationary, and their movement
will lead to temporal channel variations that dramatically affect the
quality of indoor communication systems. Therefore, the propagation
losses due to body shadowing strongly affect the RSS of the received
rays and significantly degrade the transmission quality. For this reason,
the accuracy when estimating the mobile position is lower. Very similar
results have been found when using the grid of 72× 72 fingerprints. In
this case, results are shown in Figures 5 and 6.

Figure 3. Mean error (meters)
obtained by varying the num-
ber of rays taken into account to
compute the cost function. Re-
sults obtained for a 36 × 36 grid
of fingerprints in the Politecnica
building.

Figure 4. The variance of
the mean error (meters) for
various numbers of rays in order
to compute the cost function.
Results obtained for a 36×36 grid
of fingerprints in the Politecnica
building.
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Figure 5. Mean error (meters)
obtained by varying the num-
ber of rays taken into account to
compute the cost function. Re-
sults obtained for a 72 × 72 grid
of fingerprints in the Politecnica
building.

Figure 6. The variance of
the mean error (meters) for
various numbers of rays in order
to compute the cost function.
Results obtained for a 72×72 grid
of fingerprints in the Politecnica
building.

The best results are found when considering 8 rays for both grids.
The explanation has already been given in [17], where the reader
can find more information about the ray tracing and fingerprinting
techniques.

Basically, the reason why the best results are provided when the
number of rays is between 6 and 8 is that the cost function is evaluated
only when some conditions are satisfied. First, the number of rays in
the mobile station must be the same as the number of rays in the
fingerprint. Second, the rays from the access points must be in the
same order. For instance, if a mobile station receives two rays (from
the access points 3 and 7) and the fingerprint receives also two rays
(from the access points 3 and 8), the cost function is not evaluated
and the information of that fingerprint is not taken into account to
estimate the position of the mobile station. When the number of rays
is higher (from 15 to 20), it is probable that fingerprints and mobile
stations do not contain information for more than 15 rays. Hence, it
is quite difficult to find enough information and the results are not so
good when the number of rays is increased.

5. CONCLUSIONS

While a great deal of time has been spent developing new localization
methods, the effects of human body interactions on the position
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estimation remain unexplored. There are several factors that affect
the propagation channel in an indoor environment such as path loss,
shadowing and multipath fading. These factors directly affect the
quality of the received signal. The proposed localization method
considers the effects of human body shadowing to provide a realistic
and accurate estimation of the mobile station position in indoor
scenarios.

Numerical simulations in realistic scenarios have been carried out
to verify the benefits of the proposed localization method. It can
be concluded that in contrast to outdoor environments, human body
shadowing is a significant propagation effect in indoor scenarios.
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