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Abstract—This paper presents a closed-form analysis of composite
right/left handed transmission lines. The ladder network structure
of the transmission line allows to obtain a rational form of any two-
port network representation. As a consequence of the rational form
of the transfer functions, poles and residues are easily computed
and the dominant ones selected leading to an efficient time-domain
macromodel. The numerical results confirm the robustness and the
accuracy of the proposed method in capturing the physics of composite
right/left handed transmission lines.

1. INTRODUCTION

The idea of materials with both negative real permittivity ε and
permeability µ was initially theoretically introduced by Veselago
in 1968 [1, 2]. These materials are referred to as double-negative
or left-handed materials. Such a topic has recently received a
renewed interest as a consequence that experimental evidence of
left-handed (LH) materials properties has been given by Smith
et al. [3, 4] who demonstrated an LH structure made of negative-ε
thin-wires and negative-µ split-ring resonators exhibiting anomalous
refraction at the boundary. Since then many different applications
of metamaterials have been developed [5–7]. Among the others,
artificial transmission lines have been presented which can mimic the
propagation characteristics of TEM-based transmission systems filled
with homogeneous, linear and isotropic negative refraction index bulk
media.

Initially, a transmission line approach of left-handed (LH)
materials has been presented [8] where an equivalent circuit for a
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left-handed transmission line (LH-TL) is proposed. Such equivalent
circuit has been then extended to composite right/left handed (CRLH)
metamaterials [9]. A more complex unit cell of the equivalent line
circuit of a metamaterial constituted by a split-ring resonator/wire
medium is presented [10]. Two-dimensional (2-D) composite right/left
handed transmission lines (CRLH-TLs) have been presented [11, 12].

More recently, new metamaterial transmission lines have been
proposed which exhibit a more complex frequency behavior [13–17].

In all these works, the properties of CRLH-TLs are derived from
the corresponding ideal homogeneous transmission line or using the
image-parameter filter theory according to which, the properties of
the periodic structure can be obtained from the properties of its unit-
cell [18, 19]. In the latest years, there has also been an increasing
interest for characterizing CRLH-TLs in time-domain [20, 21]. In
particular, In [20], the method of moments is used to integrate the
Telegrapher’s equations. In [21], the impulse-regime propagation
along CRLH-TLs is examined using the inverse Fourier transform of
frequency-domain results obtained by means of a matched transmission
line model.

This work presents a systematic modeling of CRLH-TLs which
is based on the analytical characterization of the half-T ladder
network (HTLN) constituting the CRLH-TL. Due to the discrete
nature of the structure, in the following, we will refer to composite
right/left handed ladder networks (CRLH-LNs) to distinguish them
from the homogeneous composite right/left handed transmission lines
(CRLH-TLs). The proposed approach provides a rational form of
two-port parameters of the CRLH-TL, leading to machine-accuracy
computation of its poles; furthermore, the knowledge of the CRLH-LN
poles allows to generate a rigorous macromodel which can be used in
both time and frequency-domain, in conjunction with linear and non-
linear terminations. It is worth noticing that the proposed method
can be used for any topology of the unit-cell, which can be eventually
dispersive, since no assumption is done on it, besides assuming that
it is modeled in terms of lumped elements. It is also to be observed
that the resulting time-domain macromodel can be used to investigate
novel complex dispersive transient phenomena [21].

Comparisons are made with results obtained by using the inverse
Fourier transform of frequency-domain-based results, according to the
guidelines of IEEE Standard P1597 [22] and in particular by means of
the feature selective validation (FSV) technique [23, 24].

The paper is organized as follows. The rational two port
representation of the CRLH-LN is presented in Section 2. The
dispersion relation of CRLH-LNs is obtained and the limitations
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in using the homogeneous transmission line model are pointed out
in Section 3. The time-domain model is presented in Section 4:
the derivation of the poles/residues model is described in Section
4.1 and the synthesis of the time-domain macromodel are described
in Section 4.2. Numerical results for CRLH-LNs are presented in
Section 5, validating the proposed technique. Finally, the conclusions
are drawn in Section 6.

2. POLYNOMIAL MODEL OF CRLH-LNS

Composite right/left handed transmission lines can be modeled as the
cascade of n elementary identical cells, as shown in Figure 1, along
with input and output port voltages and currents.

