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Abstract—This paper applies the recently introduced electrical
engineering approach to investigate room temperature THz metal
shielding, using the accurate classical relaxation-effect frequency
dispersion model. It is shown that, with the simplest case of a
uniform plane wave at normal incidence to an infinite single planar
shield in air, all figure of merit parameters for the shield can be
accurately characterized. The errors introduced by adopting the
traditional and much simpler classical skin-effect model are also
quantified. In addition, errors resulting from adopting well-established
approximations have also been investigated and quantified. It is shown
that the engineering approach allows analytical expressions to be
greatly simplified and predictive equivalent transmission line models
to be synthesized, to give a much deeper insight into the behaviour
of room temperature THz metal shielding. For example, it is shown
that figures of merit and associated errors (resulting from the use
of different classical frequency dispersion models) become essentially
thickness invariant when the physical thickness of the shield is greater
than 3 normal skin depths.

1. INTRODUCTION

Radio frequency (RF) metal shielding is found in many applications;
ranging from the construction of high isolation subsystem partitioning
walls, efficient quasi-optical components (e.g., planar mirrors and
parabolic reflectors for open resonators and antennas), creating guided-
wave structures that have (near-) zero field leakage (e.g., metal-pipe
rectangular waveguides and associated closed cavity resonators) and
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embedding ground planes within compact 3D multi-layer architectures.
Ideally, metal shields should be made as thin as possible, while meeting
the minimum values for figures of merit within the intended bandwidth
of operation, in order to reduce weight and cost. For reasons of
structural integrity, thin metal shielding can be deposited onto either
a solid plastic/ceramic or even honeycomb supporting wall. Moreover,
thin metal shielding embedded between dielectric layers (e.g., to create
conformal ground planes or partition walls) can avoid issues of poor
topography when integrating signal lines within 3D multi-layered
architectures.

Shielding effectiveness, return loss and absorptance (or absorp-
tivity) are important figures of merit that are quoted to quantify the
ability to shield electromagnetic radiation. This paper will investigate
these parameters for operation at terahertz frequencies. To describe
the intrinsic frequency dispersion in metals for THz shielding appli-
cations, the accurate classical relaxation-effect model will be used as
reference [1–6]. Differences between the results calculated for the clas-
sical skin-effect and relaxation-effect models will be quantified for a
single planar shield, as previously undertaken with metal-pipe rect-
angular waveguide structures at terahertz frequencies [4, 6]. It will be
assumed throughout that the intrinsic conductivity will be for a normal
metal at room temperature and represented by its bulk values.

It has been recently shown that an electrical engineering approach,
which can include network analysis and the synthesis of predictive
equivalent transmission line models, can accurately solve specific
electromagnetic problems [5, 6]. This approach will be used as a basic
tool for the investigation of room temperature THz metal shielding.

2. S-PARAMETER ANALYSIS FOR SINGLE PLANAR
SHIELD

For simplicity, an infinite single planar shield in air will be considered,
with uniform plane wave at normal incidence, as illustrated in Fig. 1.

Within the metal, the propagation constant γ ≡ α + jβ, α is the
attenuation constant and β is the phase constant. With reference to
Fig. 1, at the respective dielectric → metal and metal → dielectric
boundaries, the voltage reflection coefficients are:

ρ1 =
ZS − ZT

ZS + ZT
and ρ2 =

ZT − ZS

ZS + ZT
≡ −ρ1 (1)

where ZS ≡ RS + jXS → ηI =
√

jωµ
σ+jωε is the surface impedance of

the metal, RS is the surface resistance, XS is the surface reactance
and the termination impedance of this equivalent 2-port network
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Figure 1. Uniform plane wave at normal incidence to an infinite single
planar shield in air: (a) physical representation; and (b) equivalent 2-
port network model.

ZT → ηo =
√

µo

εo
À ηI is the intrinsic impedance of the surrounding

air dielectric. The other variables have their usual meaning [1–6]. The
corresponding voltage transmission coefficients are given by:

τ1 ≡ 1 + ρ1 =
2ZS

ZS + ZT
and τ2 ≡ 1 + ρ2 =

2ZT

ZS + ZT
(2)

The overall forward voltage-wave transmission coefficient S21 for this
simple shielding scenario can be represented by the following transient
response solution.

