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Abstract—The Moment Method is used to estimate the error induced
by a compact measuring probe in the near-field. A crossed-dipole is
used as a compact near-field measuring probe of a waveguide radiator
in an infinite ground plane, since it measures both co-pole and cross-
pole components simultaneously. However, due to multiple reflections
between radiator and probe, in addition, mutual coupling effects
between the poles, near-field values are changed. The relative sampled
electric field pattern (without the probe) is compared to the relative
sampled co-pole voltage pattern in the scan plane and the induced error
is computed. The radiating waveguide’s reflection coefficient is altered
with respect to the reflection coefficient when there is no probe in the
near-field. The numerical results concerning the reflection coefficient
without the probe are compared to the measured values, and good
agreement is observed.

1. INTRODUCTION

If the test antenna is reciprocal, the receiving mode characteristics
(gain, radiation pattern etc.) are identical to those transmitted by
the antenna. The ideal condition for measuring far-field radiation
characteristics then, is the illumination of the test antenna by a plane
waves: uniform amplitude and phase. Although this ideal condition is
not achievable, it can be approximated by separating the test antenna
from the illumination source by a large distance on an outdoor range.
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At large radii, the curvature of the spherical phasefront produced by
the source antenna is small over the test antenna aperture. If the
separation distance is equal to the inner boundary of the far-field
region, 2D2/λ then the maximum phase error of the incident field from
an ideal plane wave is about 22.5 degrees. In addition to phasefront,
curvature due to finite separation distances, reflections from ground
and nearby objects are possible sources of degradation of the test
antenna illumination.

Experimental investigations suffer from a number of drawbacks
such as: 1) For pattern measurements, the distance to the far-field
region is too long even for outside ranges. It also becomes difficult to
keep unwanted reflections from the ground and the surrounding objects
below acceptable level. 2) In many cases, it may be impractical to move
the antenna from the operating environment to the measuring site. 3)
For some antennas, such as phased arrays, the time required to measure
the necessary characteristics may be enormous. 4) Outside measuring
systems provide an uncontrolled environment, and they do not posses
an all-weather capability. 5) Enclosed measuring systems usually
cannot accommodate large antenna systems (such as ships, aircrafts,
large spacecrafts, etc.). 6) Measurement technique, in general, are
expensive. Some of the shortcomings can be overcome by using special
techniques, such as indoor measurements, far-field pattern prediction
from near-field measurements, etc.

The radiating structure used in the analysis is the open end
of a waveguide, terminated by an infinite metallic flange. The
Method of Moments is used to solve many waveguide and wire
antenna problems [1–3]. The application of the Moment Method using
the entire domain basis function [4] converts the integral equations
representing the boundary condition at waveguide aperture into
matrix equations, from which, the coefficients of the basis functions
representing the aperture field can be evaluated.

The crossed-dipole being used as a near-field measuring probe
consists of two dipoles oriented orthogonal to each other, and the
cross-dipole is sensitive to electric field components oriented parallel
to the axis of the co-pole and cross-pole of the probe. The scattering
properties of the objects are polarization dependent. The ability of the
receive antenna to measure these scattered fields is determined by the
polarization match between the scattered fields and the polarization
of the receive antenna. A complex polarization mismatch using dipole
antennas results when the scattered field and the polarization of the
receive antenna are both linearly polarized and oriented at right angles
to each other. Using a crossed-dipole probe, both co-pole and cross-
pole near-field components can be sampled simultaneously in the scan
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plane; however, the probe itself induces error because of multiple
reflections and mutual coupling effect [5].

2. FORMULATION OF THE PROBLEM

The crossed-dipole in the near-field of an open-ended waveguide
radiator of aperture dimension 2a × 2b in an infinite ground plane
is shown in Figure 1. The waveguide feeding the rectangular aperture
is assumed to be excited in the dominant TE10 mode.

(a)

(b)

Figure 1. Crossed-dipole probe at the near-field of the waveguide
radiator. (a) Probe in x-y plane. (b) Probe in y-z plane.



