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Abstract—The novel characteristics of wave transmission and
reflection in one-dimensional semi-infinite chiral photonics have been
investigated theoretically. Waves in each region have been formulated
for both normal and oblique incidences. At a given incident angle,
the transmission or reflection is found to be easily adjusted to be
equal to 1 for the chiral photonics using chiral nihility media. The
wave tunneling and rejection properties in chiral nihility photonics,
as well as their parametric dependences on periodicity, chiral nihility
and incident angles, have been explicitly presented theoretically and
verified numerically.

1. INTRODUCTION

The rotation of the ellipse of light after passing through an isotropic
chiral medium has been known [1]. In addition to those pioneering
work [2-4], more recently, there is rapid development on the study of
EM wave propagation in structured chiral media, e.g., chiral plate [5],
Goos-Hénchen shift on chiral-dielectric interface [6], chiral slab [7],
nonspherical chiral object [8], infinite chiral and gyrotropic chiral
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media and their Green’s functions [9, 10|, chiral duality [11] etc. A
chiral medium is an object that cannot be brought into congruence
with its mirror image by translation or rotation. The mirror image
of a left-handed chiral object has right-handedness and vice versa.
Many natural materials belong to the category of chiral media, such
as diverse array of sugar, wire helix, and irregular tetrahedron. On
the other hand, artificial structures have been proposed to mimic the
optical activity and chirality by using arrays of achiral spheres [12] and
metamaterials made of cutted metal strips/rings [13, 14].

Metamaterials that refract the wave negatively [15] have been
demonstrated from microwave to optical regimes. For a chiral medium
to be negatively refractive [16], the chirality parameter has to be
sufficiently large compared with the product of the relative permittivity
and permeability. In nature, large chirality parameters are not known
to exist, and for artificial structures in microwave frequencies large
chirality parameters have not been reported either [17]. Nevertheless,
there are three possible ways to provide negative refraction from chiral
media with fewer restrictions on the chirality.

The first approach is to achieve chiral nihility whose product
of relative permittivity and permeability is close to zero while the
chirality is still maintained at a finite value [18,19]. The exotic
phenomena inside a chiral nihility slab or at such an interface have been
examined [19]. There have been a lot of revived interests of making
use of chiral nihility to realize negative-index-related applications, such
as surface wave modes in grounded chiral nihility waveguides [20, 21],
fractional dual solution for chiral nihility metamaterials [22,23],
focusing [19,24], chiral fibers [25], etc. The second solution is
to make use of gyrotropic chiral media (all positive parameters)
whose permittivity and permeability are tensors and have off-diagonal
elements to alleviate the said restriction [26]. The third is to rely on
gyrotropic-{2 materials (all positive parameters) where the chirality has
off-diagonal elements [27]. The latter two ways can provide negative
index without requiring permittivity and permeability being extremely
small and chirality being large owing to the gyrotropic parameters.

We will focus on the isotropic chirality with the emphasis on the
chiral nihility in chiral photonics. This configuration is finite and
thus such systems do not have translation symmetry. For infinitely
periodic chiral multilayers, plane wave theory and coupled-mode theory
have been presented [28,29] in which a 4 x 4 transfer matrix that
includes all information about the stratified chiral medium is used.
In contrast, our paper deals with a chiral photonic crystal with
finite stacked mediums composed of alternating chiral nihility layers,
and its solution is based on the 2 x 2 block representation transfer
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matrix formulation [30, 31] which is generalized from the 2 x 2 matrix
approach [32]. Numerical results, parametric study, and discussion in
the reflection and transmission spectra for two polarizations with the
dependence on incident angles, chirality parameter, periodicity, and
stack number are given in details.

2. PROBLEM FORMULATION

A periodic in the z-axis direction, structure of N identical basic
elements (periods) is investigated (Fig. 1). Each of periods consists
of two chiral layers with material parameters 5, u;, p; and thicknesses
d; (j =1,2). The total length of the structure period is L = di + da.
The layers are unrestricted in the z- and y-directions. The input z < 0
and output z > N L half-spaces are assumed to be free space with the
parameters of g9 and ug.