S21 = τ1 ·
[
e−γ T ·

∞∑

i=0

(
e−γ T ρ2

)2i

]
· τ2 where i ∈ [0, 1, 2 . . .∞] (3)

From (3), the steady-state solution is easily shown to be given by the
following:

S21 = τ1 ·
[

e−γ T

1− (e−γ T ρ1)
2

]
· τ2 since

∣∣e−γ T ρ1

∣∣ < 1 (4)

Similarly, the overall input voltage-wave reflection coefficient S11 for
this simple shielding scenario can be represented by the following
transient response solution.

S11 =ρ1+τ1 ·
[
e−2γ T ρ2 ·

∞∑

i=0

(
e−γ T ρ2

)2i

]
· τ2 where i ∈ [0, 1, 2 . . .∞] (5)

From (5), the steady-state solution is easily shown to be given by the
following:

S11 = ρ1 ·
[

1− e−2γ T

1− (e−γ T ρ1)
2

]
since

∣∣e−γ T ρ1

∣∣ < 1 (6)
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From the engineering approach, with a normal metal at room
temperature, the effective component Q-factor Qc = XS

RS
= α

β ≥ 1 [5, 6].
As an extension to this approach, one can introduce the boundary
resistance coefficient k = ηo

RS
À Qc ≥ 1. As a result, (1) and (2) can

be represented as:

ρ1 =
(1−k) + jQc

(1+k)+jQc
≈1; τ1 =

2 (1+jQc)
(1+k)+jQc

∼= 2 (1+jQc)
k+jQc

≈ 2 (1+jQc)
k

;

τ2 =
2k

(1 + k) + jQc

∼= 2k

k + jQc
≈ 2 (7)

It is useful to represent the physical thickness T of the metal shield in
terms of the number a of normal skin depths δS = 1/α (i.e., T → a δS).
Thus, it can be easily shown that the exponential decay for the intensity
of the electromagnetic fields within the metal can be represented by
the following exponent [5]:

−γT → −γ · a δS = −a ·
(

1 +
j

Qc

)
(8)

Using the classical relaxation-effect model to describe frequency
dispersion within a normal metal at room temperature [1–6], where
associated variables for this model are indicated by the suffix “R”,
T = aR δSR. It is generally accepted that a metal wall of thickness
equal to 5 normal skin depths is sufficient to provide acceptable power
isolation for most applications. Therefore, the propagation constant
per 5 skin depths becomes:

γR · 5δSR = 5
γR

={γR}QcR
= 5

(
1 +

j

QcR

)[
(5δSR)−1

]
(9)

As an example, if an arbitrary frequency of ωτ = 1 is chosen, for
simplicity, Q cR(ωτ = 1) = (1 +

√
2) [5] and then (9) becomes:

γR(ωτ = 1) · 5δSR(ωτ = 1) = 5
(

1 +
j

1 +
√

2

) [
(5δSR)−1

]
(10)

Now, using the engineering approach, it can be shown respectively that
(4) and (6) become:

S21R =
4kR · (1 + jQcR) · e−aR

(
1+ j

QcR

)

[(1 + kR) + jQcR]2 − [(1− kR) + jQcR]2 · e−2aR

(
1+ j

QcR

)

≈ 2 (1 + jQcR)

kR · sinh
[
aR

(
1 + j

QcR

)] (11)
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S11R = ρ1R ·




1− e
−2aR

(
1+ j

QcR

)

1−
(

e
−aR

(
1+ j

QcR

)
ρ1R

)2




=
sinh

[
aR

(
1 + j

QcR

)]

sinh
[
aR

(
1 + j

QcR

)
− ln

(
(1−kR)+jQcR

(1+kR)+jQcR

)] (12)

The approximation in (11) results in a worst-case error of less than
0.4% up to aR = 10 and frequency less than 12 THz. Note that, since
the voltage-wave reflection coefficient has a magnitude close to unity, it
is not appropriate to simplify the expressions in (12). For the classical
skin-effect model [1–6], where associated variables for this model are
indicated by the suffix “o”:

ao =
T

δSo
= aR

(
δSR

δSo

)
(13)

and it can be shown that (11) and (12) become:

S21o=
4
√

2j ko · e−ao
√

2j

(√
2j + ko

)2 − (√
2j − ko

)2 · e−2ao
√

2j
≈ 2

√
2j

ko · sinh
(
ao
√

2j
) (14)

S11o=ρ1o ·
[

1− e−2ao
√

2j

1− (
e−ao

√
2jρ1o

)2

]
=

sinh
(
ao
√

2j
)

sinh
[
ao
√

2j − ln
(√

2j−ko√
2j+ko

)] (15)

The approximation in (14) results in a worst-case error of less than
0.6% up to aR = 10 and frequency less than 12 THz.