30 Paramesha and Chakrabarty

The incident magnetic field at the waveguide aperture for the
dominant TE10 mode is given by:

H inc
x = −Y0 cos

(πx

2a

)
e−jβz (1)

and the electric field at the radiating aperture is described by:
−→
E (x′, y′, 0) = ûy

∑M

p=1
Epep (2)

where the entire domain basis functions ep, (p = 1, 2, . . . , M) are
defined by:

ep =





sin
{pπ

2a (x + a)
} { −a ≤ x ≤ a

−b ≤ y ≤ b
0 elsewhere

(3)

The equivalent magnetic current at the waveguide aperture for
computing the externally scattered field obtained as:

~Me = 2 ~E(x′, y′, 0)× ûz

= ûx

∑M

p=1
2Ep sin

{pπ

2a
(x + a)

}{ −a ≤ x ≤ a
−b ≤ y ≤ b

(4)

The radius of the co-pole and cross-pole of the crossed-dipole
probe are assumed to be much smaller than the length L and
wavelength λ. With good accuracy, the surface current density on
the thin conducting wire can be considered to have only an axial
component [3].

The induced current on the surface of the co-pole (parallel to y-
axis) of the near-field probe is described by:

I = ûy

∑M

p=1
Iypiyp (5)

where the Pulse basis function iyp (p = 1, 2, 3, . . . , M) are defined by

iyp =
{

1 y′p−1 ≤ y′ ≤ y′p
0 elsewhere

(6)

Iyp are the coefficients of the pulse basis function for the co-pole.
Similarly, we can describe induced current Ix (Iz) on the surface

of the cross-pole, when it is parallel to x (z) axis.
The radiated magnetic field at the plane of the waveguide aperture

is evaluated using the plane-wave spectrum approach and it is given
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by:

Hext
x = − ab

π2kη

M∑

p=1

Ep

∞∫

−∞

∞∫

−∞

k2 − k2
x(

k2 − k2
x − k2

y

)1/2
sinc(kyb)

{
j sin (kxa) p even
cos (kxa) p odd

}

pπ
2

{
1−

(
2akx
pπ

)2
} ej(kxx+kyy)dkxdky (7)

The radiated electric field at the near-field probe is also evaluated
using the plane-wave spectrum approach and described below:

Ex = 0 (since εx = 0) (8)

Ey =
1
2π

∞∫

−∞

∞∫

−∞
εye

j(kxx+kyy−kzz)dkxdky (9)

Ez = − 1
2π

∞∫

−∞

∞∫

−∞

εyky

kz
ej(kxx+kyy−kzz)dkxdky (10)

εy is the Fourier Transform of the electric field at the radiating aperture
and is given by

εy (kx, ky, k) =
1
2π

M∑

p=1

Ep

∫∫
sin

{pπ

2a

(
x′ + a

)}
e−j(kxx′+ky y′)dx′dy′

After substituting and simplifying, we obtained:

Ey =
ab

π2

M∑

p=1

Ep

∞∫

−∞

∞∫

−∞
sinc(kyb)

{
j sin(kxa) p even
cos(kxa) p odd

}

pπ
2

{
1−

(
2akx
pπ

)2
}

ej(kxx1+kyy1−kzz1)dkxdky (11)

Ez = −ab

π2

M∑

p=1

Ep

∞∫

−∞

∞∫

−∞

ky

kz
sinc(kyb)

{
j sin(kxa) p even
cos(kxa) p odd

}

pπ
2

{
1−

(
2akx
pπ

)2
}

ej(kxx1+kyy1−kzz1)dkxdky (12)

We obtained the internally scattered magnetic field by using the
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modal expansion approach; the x-component of the field is given by:

H int
x =

M∑

p=1

EpY
e
p0sin

{mπ

2a
(x + a)

}
(13)

At any observation point, the y-component of the electric field
scattered by the induced current on the co-pole is given by:

Es
y =

λ
√

µ/ ∈
16π3j

L/2∫

y′=−L/2

2π∫

φ′=0

Iyp
e−jkR1

R5
1

[
(1 + jkR1)

(
2R2

1 − 3a2
w

)
+ k2a2

wR2
1

]
dy′dφ′ (14)

where
R1 =

√
ρ2 + a2

w − 2ρaw cosφ′ + (y − y′)2 (15)

and aw is the radius of the pole, ρ is the radial distance to the
observation point.