Let us assume to know the ABCD matrix of the elementary
cell Ck, k = 1, . . . , n from measurement or simulations. A possible
equivalent circuit synthesizing the elementary cell is shown in Figure 2
where the π circuit is used; alternative models such as the T circuit are
obviously acceptable as well. The elementary cell is characterized by
series impedance Zl(s) and shunt admittances Yt1(s) and Yt2(s) which
can be directly obtained from the ABCD matrix or the S-parameters
of the elementary cell [25].

A half-T ladder network (HTLN) can be identified within the 1-D
periodic structure generated by cascading n elementary cells, as shown
in Figure 3 for n = 3.
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Figure 1. Composite right/left handed transmission transmission line.
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Figure 2. Elementary cell of the periodic structure.



356 Antonini

Z
l
(s)

Y
t1
(s) Y

t2
(s)

Z
l
(s)

Y
t2
(s)Y

t1
(s)

Z
l
(s)

Y
t2
(s)Y

t1
(s)

C
1

C
2

Figure 3. Half-T ladder network within the CRLH periodic structure.
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Figure 4. Equivalent model of the CRLH periodic structure.

The knowledge of the the impedance Zl (s) and admittances Yt1 (s)
and Yt2 (s), which may represent both lumped or distributed elements,
allows the series impedance Z1(s) and shunt admittance Y2(s) of the
half-T ladder network to be written in the Laplace domain as

Z1 (s) = Zl (s) (1a)
Y2 (s) = Yt1 (s) + Yt2 (s) (1b)

The residual admittances and impedances on the left and right
ends of the circuit (see Figure 3) can be incorporated as simple two-
port networks [26]. Hence, the overall structure can be regarded as the
cascade of three sub-systems, the left-end shunt admittance Yt1 (s),
the HTLN structure, the right-end two port network comprising Zl (s)
and Yt2 (s), as shown in Figure 4. The ABCD-parameters of the left
and right-end circuits can be easily obtained from Zl (s) , Yt1 (s) and
Yt2 (s) [26].

Once the time-domain macromodel of the HTLN is obtained,
left- and right-end circuits can be easily taken into account by using
modified nodal analysis (MNA) stamps [27, 28]. For this reason, in
the following, we will refer to CRLH-LNs. In the more general case
of arbitrary complex unit cells, a rational model can be associated to
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Z1(s) and Y2(s) which reads:

Z1(s) =
NZ1(s)
DZ1(s)

(2a)

Y2(s) =
NY2(s)
DY2(s)

(2b)

In the following, for the sake of simplicity, the topology
shown in Figure 5 is adopted for the unit cell of the CRLH-LN,
which is characterized by both series and shunt inductances and
capacitances [9]. In addition, series resistances and shunt conductances
are added to take the ever existing losses into account. The equivalent
circuit shown in Figure 5 represents a possible model of the unit cell
although several more general topologies can be considered [8, 18].
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Figure 5. Elementary half-T cell for a composite right/left handed
ladder network (CRLH-LN).

To the aim of developing the closed-form macromodel of a CRLH-
LN, it is useful to define the unit cell impedance and admittance in
the Laplace domain:

Z1 (s) = R + sLR +
1

sCL
=

s2LRCL + sRCL + 1
sCL

(3a)

Y2 (s) = G + sCR +
1

sLL
=

s2LLCR + sGLL + 1
sLL

(3b)

which are rational functions.
In Ref. [29], it has been shown that a half-T ladder network can be

analytically characterized in terms of closed-form polynomials which
can be related to Chebyschev polynomials [30]. In the following it will
be briefly summarized the polynomial based approach. To this aim,
let us define the half-T cell factor K(s) as:

K (s) = Z1 (s) Y2 (s) (4)

In Ref. [29], it was shown that all the electrical characteristics of a
HTLN can be expressed in terms of two polynomials (namely DFF
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and DFFz) depending on the cell matrix factor K (s):

Pn
b (K(s)) =

n∑

j=0

bj,nKj(s) DFF polynomial of order n (5)

Pn
c (K(s)) =

n∑

j=0

cj,nKj+1(s) DFFz polynomial of order n (6)

where Kj(s) is the j-th power of K(s) and coefficients bj,n and cj,n can
be computed analytically as in Ref. [29], reported here for the sake of
clarity:

bi,j =
(

i + j
j − i

)
(7a)

ci,j =
(

i + j + 1
j − i

)
(7b)

Polynomial coefficients b and c can be cast in triangles known as DFF
and DFFz triangles [29], shown in Table 2. It is worth pointing out
that the polynomial coefficients reduce to Fibonacci’s numbers when
Z1(s) = Y2(s)−1 so that K(s) = 1 [29].