2.1. Transmittance

The transmission power isolation that results from a shield can be
defined by its shielding effectiveness (SE). With reference to Fig. 1(a),
shielding effectiveness can be given separately for the electric (E) and
magnetic (H) fields, SEE and SEH , respectively, [7]:

SEE = 20 log10

∣∣∣∣∣∣

∧
Ei

∧
Et

∣∣∣∣∣∣
[dB] and SEH = 20 log10

∣∣∣∣∣∣

∧
Hi

∧
Ht

∣∣∣∣∣∣
[dB] (16)

where the subscripts “i” and “t” denote the field strengths incident
to and emanating from the other side of the shield, respectively.
For a uniform plane wave at normal incidence to an infinite single
planar shield, the shielding effectiveness for the electric and magnetic
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fields coincide to give SE. With reference to Fig. 1(a), screening
effectiveness (i.e., transmittance) is the fraction of incident power Pi

to be transmitted past the shield Pt and is represented in decibels as:

SEdB = −10 log10

(
Pt

Pi

)
[dB]

SE =
{

|S21R|2 for all aR

∼ 0 for aR > 3

(17)

Shielding effectiveness is defined by the IEEE as “the ratio of the
signal received (from a transmitter) without the shield, to the signal
received inside the shield; the insertion loss when the shield is placed
between the transmitting antenna and the receiving antenna (IEEE
Std 100–1996)” [9]. Shielding effectiveness in decibels, SEdB, can
be determined using (4) and can be broken down into three separate
terms; each representing the following phenomena of cross-boundary
reflections RdB, absorption AdB and multiple reflections, MdB:

SEdB =−20 log10

∣∣∣S21R · e+jβoT
∣∣∣= −20 log10 |S21R| ≡ RdB+AdB+MdB

(18)
where βo = ω

√
µoεo is the phase constant in free-space (the dielectric is

assumed here to be air). RdB is the combined transmission loss caused
by the impedance mismatch reflections at the dielectric → metal and
metal → dielectric boundaries:

RdB = −20 log10 |τ1R · τ2R| = 20 log10

∣∣∣∣∣
(ZSR + ηo)

2

4ZSRηo

∣∣∣∣∣

∼ 20 log10

∣∣∣∣
ηo

4ZSR

∣∣∣∣ → 20 log10

∣∣∣∣
kR

4 (1 + jQcR)

∣∣∣∣ (19)

The well-known approximation in (19) is convenient when using the
classical skin-effect model, because this calculation does not involve
any complex numbers. However, it results in a worst-case error that
increases with frequency, to a value of 6.8% at 12THz for gold at
room temperature. AdB is the absorption (or penetration) loss of
the electromagnetic energy as it propagates through the shield in the
shortest path:

AdB =−20 log10

∣∣e−γRT
∣∣=20 log10

(
eT/δSR

)
→ 20 log10(e

aR)∼= 8.686aR

(20)
The approximation in (20) gives a negligible worst-case error up
to aR = 10 and frequency less than 12THz for gold at room
temperature. MdB is a correction factor that takes into account the
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multiple (theoretically infinite) reflections between metal → dielectric
boundaries:

MdB = = 20 log10

∣∣∣1−
(
e−γRT ρ1R

)2
∣∣∣ ∼ 20 log10

∣∣1− e−2γRT
∣∣

→ 20 log10

∣∣∣∣1− e
−2aR·

(
1+ j

QcR

)∣∣∣∣ (21)

The approximation in (21) has been cited by Paul [7]. It is worth noting
that [8] takes even more extreme approximations, by ignoring the
imaginary part of the exponent within the approximation in (21) for a
thickness much less than the wavelength; while ignoring this correction
factor altogether when thickness is much greater than the normal skin
depth. These extreme approximations will not be considered further.

The correction factor for multiple reflections has been calculated
for gold at room temperature using the classical relaxation-effect
model. The results are represented by the contour plot shown in
Fig. 2(a). The frequency range of interest is from dc to 12 THz; while
that for physical thickness ranges from the mean-free path length lm
(i.e., lm = 37.9 nm for gold at room temperature) to 10 normal skin
depths. This lower limit of thickness tries to avoid any anomalous
region of operation (as a point of reference, δSR(ωτ ∼= 0.513) = lm
and so aR increases from a value less than unity below ωτ ∼= 0.513 but
is always greater than unity above ωτ ∼= 0.513).