For observation on the axis of the co-pole (ρ = 0),

R1=
√

a2
w + (y − y′)2 (16)

and

Es
y =

λ
√

µ/ ∈
8π2j

L/2∫

−L/2

Iyp
e−jkR1

R5
1

[
(1+jkR1)

(
2R2

1−3a2
w

)
+k2a2

wR2
1

]
dy′

(17)
Similarly, the field on the axis of the cross-pole (oriented along

x-axis) scattered by the induced current on that pole is given by:

Es
x =

λ
√

µ/ ∈
8π2j

L/2∫

−L/2

Ixp
e−jkR2

R5
2

[
(1+jkR2)

(
2R2

2−3a2
w

)
+k2a2

wR2
2

]
dx′

(18)
where

R2 =
√

a2
w + (x− x′)2 (19)

If the probe is in y-z plane and cross-pole axis is parallel to the
z-axis, then electric field on the axis of the cross-pole scattered by the
induced current on that pole is given by:

Es
z =

λ
√

µ/∈
8π2j

L/2∫

−L/2

Izp
e−jkR3

R5
3

[
(1+jkR3)

(
2R2

3−3a2
w

)
+k2a2

wR2
3

]
dz′

(20)
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where
R3 =

√
a2

w + (z − z′)2 (21)

The electric field on the axis of the co-pole due to current on the
cross-pole (mutual coupling effect) is obtained as:

Emx
y =

λ
√

µ/ε

16π3j

L/2∫

x′=−L/2

2π∫

φ′=0

Ixp
e−jkR4(x−x′)(y−y′)(3+3jkR4−k2R2

4)
R5

4

dx′dφ′(22)

where R4 =
√

ρ2 + a2
w − 2ρaw cosφ′ + (x− x′)2 and the field on the

cross-pole due to current on the co-pole is given by:

Emy
x =

λ
√

µ/ε

16π3j

L/2∫

y′=−L/2

2π∫

φ′=0

Iyp
e−jkR5(x−x′)(y−y′)(3+3jkR5−k2R2

5)
R5

5

dy′dφ′(23)

The expression for R5 is same as (15).
The x-component of the magnetic field at the plane of the

waveguide aperture scattered by the induced current on the co-pole
of the probe is obtained as:

Hs
x =

L/2∫

y′=−L/2

2π∫

φ′=0

Iyp
e−jkR6

8π2R3
6

(ρ− aw cosφ′) {1 + jkR6} dy′dφ′ (24)

The expression for R6 is same as (15).

3. IMPOSITION OF BOUNDARY CONDITION

The boundary conditions are imposed at the plane of the waveguide
aperture, on the axis of the co-pole and on the axis of the cross-pole.
The boundary condition at the region of the waveguide aperture is the
tangential component of the magnetic field both inside and outside the
waveguide is identical. The boundary condition on the axis of the pole
is the total tangential component of the electric field is zero.

At the region of the aperture, we consider four sources producing
the fields — (i) The source in the waveguide exciting the TE10 mode,
(ii) the magnetic current source at the aperture, (iii) the electric current
source on the surface of the co-pole, and (iv) the electric current source
on the surface of the cross-pole. Using the principle of superposition,
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the x-component of the magnetic field at the plane of the aperture is
derived. In the analysis, two cases have been considered: First case
(the co-pole axis is parallel to the y-direction and the cross-pole axis is
parallel to the x-direction); Second case (the co-pole axis is parallel
to the y-direction and the cross-pole axis is parallel to the z-direction).

First case: At the plane of the waveguide aperture (at the z = 0
plane), using superposition:

H int/1
x +H int/2

x +H int/3
x +H int/4

x = Hext/1
x +Hext/2

x +Hext/3
x +Hext/4

x

or,

2H inc
x + H int1

x = Hext1
x + Hextco1

x + Hextcr1
x (25)

Along the axis of the co-pole and cross-pole, the fields are respectively
given by

Einc1
y + Emx1

y + Escat1
y = 0 (26)

Einc1
x + Emy1

x + Escat1
x = 0 (27)

The superscript 1 indicates First case. Hextco
x is the x-component

of the magnetic field at the aperture scattered by the induced current
on the co-pole; Hextcr

x is the x-component of the magnetic field at the
aperture scattered by the induced current on the cross-pole. Einc

y is
the incident electric field at the co-pole, radiated by the waveguide,
Emx

y is the field in the co-pole due to induced current on the cross-pole
(mutual coupling effect) and Escat

y is the y-component of the scattered
field due to the induced current on the co-pole. Similarly, Einc

x is the
incident electric field at the cross-pole, Emy

x is the field in the cross-
pole due to induced current on the co-pole (mutual coupling effect) and
Escat

x is the x-component of the scattered field due to induced current
on the cross-pole.