Suppose that the incident field is a plane monochromatic wave of
frequency w with perpendicular (electric-field vector Eis perpendicular

to the plane of incidence) or parallel (electric-field vector E is parallel
to the plane of incidence) polarization (s and p polarized waves). The
direction of the wave propagation in the input isotropic medium z < 0
is defined by the angle ¢( from the z-axis (through the paper a time
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Figure 1. Chiral photonics with N stacks of alternating chiral
slabs. Here ¢ and d are the vectors of the incident and reflected
field components, A% and A’ are the amplitudes of the eigenwaves
propagating in positive and negative direction, respectively, and j =
0,1,...1is the number of structure period.
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conversion exp(—iwt) is assumed and omitted)
;20 /\/7
+
{ Ezo } { zAp/\/W }exp kyoy + k-02)),
> expli(kyoy + kz02)],
{ Hyy A7 \/}7 ky

where kyo = kosingg and k.o = kgcosyg are the wavevector k
components in the local coordinate system, Yy = Z; Lcos g and

YY = (Zp cos @0)_1 are the wave admittances of the s and p polarized
waves, respectively, kg = w/c is the free-space wavenumber and

Zy = +/1o/€o is the wave impedance of the input half-space.

(1)

3. TRANSFER MATRICES

The characteristics of the reflected and transmitted fields of the
structure under study can be determined on the basis of the generalized
scattering matrix method [31]. The essence of this method consists in
obtaining the reflection matrix of a semi-infinite periodic sequence of
chiral layers which can be derived using specific shift symmetry of
such structure. The notion of symmetry implies that the reflection
properties of a semi-infinite structure will be unchanged if one or any
finite number of layers next to the interface are removed. On the
basis of the obtained reflection matrix of the semi-infinite structure
the reflection and transmission fields as well as the inner field of a
finite chiral structure can be easy derived.

It is well known that during the interaction of a linearly polarized
plane wave with a periodic structure containing chiral layers the cross-
polarized components appears in the reflected field. It is conveniently
to describe the relation of the reflected and inner fields of a semi-
infinite structure via some reflection and transmission matrices. The
elements of these matrices are the amplitudes of the co-polarized and
cross-polarized waves.

Let us first describe the method of solution related to a structure
that consists of chiral layers separated by air gaps. Further it will be
generalized on the case of an arbitrary periodical sequence of chiral
layers.

Let r and t be the reflection and transmission matrices of a single
chiral layer, and R is the reflection matrix of a semi-infinite discrete
structure. The changes of the vector of complex amplitudes of the
waves when they propagate through the air gap between chiral layers
are described via the propagation matrix u. Thus the relations of the
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field amplitudes in the input half-space and in the nearest region to
the structure interface air gap are defined via the next conditions

gg:t§+rug9; &:Rugg; a=Rg, c_i:r(j’—ktuffg. (2)

After the elimination of the vectors [ﬂ, /T(l, a from Eq. (2), the

nonlinear equation for the unknown reflection operator R of the semi-
infinite structure is obtained [31]

R =7+ tR(I - fR)t, (3)
where R = Ru, ¥ = ru, t = tu, I is the identity matrix, and, in the

presence of the wave polarization transformation, the matrices R, r,
t, and u are

R55 RPS S8 pps 155 ¢ps e 0

R= (RSP RPP)’ r= <7-8p rpp>a t= <tsz> tpp>7 u= <00 60>’ (4)
where ey = exp(—ik,od2). In terms of the linearly polarized waves
the matrix elements in Eq. (4) are the co-polarized (vv) and cross-
polarized (vv') reflection and transmission coefficients (v = s, p) where,
as it was mentioned above, the term s is related to the perpendicular
polarization and the term p is related to the parallel polarization of
plane electromagnetic waves. Eq. (3) containing the operator R can
thus be rearranged

f(R)=0, f(R)=R-7%-tR(I-iR)"'t. (5)

The Newton method can be applied and series approximations to the
solution are made accordingly

Ry =Ry - [F(R)] SR G=1200 (O

where f'(R) is the derivative with respect to the argument of the
matrix function, and Ry is some initial approximation (e.g., Ry = r).
Note that if the structure consists of achiral isotropic layers Eq. (5)
is a quadratic equation related to the complex reflection coefficient
and its solution is trivial. In such a form, Eq. (5) is repeatedly
used to analyze the reflection from semi-infinite achiral structures with
different compositions [31].
Now, the transfer matrix T can be obtained:

AY =Tg T=(1-FR)'t. (7)

Provided that the vectors of amplitudes of eigenwaves propagating
in a positive direction are denoted as A% (j is the number of structure
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period), the input and output vectors of the eigenwave amplitudes on
the period boundaries are related

AP =T A (8)

On the other hand, in a periodic structure the fields in the neighboring
periods differ only in a certain phase factor (the Floquet theorem)

AT = exp(iBL) A, (9)

where the k-th eigenvalue exp(if;L) of the transfer matrix T (Bloch
wavenumber) can be obtained from the next dispersion equation

det [I — texp(—iBL) — F[I— Eexp(iﬁL)]_lf] =0. (10)

Let now all half-space z < 0 be filled with a periodic structure of
chiral layers possessing the same parameters as above. Consider the
propagation of an eigenfield in an infinite layered structure which is
incident from the half-space z < 0 through the free-space boundary
in the plane z = 0. Let A, and By be the vectors of the eigenfield
amplitudes at this interval. Then the reflection ¢ and transmission 7
operators can be defined as follows

EITA‘_F, é_ :C/T+ (11)
The vectors of the eigenfield amplitudes satisfy the next conditions
E(A‘_i_—i-g_i_):g, A‘_—FB'_:F(X_A'_—FB»_F), A’_:RA‘_F, §+ :Ré_ (12)

From these equations the expressions for the reflection and
transmission operators related to the eigenfield amplitudes are
obtained as

¢=I-fR)"}F—R), 7=tI+RC). (13)

With the help of the operators introduced above it is easy to obtain
the transmission and reflection matrices of a finite structure with N
periods
~ N—2 ~N-2, ~N-2\"1
ty = 7T (I—CT ¢T ) T,
(14)

- N_ - N_ - N_ - N_ —1
ry=R4+7rT" 2¢T" ? (I—CTN et 2) T.

To determine the reflection (r) and transmission (t) matrices of
a single chiral layer the field in a homogeneous chiral media must
be considered. Generally this field is characterized by the next
displacement [1]

D=¢E +ipH, B=uH—ipE, (15)
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that leads to the next coupled differential equations
A E,+ k:g (n2 + p2) E, — Qik:gp,uHx =0,
AL Hy + kg (n® + p%) Hy + 2ik§peE, = 0,

where n = /ep is the refractive index of a chiral medium, and
A) = 0%/0y? + 0%/02? is the two-dimensional Laplacian.

The waves of the perpendicular and parallel linear polarizations
can be presented as the superposition of two eigenwaves of a right
(@) and a left (Q¥~) circular polarizations [1]:

Bi=QF+Q7, Hi=—iz7 Q7 -Q7),
BL=iZ (QUF = QF), HI=Q'F+Q",

where Z = /p/e is the wave impedance of a chiral medium. Such
substitution transforms Eq. (16) into two independent Helmholtz
equations:

ALQU+ (V)@ =0, ALQU+(7)PQU=0.  (18)

Here v = s,p; & = ko\/etpu® = kon™ = ko(n=+p) are the propagation
constants of the right (y*) (RCP) and left (y~) (LCP) circularly
polarized eigenwaves, respectively, in the unbounded chiral media with
the equivalent material parameters e* = ¢ £ pZ~! and p* = p =+ pZ.
The relative impedance Z and index n are respectively defined as /1 /e
and ,/u€. The general solutions of Eq. (18) for the RCP and LCP waves
in a corresponding bounded chiral layer can be expressed by [30]

Q= (1 /2VYF (A Fexpli(kyoy-+752) [+ B expli(kyoy —732)])
QUE=(VYPE /2) (AP expli(kyoy+E2) | +B expli(kyoy —1E2)])

where AY*, B'* denote the field amplitudes, Y+ = Z~1!cosp*,
YP* = (Zcos gpi)_l are the wave admittances, v& = ~Tcosp™,
and ¢t = sin~![ngsingg/n*] are the refracted angles of the two
eigenwaves in a chiral medium. The substitution of Eq. (19) into
Eq. (17) gives the field components of s and p polarizations.
Next, we consider a chiral-nihility medium (e = u = 0, p # 0) [22].
The expressions related to e* and p* are rearranged
et =+4pZ7t, pt=+pZ (20)
It is obvious that here a situation when both material parameters e+
and put or e and p~ are negative is possible depending on the sign
of the chirality parameter p. The backward-wave appears for the LCP
wave when the chirality parameter p is a positive value and for the