It can be deduced from Fig. 2(a) that MdB will have an adverse
effect on screening effectiveness when the physical thickness approaches
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Figure 2. Correction factor for multiple reflections calculations: (a)
using classical relaxation-effect model; (b) resulting error when using
the approximation in (21).
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the mean-free path length, i.e., T → lm. With large values of physical
thickness there are fluctuations with MdB ∼ 0. As a result, it will be
seen that evaluating the worst-case error for the approximation in (21)
is more problematic, using the following normal error equation, because
of the singularities that are created (see Fig. 2(b)):

EMdB =
MdB approximation −MdB exact

MdB exact
· 100% (22)

Using the exact expressions from (18) to (21) with (11), the
overall shielding effectiveness has been calculated for gold at room
temperature using the classical relaxation-effect model. The results
are represented by the contour plot shown in Fig. 3(a). It can be
seen that screening effectiveness SEdB always decreases with increasing
frequency, as more electromagnetic energy leaks through the shield.
Moreover, as expected, it increases with physical thickness.

Note that if the results from the exact expressions are compared
with the associated approximations, given in (19) to (21), then it is
found that the worst-case error is less than 0.1% across the frequency
and thickness ranges of interest. Also, the results from Fig. 3(a) can
be compared with those calculated using the classical skin-effect model
(more traditionally associated with screening effectiveness calculations)
using the following expression for the resulting error in shielding
effectiveness ESE :

ESEdB
=

∣∣∣∣
SEdBo − SEdBR

SEdBR

∣∣∣∣ · 100% (23)
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Figure 3. Screening effectiveness calculations: (a) using classical
relaxation-effect model; (b) resulting error when compared to classical
skin-effect model calculations.
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where SEdBR and SE dBo are the screening effectiveness calculated
using the classical relaxation-effect (11) and skin-effect (14) models,
respectively. Using the engineering approach, it can be shown that
the following more elegant expressions can be given for these figures of
merit parameters, without introducing errors greater than 0.1%:

SEdBR
∼= 10 log10

(
8

(
1 + Q2

cR

)
/k2

R

cosh(2aR)− cos(2aR/QcR)

)

and SEdBo
∼= 10 log10

(
16/k2

o

cosh(2ao)− cos(2ao)

)
(24)

The shielding effectiveness error results are represented by the contour
plot shown in Fig. 3(b). A peak in the shielding effectiveness error
occurs near ωτ = 1/

√
3; and increases in size with physical thickness

to a value of 7.8% at aR = 10. This peak is due to the associated
error peak found in the absorption loss at exactly ωτ = 1/

√
3, since

the classical relaxation-effect model predicts a smaller normal skin
depth and, therefore, higher levels of absoprtion loss (when compared
to the classical skin-effect model). It is interesting to note that
ωτ = 1/

√
3 also corresponds to the turning point for wavelength

against frequency within the metal, calculated using the classical
relaxation-effect model [5]. Note that, beyond the region of this peak,
the shielding effectiveness error increases almost linearly to a worst-
case value of 11.7% at T = lm = 1.6δSR(ωτ ∼= 2.046).

2.2. Reflectance

Shields can also be exploited for their reflective properties, as found
with quasi-optical components; their reflection characteristics can be
represented by return loss. With reference to Fig. 1, return loss RL
(i.e., the reflectance Γ) is the fraction of incident power Pi that is
reflected back from the shield Pr and represented in decibels as:

RLdB = −10 log10

(
Pr

Pi

)
= −10 log10 (Γ) = −20 log10 |S11| [dB]

where RL = ΓR =

{
|S11R|2 for all aR∼= |ρ1R|2 ≈ kR−2

kR+2 for aR > 3
(25)

Using (25) with (12), return loss has been calculated for gold at room
temperature using the classical relaxation-effect model. The results
are represented by the contour plot shown in Fig. 4(a). It can be seen
that return loss RLdB increases with frequency, as less electromagnetic
energy is reflected back from the shield. Moreover, it decreases with
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Figure 4. Return loss calculations: (a) using classical relaxation-effect
model; (b) resulting error when compared to classical skin-effect model
calculations.

increasing aR, as the shield becomes more effective, until aR ≈ 3 where
it is thickness invariant. Note that return loss calculations are sensitive
to errors that result from making approximations and so no simplifying
assumptions have been introduced.