Second case: At the plane of the waveguide aperture (at the
z = 0 plane), using superposition:

H int1
x +H int/2

x +H int/3
x +H int/4

x = Hext/1
x +Hext/2

x +Hext/3+H
ext/4
x

x

or,

2H inc
x + H int2

x = Hext2
x + Hextco2

x + Hextcr2
x (28)

Along the axis of the co-pole and cross-pole, the fields are
respectively given by

Einc2
y + Emz2

y + Escat2
y = 0 (29)

Einc2
z + Emy2

z + Escat2
z = 0 (30)

The superscript 2 indicates Second case.
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4. SOLVING FOR THE APERTURE ELECTRIC FIELD
AND PROBE CURRENTS

To determine the electric field and current distributions at the
waveguide aperture and on the probe respectively, it is necessary to
determine the basis function coefficients.

Since the field at the aperture is described by M basis functions,
M unknowns are to be determined from the boundary condition.
The weighting functions and the moment of the field are defined as
below [6]:

w1
q =





sin
{ qπ

2a (x + a)
} { −a ≤ x ≤ a

−b ≤ y ≤ b

0 elsewhere
(31)

〈
H,w1

q

〉
=

∫∫

Aperture

H · w1
qdxdy (32)

In addition, since the current on the pole of the probe is described
by M basis functions, M unknowns are to be determined from the
boundary condition. The weighting functions and the moment of the
field are defined as:

w2
q = [δ (h− hq)] = [δ (h− h1) , δ (h− h2) , . . .] (33)

where h specifies a position with respect to some reference (origin),
and hq represents a point at which the boundary condition is enforced.

〈
E,w2

q

〉
=

∫∫

surface

E · w2
qds (34)

w1
q and w2

q are the entire domain and point matching weighting
(testing) functions at the waveguide aperture and pole axis
respectively.

For the First case, using the boundary conditions given by (25),
(26) and (27), and the definition in (32) and (34), and converting into
matrix form:

2
[
Linc

]
+

[
Lint1

][
E1

p

]
=

[
Lext1

][
E1

p

]
+

[
Lextco1

][
I1
yp

]
+

[
Lextcr1

][
I1
xp

]
(35)[

Lcoinc1
] [

E1
p

]
+

[
Lymx1

] [
I1
xp

]
+

[
Lcoscat1

] [
I1
yp

]
= 0 (36)[

Lcrinc1
] [

E1
p

]
+

[
Lxmy1

] [
I1
yp

]
+

[
Lcrscat1

] [
I1
xp

]
= 0 (37)

For the Second case, using the boundary conditions given
by (28), (29) and (30), and the definition in (32) and (34), and
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converting into matrix form:
2
[
Linc

]
+

[
Lint2

][
E2

p

]
=

[
Lext2

][
E2

p

]
+

[
Lextco2

][
I2
yp

]
+

[
Lextcr2

][
I2
zp

]
(38)[

Lcoinc2
] [

E2
p

]
+

[
Lymz2

] [
I2
zp

]
+

[
Lcoscat2

] [
I2
yp

]
= 0 (39)[

Lcrinc2
] [

E2
p

]
+

[
Lzmy2

] [
I2
yp

]
+

[
Lcrscat2

] [
I2
zp

]
= 0 (40)

The moments of the incident and scattered fields are given by:[
Linc

]
= Linc

q =
〈
H inc

x , w1
q

〉

= −Y0

a∫

−a

b∫

−b

cos
(πx

2a

)
sin

{qπ

2a
(x+a)

