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Abstract—A method to diagnose on-off faults in a planar antenna
arrays using far field radiation pattern is presented. A systematic
approach is suggested for detecting location of faulty elements using
Artificial Neural Networks (ANN). Radial Basis Function neural
network (RBF) and Probabilistic neural network (PNN) are considered
for performance comparison.

1. INTRODUCTION

Antenna arrays are used in many applications such as radio astronomy,
satellite antennas, radar and communications which contain large
number of radiating elements. Hence, there is always a possibility
that one or more elements fail at any time. One kind of fault
widely encountered in practical instances is the so-called ‘on-off’, where
the faulty element does not radiate at all. The presence of faulty
element changes the radiation pattern causing errors in related systems
particularly when it is in the center of the array. Hence it is required
to test the array regularly. But it is difficult for inspection of faulty
elements in the laboratory because of the large size of the array. Several
techniques are reported in the literature to identify faults. A built
in performance monitoring method using a transmission line signal
injector at the radiating aperture to check the amplitude and phase
of the radiating element is suggested by Lee et al. [1]. However such
an expensive network must be provided at the design stage of the
array and may be affected by faults. Further the size, volume, cost
and weight increase by inclusion of monitoring systems. A subtraction
method is proposed to identify single faulty element in linear array by
Jacob Ronen et al. [2]. This method cannot be extended to multiple
faulty elements. Further, detection of faulty element is not accurate if
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there are missing points and measurement errors present in the pattern.
Fault diagnosis from near field measurement is also given by Ronen
et al. [2]. But this method involves approximation of near field to
far field by Fourier transformation and in this only the main beam
of the far field radiation pattern is obtained accurately. Hence near
field method does not give accurate fault diagnosis. Bucci et al. have
reported diagnosis of on-off faults in planar array from noisy far field
radiation pattern using global optimization technique [3]. Rodriguez
et al. have used genetic algorithm to detect the faulty elements in small
size arrays [4]. But the Genetic algorithm has to be run several times
to yield high accuracy for large size arrays. Authors of the present
paper published a method to detect faults in linear antenna array using
artificial neural networks [5–7].

A step wise method is proposed to detect error in phase or
amplitude of current in planar arrays by the authors of the present
paper [8]. In the present paper the method is extended to detect on-off
faults in planar array where the element is turned off completely. The
maximum number of faulty elements that can occur in the array at any
instant of time is limited to three. The proposed method detects the
faults based on the change in the radiation pattern. To begin with the
method, radiation pattern is determined for the array with no faulty
elements. Further, radiation pattern is derived for ‘N ’ faulty elements
in the array. From this the deviation pattern is determined which is
the difference between fault free pattern and faulty pattern. A general
expression of deviation pattern for N faulty elements is obtained from
which the deviation pattern for single, two or three elements can be
deduced.

In the present work, a neural network approach is adopted to
identify the faulty elements. A neural network is initially trained with
some of the possible faulty patterns in the array. Then, it is used to
predict the faulty element by giving a test pattern to it.

2. THEORY

A planar array is considered, which consists of Nx rows of elements
and each row has Ny elements arranged in a rectangular grid as shown
in Figure 1. The spacing between rows is dx and between elements in
a row is dy. Radiation pattern is given for the array with ‘N ’ faulty
elements from which deviation pattern is determined.
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Figure 1. Planar array arranged in rectangular grid.

2.1. Radiation Pattern of Planar Array with out Faulty
Elements:

The normalized array factor for the planar array with current
excitation of 1 Amp can be written as [9]
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(1)
where

Nx is number of rows of elements along X-axis
Ny is number of columns of elements along Y -axis
θ is angle of observation from array normal
φ is angle with X-axis
k = 2π

λ is propagation constant
dx is distance between elements along X-axis
dy is distance between elements along Y -axis
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2.2. Derivation of Deviation Pattern of the Array with ‘N ’
Faulty Elements:

Consider (r1, s1), (r2, s2), (r3, s3), . . . , (rN , sN ) are locations of faulty
elements occurring in the array. The array factor is provided by
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1
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Deviation pattern is given by
Ad(θ, φ) = A(θ, φ)−AN (θ, φ)
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1
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Ad (θ, φ) = BN (θ, φ) ∠ξN (θ, φ) (4)
Amplitude of deviation pattern is derived as

BN (θ, φ) =
1

NxNy
[N + 2 cos (ϕrs1 − ϕrs2) + 2 cos (ϕrs2 − ϕrs3)

+ . . . + 2 cos (ϕrsN−1 − cosϕrsN )]1/2 (5)
Phase of deviation pattern is

ξN (θ, φ) = sin−1
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Amplitude and phase of deviation pattern along φ = 0◦ plane are given
by
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Amplitude and phase of deviation pattern along φ = 90◦ plane are
given by
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The deviation pattern along φ = 0◦ plane illustrates location of the
rows of faulty elements. The location of columns is depicted by
deviation pattern along φ = 90◦ plane. It can be stated that amplitude
of deviation pattern specifies the distance between faulty elements
locations and phase of deviation pattern represents the location of
faulty elements. A random variable is introduced in the deviation
pattern to account for noise and measurement error.