The results from Fig. 4(a) can be compared with those calculated
using the classical skin-effect model using the following expression for
the resulting error in return loss ERL:

ERLdB
=

∣∣∣∣
RLdBo −RLdBR

RLdBR

∣∣∣∣ · 100% (26)

where RLdBR and RLdBo are the return losses calculated using the
classical relaxation-effect (12) and skin-effect (15) models, respectively.
The return loss error results are represented by the contour plot shown
in Fig. 4(b). It can be seen that the error increases almost linearly with
frequency, to a worst-case value of 109% at T = 10δSR(ωτ ∼= 2.046).
This errors is relatively thickness invariant above aR ≈ 3, but falls
dramatically below this value.

2.3. Absorptance

With reference to Fig. 1(a) and the law of conservation of energy, the
power absorbed inside the metal shield Pa is given by the following:

Pa = Pi − Pt − Pr (27)
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Figure 5. Absorptance calculations: (a) using classical relaxation-
effect model; (b) resulting error when compared to classical skin-effect
model calculations.

Absorptance AB is the fraction of incident power Pi that is absorbed
within the shield Pa and is represented in decibels as:

ABdB = −10 log10

(
Pa

Pi

)
= −10 log10

[
1−

(
Pt

Pi

)
−

(
Pr

Pi

)]

= −10 log10 (1− SE −RL) (28)

AB =
{

1− |S21R|2 − |S11R|2 for all aR∼= 1− |ρ1R|2 ≈ 4
kR
∝ RSR for aR > 3

(29)

Using (28) with the exact expressions in (11) and (12), absorptance
has been calculated for gold at room temperature using the classical
relaxation-effect model. The results are represented by the contour plot
shown in Fig. 5(a). It can be seen that absorptance ABdB decreases
with increasing frequency. Moreover, it increases with aR, until aR ≈ 3,
where it is thickness invariant. The results from Fig. 5(a) can be
compared with those calculated using the classical skin-effect model
using the following expression for the resulting error in return loss
EAB:

EABdB =
∣∣∣∣
ABdBo −ABdBR

ABdBR

∣∣∣∣ · 100% (30)

where ABdBR and ABdBo are the absorptance calculated using the
classical relaxation-effect (11) and (12) and skin-effect (14) and (15)
models, respectively. The absorptance error results are represented by
the contour plot shown in Fig. 5(b). It can be seen that this error
contour is almost identical in shape to that for the return loss, shown
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in Fig. 4(b). Here, the error increases almost linearly with frequency,
to a worst-case value of 14% at T = 10δSR(ωτ ∼= 2.046). This error is
relatively thickness invariant above aR ≈ 3, but again falls dramatically
below this value.

3. DETERMINING THE NORMAL SKIN DEPTH
CROSS-OVER FREQUENCY

It has been shown that, when compared to that calculated using the
classical relaxation-effect model, the classical skin-effect model predicts
a larger normal skin depth below a certain cross-over frequency [5].
This means that if a metal shielding wall is designed using the classical
skin-effect model, to a prescribed number of normal skin depths of
physical thickness, then the measured power isolation will be higher
than predicted using the classical relaxation-effect model; above the
cross-over frequency, the converse is true. It was previously shown
that [5]:

δSR =
1

={γR}QcR
= <{δcR}

(
1 +

1
Q2

cR

)
(31)

Therefore, the ratio of the two calculated normal skin depths can be
represented by the following:

χ =
αo

αR
=

δSR

δSo
=
√

QcR

2

(
1 +

1
Q2

cR

)
(32)

The cross-over frequency where χ ≡ 1, ωτ |χ=1 can be found by
replacing QcR ⇒ (1 + ξ ωτ)2 [5], to give:

∴ ωτ |χ=1 =
1− ξ|χ=1

ξ|2χ=1

= 1.54369

with ξ|χ=1 = (ωτ |χ=1 − 1) = 0.54369 (33)
For a fixed value of physical thickness, below ωτ |χ=1, the predicted
absorption loss AdB will be higher when calculated using the classical
relaxation-effect model, compared to that from the classical skin-effect
model; above ωτ |χ=1 the converse is true. However, the cross-over
frequency will not be observed in the shielding effectiveness error
contour plot given in Fig. 3(b). This is because the cross-over frequency
in absorption loss is masked by the effects of cross-boundary reflections
and, below aR ≈ 3, multiple reflections.