}
dxdy

=
{ −2abY 0 q = 1

0 otherwise (41)
[
Lint1

]
= Lint1

q,p =
〈
H int1

x (ep) , w1
q

〉

= Y e
p0

a∫

−a

b∫

−b

sin
{qπ

2a
(x + a)

}
sin

{mπ

2a
(x + a)

}
dxdy

=
{

2abY e
p0 p = q = m, n = 0

0 otherwise (42)
[
Lext1

]
= Lext1

q,p =
〈
Hext1

x (ep) , w1
q

〉

=− ab

π2kη

∞∫

−∞

∞∫

−∞

k2 − k2
x(

k2−k2
x−k2

y

)1/2
sinc(kyb)

{
j sin (kxa) p even
cos (kxa) p odd

}

pπ
2

{
1−

(
2akx
pπ

)2
}

a∫

−a

b∫

−b

sin
{qπ

2a
(x + a)

}
ej(kxx+kyy)dxdydkxdky

= −4a2b2

π2kη

∞∫

−∞

∞∫

−∞

(
k2 − k2

x

)
(
k2 − k2

x − k2
y

)1/2
sinc2 (kyb)





sin2 (kxa) p, q both even
cos2 (kxa) p, q both odd
0 otherwise





pπ
2

{
1−

(
2akx
pπ

)2
}

qπ
2

{
1−

(
2akx
qπ

)2
}dkxdky (43)

To carry out the integral in the spectral domain, we make the
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following substitutions to obtain the real and imaginary parts of the
integral:

kx = k sin θ cosφ

ky = k sin θ sinφ

dkxdky = k2 sin θ cos θdθdφ

(44)

in the visible region, i.e., k2
x + k2

y ≤ k2, and

kx = k cosh θ cosφ
ky = k cosh θ sinφ
dkxdky = k2 sinh θ cosh θdθdφ

(45)

in the invisible region, where k2
x + k2

y Â k2. The final expressions for
the elements of the moment matrices are obtained as:

Lext1
q,p visible region

=−16a2b2

λ2η

π
2∫

θ=0

2π∫

φ=0

(
1−sin2θ cos2ϕ

)
sinc2 (bk sin θ sinφ)





sin2 (ak sin θ cosφ) p, q both even
cos2 (ak sin θ cosφ) p, q both odd
0 otherwise





pπ
2

{
1−

(
2ak sin θ cos φ

pπ

)2
}

qπ
2

{
1−

(
2ak sin θ cos φ

qπ

)2
} sin θdθdφ (46)

Lext1
q,p invisible region

=−j
16a2b2

λ2η

∞∫

θ=0

2π∫

φ=0

(
1−cosh2 θ cos2 φ

)
sinc2 (bk cosh θ sinφ)





sin2 (ak cosh θ cosφ) p, q both even
cos2 (ak cosh θ cosφ) p, q both odd
0 otherwise





pπ
2

{
1−

(
2ak cosh θ cos φ

pπ

)2
}

qπ
2

{
1−

(
2ak cosh θ cos φ

qπ

)2
} cosh θdθdφ(47)

[
Lextco1

]
= Lextco1

q,p =
〈
Hextco1

x (iyp) , w1
q

〉

=

L/2∫

y′=−L/2

2π∫

φ′=0

e−jkR

8π2R3
6

(
ρ−aw cosφ′

)
(1+jkR6)

{
0 q even
8ab
qπ q odd

}
dy′dφ′(48)

[
Lextcr1

]
= Lextcr1

q,p =
〈
Hextcr1

x (ixp) , w1
q

〉
= 0 (49)
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[
Lcoinc1

]
= Lcoinc1

q,p =
〈
Einc1

y (ep) , w2
q

〉

=
ab

π2

∞∫

−∞

∞∫

−∞
sinc(kyb)

{
j sin (kxa) p even
cos(kxa) p odd

}

p
2

{
1−

(
2akx
pπ

)2
} e−j(kxx1+kyy+kzz)dkxdky(50)

[
Lymx1

]
=

〈
Emx1

y (ixp) , w2
q

〉
=

λ
√

µ/ε

16π3j
L/2∫

x′=−L/2

2π∫

φ′=0

e−jkR4
(x− x′)(y − y′)(3 + 3jkR4 − k2R2

4)
R5

4

dx′dφ′ (51)