3. ARTIFICIAL NEURAL NETWORKS

Two artificial neural networks architectures are considered for
classifying the faulty element locations.

3.1. Radial Basis Function

Radial basis function network is nonlinear, layered and feed forward
network. It consists of three layers namely input layer, hidden layer
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and output layer. The input layer consists of source nodes. The second
layer, called hidden layer, is of high enough dimension. The output
layer supplies the response of the network to the activation patterns
applied to the input layer. The transformation from the input space
to the hidden space is by nonlinear radial basis function and that from
hidden space to the output space is by linear weights. The centers
of radial basis function and weights of the nodes are determined from
different learning techniques. Two learning strategies applied to train
RBF network with the given training data set are mentioned below.

Fixed centers learning: The centers of Gaussian function are
determined from the data set and weights of second layer are found by
pseudo inverse matrix [10].

Self organized selection of centers:
This learning consists of two different stages.

a) Self organized learning stage, the purpose of which is to estimate
appropriate locations for the centers of the radial basis functions
in the hidden layer. The centers are determined by using K-means
clustering algorithm.

b) Supervised learning stage, which computes the linear weights of
the output layer.

The fault diagnosis of planar antenna array involves in identifying
locations of rows and columns of faulty elements. From amplitude of
deviation pattern the number of faulty elements is classified as one, two
or three. If the faulty element is one, the location of faulty element is
found from phase of deviation pattern. If the faulty elements are two
or three then distance between elements is found from amplitude of
deviation pattern. For the given distance between elements, location
of faulty elements is determined from phase of deviation pattern. The
method of fault detection of planar array is done with RBF network
having fixed centers training, RBF network with self organized centers
training and PNN network.

4. RESULTS & DISCUSSION

To establish the validity, a planar array with 5× 5 and 8× 8 isotropic
elements having uniform excitation and uniform distance between
successive elements (d = λ/2) is considered. The radiation pattern
is sampled at 32 points between angles −90◦ to 90◦. Parameters of
array are mentioned in Table 1.

Amplitude and phase of deviation pattern for one, two and three
faulty elements along φ = 0◦ plane are shown in Figures 2 and 3 for
5 × 5 elements array. Figures 4 and 5 show the amplitude and phase



Progress In Electromagnetics Research Letters, Vol. 14, 2010 27

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-90 -60 -30 0 30 60 90

Angle of observations(degrees)

A
m

p
li
tu

d
e

(2,2) element is faulty
(1,2) and (2,5) elements are faulty 
(1,2), (2,3) and (4,4) elements are faulty

Figure 2. Amplitude of deviation pattern for one, two and three
faulty elements in 5× 5 elements array along φ = 0◦ plane.
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Figure 3. Phase of deviation pattern for one, two and three faulty
elements in 5× 5 elements array along φ = 0◦ plane.
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Figure 4. Amplitude of deviation pattern for one, two and three
faulty elements in 5× 5 elements array along φ = 90◦ plane.
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Table 1. Parameters of array.

Serial

No.
Parameter Value Value

1 No. of isotropic elements 5× 5 8× 8

2 Distance between successive elements λ/2 λ/2

3 Excitation 1 Amp 1 Amp

4
No. of samples of radiation pattern

between angles −90 to 90 degrees
32 32

5
No. of possible faulty patterns

for one faulty element array
25 64

8
No. of possible faulty patterns

for two faulty elements array
300 2016

9
No. of possible faulty patterns

for three faulty elements array
2300 41664

Table 2. Parameters of ANN.

Parameter
RBF (fixed

centers)

RBF (self

organisation

of centers)

PNN

Number of input nodes 32 32 32

Number of hidden layers 1 1 2

Number of nodes

in hidden layers
32 32

32, number

of classes

Number of output nodes 1 1
number of

classes

Spread of centers 3 3 1.5

No. of epoch for training 1 300 300

of deviation pattern along φ = 90◦ plane for 5× 5 elements array. The
parameters of ANN are given in Table 2.

The neural networks are trained by faulty patterns with 0%
measurement error. The efficiency of the networks when tested by
faulty patterns with 3% and 6% measurement error is given in Figure 6.
It can be observed that variation of success rate is almost constant for
all measurement errors for a PNN network. Further it is also observed
that the efficiency with PNN network is better compared to the RBF
algorithms.
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Figure 5. Phase of deviation pattern for one, two and three faulty
elements in 5× 5 elements array along φ = 90◦ plane.

Figure 6. Success rate of the method for PNN and RBF neural
networks for 5 × 5 and 8 × 8 elements array. RBF1-RBF network
trained with fixed centers learning. RBF2-RBF network trained with
self organisation of centers. PNN-PNN network trained with self
organisation of centers.

5. CONCLUSIONS

RBF and PNN neural network models are applied to predict the
location of faulty elements. This approach makes use of a neural
network that can be trained off line for any number of elements, spacing
and excitation. Although training the network is time consuming, it
is usually completed in advance and done only once. The high success
rate displayed in the numerical results establishes the validity of the
suggested method. This approach can be extended to identify location
of any number of faulty elements and to any size of array.
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