Table 1. DFF triangle.

ij 0 1 2 3 4
0 1
1 1 1
2 1 3 1
3 1 6 5 1
4 1 10 15 7 1
. . . . . . . . . . . .

Table 2. DFFz triangle.

ij 0 1 2 3 4
0 1
1 1 1
2 1 3 1
3 1 6 5 1
4 1 10 15 7 1
. . . . . . . . . . . .
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Two port A, B, C and D parameters can be expressed in terms
of DFF and DFFz polynomials as:

A (s) =
n∑

j=0

bj,nKj(s) = Pn
b (K(s)) (8a)

B (s) =




n∑

j=0

cj,nKj+1(s)


 · Y −1

2 (s) = Pn
c (K(s)) · Y −1

2 (s) (8b)

C (s) = Z−1
1 (s) ·




n∑

j=0

cj,nKj+1(s)




= Z−1
1 (s) · Pn

c (K(s)) (8c)

D (s) =
n−1∑

j=0

bj,n−1K
j(s) = Pn−1

b (K(s)) (8d)

The knowledge of the ABCD parameters in a polynomial form allows
to obtain any other two port matrix representation in a rational form.
It is to be remarked that the proposed polynomial formulation provides
an exact characterization of the half-T ladder network and is totally
independent on the topology of impedance Zl(s) and admittances
Yt1(s), Yt2(s) which can be represented by any lumped or distributed
linear network. It is also worth noticing that the ABCD-parameters
of the half-T ladder network are computed in a polynomial form, thus
completely avoiding any matrix product.

The Y parameters can be evaluated as:

Y11(s) = DB−1 = Pn−1
b (K(s)) · (Pn

c (K(s)) · Y −1
2 (s)

)−1 (9a)

Y12(s) = −B−1 = − (
Pn

c (K(s)) · Y −1
2 (s)

)−1 (9b)

Y21(s) = −B−1 = − (
Pn

c (K(s)) · Y −1
2 (s)

)−1 (9c)

Y22(s) = AB−1 = Pn
b (K(s)) · (Pn

c (K(s)) · Y −1
2 (s)

)−1 (9d)
It is to be observed that Y22(s) is an improper function and it can be
expressed in terms of Y11(s) as:

Y22(s) = Y11(s) + Y2(s) (10)
Polynomials Pn−1

b (K(s)) and Pn
c (K(s)) can be factored into zero-

pole pairs. Their factorization is accomplished by using the poles given
by the expressions presented in Ref. [30]:

Pn−1
b (K(s)) =

n−1∏

j=1

(K(s)− uj,n−1) (11a)
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Pn
c (K(s)) =

n−1∏

j=1

(K(s)− vj,n−1) ·K (11b)

The previous expressions (9a) and (9c), taking into account that
K(s) · Y −1

2 (s) = Z1 (s), can be factored in the following way:

Y11(s) =
n−1∏

j=1

(K (s)− uj,n−1) ·Ψ(s)−1 (12a)

Y21(s) = Y12(s) = −Ψ(s)−1 (12b)

Y22(s) =
n∏

j=1

(K (s)− uj,n) ·Ψ(s)−1 (12c)

where

Ψ(s) =




n−1∏

j=1

(K (s)− vj,n−1) · Z1 (s)


 (13)

Roots uj,n−1 and vj,n−1 are given by the following expressions [31]:

uj,n = −4 sin2

[
(2j − 1)
(2n + 1)

π

2

]
(14a)

vj,n = −4 sin2

[
j

(n + 1)
π

2

]
(14b)

Similar rational expressions can be obtained for the Z parameters,
the hybrid H/G parameters, the S parameters. For instance, the Z
parameters read:

Z11(s) = AC−1 = Pn−1
b (K(s)) · (Pn

c (K(s)) · Z−1
1 (s)

)−1 (15a)

Z12(s) = −C−1 = − (
Pn

c (K(s)) · Z−1
1 (s)

)−1 (15b)

Z21(s) = −C−1 = − (
Pn

c (K(s)) · Z−1
1 (s)

)−1 (15c)

Z22(s) = DC−1 = Pn
b (K(s)) · (Pn

c (K(s)) · Z−1
1 (s)

)−1 (15d)
Once the port voltage is obtained, the voltage at the generic node β
in the Laplace-domain can be expressed as [29]:

Vβ (s) =
Pn−β

b (K (s))
Pn

b (K (s))
V0 (s) (16)

The general expression of the series branch current Iβ1(s) is:

Iβ1 (s) =
1

Z1(s)
Pn−β+1

c (K(s))
Pn

b (K(s))
V0 (s) (17)
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Similarly, the shunt branch current Iβ2(s) can be expressed as:

Iβ2 (s) =
1

Z2(s)
Pn−β

b (K(s))
Pn

b (K(s))
V0 (s) (18)

It is to be noticed that the proposed technique allows to compute
each matrix entry of any two-port representation of the CRLH-LN
separately from the others. For the ABCD two-port representation,
this avoids the cumbersome matrix product, providing directly the
final matrix, thus providing a significant cpu-time saving when the
parameters are computed over a wide frequency range. It is also
worth to be observed that the frequency dependence of the unit cell
parameters is completely described by the cell factor K(s) and that
the roots uj,n−1 and vj,n−1 of Pn−1

b (K(s)) and Pn
c (K(s)) polynomials

are frequency independent [29].

3. DISPERSION RELATION OF CRLH-LNS

To determine the dispersion relation of a CRLH-LN the Bloch-Floquet
theorem is applied. To this aim, periodic boundary conditions are
enforced to the unit cell represented by its ABCD matrix, leading to
an eigenvalue problem which reads:[

A B
C D

]
·
[

Vin

Iin

]
= ψ

[
Vin

Iin

]
(19)

where the eigenvalues are ψn = e−γn`. The ABCD parameters of a
half-T unit cell are:

A = 1 + Z1Y2 (20a)
B = Z1 (20b)
C = Y2 (20c)
D = 1 (20d)

The computation of the eigenvalues ψn allows to identify the
propagation, attenuation and phase constants obtained as:

γn = −1
`

log ψn (21a)

αn = Re(γn) (21b)
βn = Im(γn) (21c)

For a half-T unit cell, the propagation constant is

γ = −1
`

log


1 +

Z1Y2

2
±

√(
1 +

Z1Y2

2

)2

− 1


 (22)
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where ` is the length of the unit cell.
If the electrical length of the unit cell is small, some approximation

can be assumed (see [9]) and the propagation constant reduces to
that of a homogeneous transmission line [6]. Nevertheless, such
condition fails to be applied at low frequencies where the impact of
CL and LL is more significant. This fact causes the phase constant to
significantly differ at low frequencies from that of the homogeneous
transmission line. Furthermore, the same phenomenon appears at
higher frequencies, at the edge of the Brillouin zone [6] Hence, the
transmission line model cannot be used for accurate broadband time-
domain analysis of CRLH-LN structures.

4. TIME-DOMAIN MODELS

The development of a time-domain macromodel requires as preliminary
step to identify poles and residues of the rational transfer functions
modeling the CRLH-LN.

4.1. Computation of Poles and Residues

Poles of Y matrix functions are obtained as the zeros of the following
equation: 


n−1∏

j=1

(K (s)− vj,n−1) · Z1 (s)


 = 0 (23)

which requires n equations to be solved separately.
The poles of the CRLH-LN can be identified as:

(i) the zeros of polynomial Z1 (s)
(ii) the zeros of polynomial K (s)− vj,n−1, for j = 1, . . . , n− 1

Poles of the first type (i) satisfy the equation:

NZ1(s) = 0 (24)

Poles of the second type (ii) are obtained as the solutions of the
equation

K (s)− vj,n−1 = 0, for j = 1, . . . , n− 1 (25)

which can be re-written as

NZ1(s)NY2(s)− vj,n−1DZ1(s)DY2(s) = 0, for j = 1, . . . , n− 1 (26)

It is to be pointed out that the poles of the CRLH-LN can be computed
by solving low order algebraic equations. The explicit knowledge of
the poles allows to select the dominant ones. A suitable pole-pruning



Progress In Electromagnetics Research B, Vol. 20, 2010 363

strategies is described in Ref. [32]. Examples of computation of poles
by using the proposed polynomial representation can be found in
Ref. [32] where it is shown that a very good accuracy is achieved in
finding poles of multiconductor transmission lines.