[
Lcos cat1

]
= Lcoscat1

q,p =
〈
Escat1

y (iyp) , w2
q

〉

=
λ
√

µ/ε

8π2j

L/2∫

−L/2

e−jkR1

R5
1

[
(1 + jkR1)

(
2R2

1 − 3a2
w

)
+ k2a2

wR2
1

]
dy′ (52)

[
Lcrinc1

]
= Lcrinc1

q,p =
〈
Einc1

x (ep) , w2
q

〉
= 0 (53)[

Lxmy1
]

= Lxmy1
q,p =

〈
Emy1

x (iyp) , w2
q

〉

=
λ
√

µ/ε

16π3j

L/2∫

−L/2

2π∫

φ′=0

e−jkR5
(x−x′)(y−y′)(3+3jkR5−k2R2

5)
R5

5

dy′dφ′(54)

[
Lcrscat1

]
= Lcrscat1

q,p =
〈
Escat1

x (ixp) , w2
q

〉

=
λ
√

µ/ε

8π2j

L/2∫

−L/2

e−jkR2

R5
2

[
(1 + jkR2)

(
2R2

2 − 3a2
w

)
+ k2a2

wR2
2

]
dx′ (55)

From Equations (35), (36) and (37), solving coefficients E1
p , I1

yp and
I1
xp we obtain:



[
E1

p

]
[
I1
yp

]
[
I1
xp

]


 =




[
Lext1

]− [
Lint1

] [
Lextco1

] [
Lextcr1

]
[
Lcoinc1

] [
Lcoscat1

] [
Lymx1

]
[
Lcrinc1

] [
Lxmy1

] [
Lcrscat1

]




−1 


2
[
Linc

]

[0]
[0]




(56)
If M basis functions are used to describe the electric field at
the radiating aperture then there are M unknowns, namely,
Ep (p = 1, 2, . . . , M) and to solve for these, M weighting functions
w1

q (q = 1, 2, . . . , M) are required. Similarly, if M basis functions



Progress In Electromagnetics Research B, Vol. 21, 2010 39

are used to describe the current on the surface of the pole of the
probe, namely, Ip (p = 1, 2, . . . ,M) and to solve for these, M weighting
functions w2

q (q = 1, 2, . . . ,M) are required.
Reflection coefficient Γ1 (in the First case) is given by:

Γ1 = −1 + E1
1 (57)

The pole voltage of the probe is then obtained across 50 ohms
terminating impedance [7].

Similarly, from Equations (38), (39) and (40), the coefficients E2
p ,

I2
yp and I2

zp can be obtained for the Second case:



[
E2

p

]
[
I2
yp

]
[
I2
xp

]


=




[
Lext2

]− [
Lint2

] [
Lextco2

] [
Lextcr2

]
[
Lcoinc2

] [
Lcoscat2

] [
Lymx2

]
[
Lcrinc2

] [
Lxmy2

] [
Lcrscat2

]




−1



2
[
Linc

]

[0]
[0]


 (58)

5. RESULTS AND DISCUSSION

The aperture in an infinite ground plane fed by a standard X-band
WR-90 rectangular waveguide is used as a radiator, and two dipoles,
each of length 0.47λ and radius 0.005λ, in crossed configuration are
used as a near-field probe. The lumped load of 50 Ω is connected at
the centre of each pole and the junction of the cross is at a distance
of one segment (one pulse basis function) away from the center of
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Figure 2. Relative sampled electric field (without probe) and relative
sampled co-pole voltage in x-y plane at x = 0, z = 0.15λ, and at
10GHz.
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the poles as shown in Figure 1. The junction (cross) point of the
probe is taken as the reference point in the computation. For the
determination of the coefficients of the basis functions, the program
written in MATLAB 7 was run on a 3 GHz Pentium 4, computer.
Convergence is obtained with M = 11 entire domain basis functions
(aperture field is represented) and with M = 21 pulse basis functions
(each pole current of the probe is represented).