(16)

(17)
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RCP wave when p is negative. Since the propagation constants of the
RCP (y*) and LCP (™) waves in a chiral-nihility medium are equal
in magnitude but opposite in sign to each other (& = +kop = +7),
the solutions of Eq. (19) can be simplified

QSiZ(1/2\/17S>(ASieXp[i(k‘yoyi%Z)]JrBSieXp[i(kyoyﬂmz)]) ,
QUE=(VY7 /2) (A expli(hyoy=7: ) B expli (kyoy F7:2)])

where Yt = Y~ = Y* YP+ = YP~ = YP ~, = ycos|p™|, and the
refraction angles are ¢ = —p~ = sin™! [ngsin o/ p].

After the substitution of Eq. (21) into Eq. (17) and its further
combination with Eq. (3) on the chiral-nihility layer boundaries, the
reflection and transmission coefficients of the co-polarized (co) and
cross-polarized (cr) field components can be expressed by

(21)

7 = PP =55 =G sin? (v.d) (0082g00—0082(p) (0082g00+0082cp) ,
P = pP$ = pP —iG"sin 2 (7.d)

COSPCOSY (cos2g00—0052cp) (cos2g00 +c052<p) , (22)
0 = tPP = 55 = 4G~ cos (v.d) cos’ppcosyp,
7 = tP¥ = t°P = —i2G L sin (,d) cospgcosy (0052g00 + COSQQD) ,
where G1 = 4 cos? (v.d) cos?pgcos’ + sin? (v.d) (cos?po + c082<p)2,
¢ = |¢*| and d = d; is the thickness of the chiral-nihility layer.

4. REFLECTED AND TRANSMITTED FIELDS

4.1. Single Chiral-nihility Layer

Since the chiral-nihility condition is fulfilled only in the vicinity of a
fixed frequency wy, the behaviors of the magnitudes of the reflection
and transmission coefficients are investigated as functions of the angle
of incidence, the chirality parameter and the refractive index. First, we
consider optical properties of a single chiral-nihility layer. The angular
dependence of the magnitudes of the reflected and transmitted fields
of a chiralnihility layer (¢ = u =0, p # 0) and a convenient chiral layer
(e>1,u>1, p#0) are given in the Fig. 2 for comparison. Note that
in the second case the results are obtained using [7, 31]. In all numerical
calculation a matching of Z is kept. In this case the magnitudes of the
reflection and transmission coefficients of s- and p-polarized waves are
equal to each other (Fig. 2).

The main difference is that an additional angle of co-polarized
zero-transmission appears in the case of the chiral-nihility layers
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Figure 2. The magnitudes of the co-polarized and cross-polarized
reflection (a) and transmission (b) coefficients of the matched (Z; = 1)
chiral-nihility layer (¢ = p = 0, p # 0) and convenient chiral layer
(e > 1, uw>1, p # 0) versus the angle of incidence, g9 = pp = 1,
p=0.5,d=5mm, f=10GHz.

(|ree] = |t"| = 0, |r°"| # 0, [t°| # 0) in contrast to a conventional
chiral slab. From Eq. (22) this condition appears when cosyy =
(cosp)* (the asterisk denotes the complex conjugation), and that
is possible when ngsingog/p > 1. The other two conditions of
the total reflection or transmission can be obtained from Eq. (22).
The first condition is satisfied when ¢y = 0 (the normally incident
wave) leading to (COS2(p0 —coszgo) = 0. As a result, due to the
impedance matching, no co-polarized and cross-polarized reflections
appear (|r®| = |r"| = 0) and a wave is completely transmitted through
a layer with polarization transformation ([t°°| # 0, [t“"| # 0). The
polarization rotation is @ = kgpd. The second condition is that, when
@0 = m/2 (the sliding wave) that yields cos?ipy = 0, the total reflection
appears for co-polarized waves (|r°| = 1, [r®| = [t®°| = [t*"| = 0).