More complex topologies of the unit cell can also be considered.
The only difference relies on the order of the algebraic equation (26)
which, if larger than 4, cannot be solved analytically and requires a
numerical solution to provide the poles. The computation of residues
of pole pi can be accomplished by using standard techniques [28]:

R11,i = R22,i = adj







n−1∏

j=1

(K (s)− vj,n−1)


 · Z1 (s)




/det







n−1∏

j=1

(K (s)− vj,n−1)


 · Z1 (s)




·
n−1∏

j=1

(K (s)− uj,n−1) (s− pi)|s=pi (27a)

R12,i = R21,i = −adj







n−1∏

j=1

(K (s)− vj,n−1)


 · Z1 (s)




/det






n−1∏

j=1

(K (s)− vj,n−1)


 · Z1 (s)


· (s− pi)|s=pi (27b)

for i = 1, . . . , PY , being adj(·) the adjoint operator of the matrix in
argument and PY the total number of poles of the ~Y matrix entries.

4.2. Time-domain Macromodel Realization

Once the poles-residues representation of the Y parameters is obtained,
a macromodel can be easily derived by generating the EABCD state-
space domain representation leading to a set of first order differential
equations which reads:

E d

dt
x (t) = Ax (t) + Bv (t) (28a)

i (t) = Cx (t) +Dv (t) (28b)

where E ∈ Rp×p, A ∈ Rp×p, B ∈ Rp×n, C ∈ Rn×p, D ∈ Rn×n, p is
the number of states and n the order of the proposed model. Vectors



364 Antonini

v (t) = [v0(t), vL(t)]T and i (t) = [i0(t), iL(t)]T contain the port voltages
and currents at time t, respectively.

The standard minimal-order realization techniques can be
efficiently used [33–36] to generate a state-space model of the CRLH-
LN. The set of first order differential Equation (28) is then augmented
with the terminal conditions which, assuming linear and non-linear
terminations of resistive and capacitive type, read

i0 (t) = vs0(t)−Gl,0v0(t)− Cl,0
dv0(t)

dt

−Gnl,0(v0(t))v0(t)− Cnl(v0(t))
dv0(t)

dt
(29a)

iL (t) = vsL(t)−Gl,LvL(t)− Cl,L
dvL(t)

dt

−Gnl,L(vL(t))vL(t)− Cnl(vL(t))
dvL(t)

dt
(29b)

It is to be pointed out that non-linear terminations can be directly
incorporated into the model since the CRLH-LN is described in time-
domain by (28). The overall equivalent circuit can be incorporated and
simulated into a Spice-like non-linear solver [37].

5. NUMERICAL RESULTS

5.1. Comparison between the CRLH-LN and the
Homogeneous CRLH-TL

In the first test the CRLH-LN described in Ref. [9] has been considered
and the different dispersive behavior with respect to the homogeneous
transmission line is investigated. The CRLH-LN is characterized by
global parameters R = 0.1 mΩ, LR = 2.45 nH, CL = 0.68 pF,
G = 10 mS, CR = 0.5 pF and LL = 3.38 nH and is constituted by
50 unit cells of length ` = 6.1 mm.

Figure 6 shows the dispersion diagram β/ω of the CRLH-LN
described in Ref. [9], using the Bloch-Floquet theorem [6], the
approximated one under the hypothesis of electrically small sections
and that of a homogeneous CRLH-TL. It is seen that the hypothesis
of electrically small network and homogeneous transmission line leads
to significantly different results from the Bloch-Floquet theorem in the
gigahertz range.

In Ref. [9], it is shown that CRLH-LN is equivalent to the
homogenous CRLH-TL for small electrical lengths and the dispersion
relation obtained applying periodic boundary conditions reduces to
the homogenous dispersion relation. Due to the left-handed lumped
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Figure 6. Dispersion diagram.
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elements CL and LL, for a fixed length ` of the unit-cell, the
hypothesis of small electrical length fails to apply at low as well as
high frequency, preventing the homogeneous transmission line model
to be used for accurate broadband time-domain analysis of CRLH-LN
structures. Figure 7 shows the attenuation constant α as evaluated
using the homogeneous CRHL-TL and the CRLH-LN models. Again,
a significant difference is observed up to few gigahertz. In particular,
the CRLH-LN exhibits a frequency independent attenuation constant
α at low frequencies while the homogeneous CRHL-TL is characterized
by an almost constant value for decreasing frequencies.

The CRLH-LN is excited by the second derivative of a gaussian
pulse whose magnitude frequency spectrum is shown in Figure 8.