4. MODELLING OF METAL SHIELDING WALLS

It has previously been shown that, within the engineering approach,
the predictive equivalent transmission line model can accurately solve
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specific electromagnetic problems [5, 6]. This is the first time that
a very practical application has been given, in the form of a metal
shielding wall, using the model shown in Fig. 6.
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Figure 6. Equivalent transmission line model for predicting metal
shielding behaviour, using the classical relaxation-effect model and
showing expressions for the distributed-element parameters (e.g., LR ·
∆z = 1.341 [fH], GR ·∆z = 24.1 [mS] and LSHUNT R

·∆z = 1.126 [pH]
at 5.865 THz for gold at room temperature [5, 6]).

Table 1. Comparison of modelled parameters for gold at room
temperature, at 5.865 THz, determined from theory, direct ABCD
parameter matrix calculations and synthesized equivalent transmission
line models using commercial circuit simulation software. The errors
values are relative to those calculated using theory.

Synthesized Transmission Line 

(N = 400 sections per wavelength)

ABCD Parameter   

Matrix Calculations
Microwave Office

Parameters 
Theory 

Value Error [%] Value Error [%] 

0.4607904263 

+j1.112446496 

0.4607904255

+j1.112446495 

−1.7 × 10-7

−0.9 × 10-7
--- --- 

5.0000

+j2.0711

5.0242

+j2.0807

+0.484 

+0.464
--- --- 

5.349 

−j6.725 

5.309 

−j6.699 

−0.748

−0.387

5.308 

−j6.697 

−0.766

−0.416

−51.499 −51.602 +0.200 −51.6 +0.196

Screening Effectiveness [dB] 81.317 81.363 +0.057 81.36 +0.053

−0.9975 

+j0.0059

−0.9975 

+j0.0060

0.000 

+1.695

−0.9975 

+j0.0060 

0.000 

+1.695

Return Loss [dB] 0.02124 0.02124 0.000 0.02124 0.000 

a  = 5, ωτ = 1, Z  = η
R o

Z    [Ω]SR

γ    5δ    [5δ   ]
R

.
SR SR

-1

S      10
5.

21R

S     [  ]21R
o

S     11R

T

For example, at an arbitrary frequency of ωτ = 1, for gold at
room temperature, the propagation constant is γR(ωτ = 1) ∼= 35.532+
j14.718 [µm−1] and, therefore, the normal skin depth δSR(ωτ = 1) ∼=
28.1429 [nm]. Also, when one wavelength λR(ωτ = 1) = 2πδSR(ωτ =
1)QcR(ωτ = 1) ∼= 426.8983 [nm] is divided up into N = 400 sections
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then ∆z(ωτ = 1) ∼= 1.067245 [nm]. Thus, for aR = 5, 5δSR(ωτ =
1)/∆z(ωτ = 1) ∼= 132 sections are needed to synthesize the equivalent
transmission line model for the metal shielding wall. Theoretical
values for power isolation and reflectance are 81.32 dB and 99.504%,
respectively. These values can be compared with those extracted from
the ABCD parameter matrix calculations of 81.36 dB and 99.504%,
respectively. Therefore, from these results and those shown in Table 1,
the validity of employing the equivalent transmission line model to
predict both the transmittance and reflectance characteristics of a
room temperature THz metal shield is proven.

5. CONCLUSIONS

This paper has applied the recently introduced electrical engineering
approach to investigate room temperature THz metal shielding, using
the accurate classical relaxation-effect frequency dispersion model. It
has been found that, with the simplest case of a uniform plane wave
at normal incidence to an infinite single planar shield in air, all figure
of merit parameters for the shield can be accurately characterized.
The errors introduced by adopting the traditional and much simpler
classical skin-effect model have also been quantified. It was found
that the errors for screening effectiveness and absorptance are much
less than those found with metal-pipe rectangular waveguides and
associated cavity resonators; while those for return loss are comparable
and can exceed 100% within the THz frequency and practical
thickness ranges of interest [4, 6]. In addition, errors resulting from
adopting well-established approximations have also been investigated
and quantified.

Furthermore, an equivalent transmission line model was synthe-
sized and simulated. The results were compared with theory and
through the use of commercial circuit simulation software. It was found
that this modelling approach accurately predicts the behaviour of the
THz metal shielding structure.

In summary, it has been seen that the engineering approach allows
analytical expressions to be greatly simplified and predictive models
to be synthesized, allowing a much deeper insight to be made into the
behaviour of room temperature THz metal shielding. For example, it is
shown that figures of merit and associated errors (resulting from the use
of different classical frequency dispersion models) become essentially
thickness invariant when the physical thickness of the shield is greater
than 3 normal skin depths. Therefore, the only figure of merit to
benefit from a thicker shield is the screening effectiveness.
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