The computation has been carried out to sample the electric
field (without probe) and co-pole voltage in the transverse (x-y) scan
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Figure 3. Relative sampled electric field (without probe) and relative
sampled co-pole voltage in x-y plane at x = 0, z = 0.25λ, and at
10GHz.
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Figure 4. Relative sampled electric field (without probe) and relative
sampled co-pole voltage in x-y plane at x = 0, z = 0.5λ, and at 10 GHz.
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plane (First case) at 10 GHz to compare the normalized (relative)
sampled electric field pattern (without probe) with the normalized
(relative) sampled co-pole voltage pattern. Since the normalized values
are taken, zero error is enforced at the center of the scan plane.
These plots are shown in Figures 2, 3 and 4 in the scan plane at
x = 0, and z = 0.15λ, 0.25λ and 0.5λ respectively. The error in the
normalized voltage pattern with respect to the normalized electric field
(without probe) pattern is estimated. The radiator absolute reflection
coefficients in the presence of the near-field measuring probe with
each pole length L = 1.41 cm and radius aw = 0.015 cm (designed
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Figure 5. (a) Experimental setup used to measure reflection
coefficient. (b) Waveguide radiator reflection coefficient (abs.) in the
presence of the crossed-dipole in x-y plane with the length of each pole
L = 1.41 cm and radius aw = 0.015 cm, over 8 to 12 GHz at x = 0,
y = 0 and z = 0.75 cm/1.5 cm/3.0 cm, and in absence of the probe.
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Figure 6. Waveguide radiator reflection coefficient phases in the
presence of the crossed-dipole in x-y plane with the length of each
pole L = 1.41 cm and radius aw = 0.015 cm, over 8 to 12GHz at x = 0,
y = 0 and z = 0.75 cm/1.5 cm/3.0 cm, and in absence of the probe.
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Figure 7. Sampled fields (without probe) in y-z the plane at 10GHz
and at x = 0, z = 0.3λ/0.5λ.

at 10 GHz) at x = 0, y = 0 and z = 0.75 cm/1.5 cm/3.0 cm, and in
the absence of the probe, over 8 to 12 GHz, are plotted. These results
are compared to the measured results and are shown in Figure 5(b).
The corresponding reflection coefficient phases are shown in Figure 6.
Experiment has been carried out to measure the reflection coefficients
of an open-ended waveguide radiator using the scalar network analyzer
HP-8757C as shown in the Figure 5(a).
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Figure 8. Sampled pole voltages in the y-z plane at 10GHz and at
x = 0, z = 0.3λ/0.5λ.
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Figure 9. Sampled electric field (without probe) and pole voltage
phases in the y-z plane at x = 0, z = 0.3λ, and at 10 GHz.

In the second case, the probe is in the longitudinal (y-z) plane
and the cross-pole is parallel to the z-axis. In this case, we cannot
compare the electric field pattern (without probe) with the induced
cross-pole voltage pattern in the z-direction, since the field in the z-
direction is zero at the center of the scan plane and it is non-zero
at other positions. Computation has been carried out to determine
the sampled fields (without the probe) and sampled pole voltages at
x = 0 and z = 0.3λ/0.5λ, and at 10 GHz, and these plots are shown
in Figures 7 and 8. Also, the sampled electric field (without probe)
and pole voltage phases at x = 0, and z = 0.3λ/0.5λ, are shown in
Figures 9 and 10.
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Figure 10. Sampled electric field (without probe) and pole voltage
phases in the y-z plane at x = 0, z = 0.5λ, and at 10 GHz.

6. CONCLUSION

The crossed-dipole, which is used as a near-field measuring probe
induces error in the near-field, because of multiple reflections between
the radiator and probe, and effects of mutual coupling between poles
of the probe. In the presence of the near-field measuring probe,
the radiator reflection coefficient is changed. When the separation
between radiator and the probe is small, the deviation of the reflection
coefficient is large with respect to the corresponding values when there
is no near-field probe. As the separation increases, the deviation
is smaller, and for larger separation, the reflection coefficient values
approach the values obtained, when there is no probe in the near-
field. The variations of the fields at the near-field are same as
the theoretically predicted; this shows the validation of the present
formulation. Since the junction of the cross of the probe is taken as
the reference and it is not at the center of poles, the maximum co-pole
voltage is slightly deviated from the center of the scan plane. Similarly
the minimum cross-pole voltage is slightly deviated from the center of
the scan plane
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