4.2. Chiral Nihility Photonics with Finite Stacks

In the first case, the structure consists of a finite sequence of chiral
layers separated by air gaps (Figs. 3 and 4).

Due to the unique behaviors of chiral nihility medium, the
reflection coefficients of a single layer (|r|, |r“"|) and their semi-
infinite stack (|R|, |R"|) have similar characteristics (Fig. 3(a)). This
is due to the nature of propagation of the two circularly polarized waves
in the chiral-nihility layers and in the air gaps between them with
different angles of refraction (o™ = —¢™) [19]. Based on Eq. (14), the
reflection (|r§?|, |r%/|) and transmission (|t57], |[t5;]) coefficients of a
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finite multilayer structure can be obtained (Figs. 3 and 4). Finiteness
of the structure leads to the interference effect that manifests itself in
the form of oscillations of the magnitude and phase of the reflection
and transmission coefficients as shown in Fig. 3. Similar to the case
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Figure 3. The magnitudes of the reflection (a) and transmission (b)
coeflicients of the finite and semi-infinite sequence of the matched chiral
nihility layers (Z; = 1) separated with the air gap (g9 = pp = €2 =
w2 =1, po = 0.0) for different values of N versus the angle of incidence.
g1 =p1 =1x107°, p; =0.5,d; = dy = 5mm, f = 10 GHz.

Figure 4. The magnitudes of the reflection coefficients of co-polarized
(a) and cross-polarized (b) field components of the finite sequence
of the matched chiral nihility layers (Z; = 1) separated with the
air gap (g9 = po = €2 = p2 = 1, po = 0.0) as a function of the
chirality parameter p; and the refractive index ny - ¢g = 40°, N = 3,
d1 = d2 = 5mm, f = 10 GHz.
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of the single chiral nihility layer, there is no reflection at the normal
angle of incidence, but the level of the polarization transformation
changes in the transmitted field and depends on the value of N. As
an example, the co-polarized and cross-polarized components of the

transmitted field are equal to each other (|t§?| = [t{f|) when N = 2.
The cross-polarized (|t%7| < |[t§]) and co-polarized (|t§| > [t§])
components dominate in the transmitted fields when N = 7 and

N =11, respectively.

To calculate the reflection and transmission coefficients of the
structure whose period consists of two chiral-nihility layers, it is
necessary to make changes in the propagation matrix u. If the
propagation constant 7., = 72 cos|pi| of the second chiral-nihility
layer is known, then the elements of the matrix u can be defined as
eo = exp(—iv,oda).

It is obvious that for the proposed chiral photonics, the properties
of the reflected and transmitted fields are determined by the relation
between the chirality parameters p; (j = 1,2) of the adjacent layers.
From Fig. 5, the conditions of complete wave tunneling and (or)
rejection of the co-polarized and cross-polarized waves can be easily
derived. Note that the maximal tunneling arises at p; = —po, and the
maximum of the cross-polarized reflection occurs when the chirality
parameters p; have the same sign.

Figure 5. The magnitudes of the reflection coefficients of co-polarized
(a) and cross-polarized (b) field components of the finite sequence
of the matched chiral nihility layers (Z; = Zy = 1) as a function
of the chirality parameter p; - ¢9 = 40°, N = 10, ¢g = po = 1,
gj=p;=1x107% j=1,2,dj = 5mm, f =10GHz.
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5. CONCLUSION

In this paper, we have proposed a rigorous analytical approach to
model the wave tunneling and rejection conditions for chiral nihility
photonics. A semi-infinite periodical chiral structure consisting of
alternative chiral nihility mediums has been considered, and the
exotic wave properties have been studied and presented. It has
been revealed that it is easier to realize an ideal photonic bandgap
through adjusting the chirality in semi-finite chiral nihility photonics.
The explicit interconnections between the exotic characteristics (in
transmission/reflection) and the parameters (stack number, incident
angle, polarization dependence, chirality in adjacent two chiral nihility
stacks, etc) and the mutual effects between those parameters have been
obtained and summarized. Such promising photonics can be applied
to the design of chiral-nihility waveguides, fibers and polarization
selectors.
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