The CRLH-LN is terminated on 50 Ω resistances. The
macromodel of order 198 has been generated and simulated. Figure 9
shows the voltage at the input port computed using the inverse fast
Fourier transform of the frequency-domain results obtained from the
transmission line theory (CRLH-TL-IFFT) and the CRLH-LN (CRLH-
LN-IFFT) and the proposed macromodeling technique (CRLH-LN-
Macromodel). No significant difference is noticeable between the
models of the CRLH-LN while a significant discrepancy is observed
with respect to the homogeneous transmission CRHL-TL.
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5.2. Time-domain Analysis of Unbalanced CRLH-LN

As a second example, it has been considered a lossy CRLH-LN
composed of n = 16 unit cells of length ` = 1.5 cm with the topology
in Figure 5, with the circuital parameters CR = 4.5 pF, CL = 2.5 pF,
LR = 4.5 nH and LL = 2.5 nH, R = 10nΩ, G = 10 nS, corresponding
to a transition frequency of about f0 = 1.5GHz. The ladder network
is excited by a gaussian pulse with amplitude 1 V and width 0.5 ns.
Figure 10 shows the magnitude spectra of the ABCD parameters of
the global periodic structure as evaluated using the standard cascade of
identical unit cells and the proposed closed-form polynomial approach,
exhibiting a perfect overlapping.

It is clearly seen that there is substantial propagation in the
0.75–3 GHz range while frequencies below 0.75 GHz and above 3 are
filtered. The rational model of order 16 has been generated and the Y
parameters computed. Figure 11 shows the poles in the complex plane.
It is easily recognized that the rational macromodel is stable since all
the poles have negative real part. It is also easy to distinguish the
poles corresponding to the zeros of the series impedance Z1(s), close
to the imaginary axis, from the others derived from the vj,n−1 roots,
whose imaginary part is increasing with the order.

Figure 12 plots the magnitude spectra of the Y11(s) and Y12(s)
functions of the global CRLH-LN structure as computed by direct
transformation of the ABCD parameters (CRLH-LN) and using the
proposed polynomial model (CRLH-LN-pol). As before, the agreement
is perfect. Again, the resonant behavior is clearly seen in the 0.75–
3GHz range.
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Figure 10. Magnitude spectra of the ABCD parameters for the
CRLH-TL (example 5.2).
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Figure 11. Poles of the CRLH-LN (example 5.2).
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Figure 12. Magnitude spectra of Y11 and Y12 parameters (example
5.2).
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Figure 13. Port voltages of the CRLH-LN (example 5.2). Left: input
port; right: output port.

The CRLH-LN is terminated on 50 Ω resistances. The
time-domain macromodel is integrated using the Gear-Shichman
algorithm [38]; the results are compared with those obtained by means
of the inverse fast Fourier transform of the frequency data. Figure 13
shows the port voltages. The curves obtained by means of the two
approaches are almost undistinguishable.

The time-domain results are compared by using the FSV
technique. Figure 14 reports the FSV Grade-Spread chart for the input
voltage of the first dipole as indicated by the IEEE Standard for data
comparison [22]: the presence of the FSV figures of merits in the blue
area indicates a high quality of the comparison for the data.

Then, in a second test, the output port of the CRLH-LN has been
terminated in a non-linear lumped element defined by the following
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Figure 14. FSV comparison
(example 5.2).
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Figure 15. Output port voltage
of the CRLH-LN terminated on a
non-linear load (example 5.2).

equation i(t) = 10v3(t). The same macromodel has been used to
compute the port voltages. The output port voltage is shown in
Figure 15 where the dispersion due to the CRLH-LN is clearly visible.

6. CONCLUSIONS

In this paper, a general methodology for the analysis of CRLH-LNs
has been presented. In particular the proposed method allows a
rigorous rational model of the CRLH-LN. The rational model of the Y
matrix permits an efficient identification of the poles/residues of the
CRLH-LN, leading to a time-domain state-space model. The proposed
methodology offers the following features:

• it can be applied to any type of CRLH-LN being independent on
the topology of the unit cell [14, 18];

• if the unit cell admits a rational two port representation, the
overall CRLH-LN is characterized by a rational model which is
well suited for time-domain analysis; this means that dispersive
behavior of lumped elements can be directly incorporated into the
time-domain macromodel;

• since it does not use the inverse Fourier transform, it can directly
handle non-linear terminations and can be linked to non-linear
Spice-like solvers;

• it can be easily applied to coupled CRLH-LNs.
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