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Abstract—We propose a hybrid finite-difference frequency-domain
method to study the perpendicular crossing waveguide, dielectric
and microwave, TE and TM modes, by exploiting built-in structural
symmetries in these waveguide devices. In the plus (+) symmetry
model, the complete solution is obtained by solving two rectangular-
shaped quarter structures each with two transparent boundaries and
two symmetry boundaries. For the cross (×) symmetry model,
solutions of four triangular-shaped quarter structures are needed but
each with only one transparent boundary. Numerical results are
verified by comparison between these two models and with the power
conservation test. We show the total and the fundamental-mode,
coupling coefficients of the reflected, cross and through power in the
crossing waveguide as functions of the normalized frequency.

1. INTRODUCTION

As the complexity of the planar lightwave circuit increases, the optical
interconnect problem becomes more and more important [1–3]. It
is necessary to characterize the photonic crossings composed of the
dielectric waveguides, especially in silicon on insulator (SOI) photonic
waveguide devices made with high-contrast refractive index materials,
for increasing the interconnect capability.

In recent years the growing impact of photonic interconnects has
attracted many publications [4–16]. It was reported that the right
angle crossings have smaller crosstalk than shallow angle ones [4]. The
power coupling coefficient may approach unity by a proper modification
on the shape of the intersection part [11]. In this paper, we focus
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on the discussion of the right angle crossing. Low-loss and low-
crosstalk crossing makes the routing of complex photonic circuits easier
than the electronic circuits. In order to improve the throughput and
to lower the crosstalk, manuscripts report different modifications of
the simple crossing structure including the multimode interference
(MMI) structure, resonant cavity and elliptical or parabolic mode
expanders. The exact calculation of the loss and crosstalk as function
of the wavelength is of great importance for these designs of dielectric
crossings. Numerical techniques for the study of the crossings include
the finite-difference time-domain (FD-TD) [6, 7, 10, 12], the beam
propagation method (BPM) [4, 8, 16], the mode-matching method [13],
the finite element method (FEM) [14], the method of line [9] and
the coupled-mode theory [16], etc. Furthermore, on SOI based
integrated circuits with a high index contrast between the silicon core
and the silica cladding, the optical wave of a small cross-sectional
intersection would produce a larger crosstalk and more reflections
at the junction. The horizontal and vertical traveling fields of
two crossing waveguides are tightly coupled in the vicinity of the
intersection. These quadridirectional wave fields are so complex that
it is difficult to analyze them with rigorous methods such as the
mode matching methods and the coupled transverse-mode integral
equation CTMIE methods [17, 18]. Many such mode-based methods
adopt the PECAM (perfect electric conductor approximation) [19]
approximation which confines the wave fields to propagate only
horizontally. Although, it is possible to modify the mode matching
method to obtain a quadridirectional eigenmode expansion scheme [20]
for crossing waveguides, this highly accurate method is far too complex
to be practical for an arbitrary crossing profile. The general PML
boundary conditions are often combined with PECAM schemes but
it is not suitable for the waveguide crossing due to the strong
evanescent waves in the cladding region of guiding modes [21–23].
Recently, we developed the layer-mode transparent boundary condition
(LM-TBC) [24] which can absorb/transmit both the guided modes,
discretized radiation modes and even the evanescent modes in both
crossing waveguides. We seek to combine LM-TBC with the hybrid
frequency-domain finite-difference (FD-FD) method to study dielectric
waveguide crossings.

2. HYBRID FD-FD METHOD

In this paper, we propose to conduct a two-dimensional (x-z plane)
hybrid FD-FD study of the perpendicular waveguide crossing as
shown in Figure 1(a). To accurately simulate quadridirectional wave
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Figure 1. (a) The open perpendicular microwave waveguide crossing
in a z-x coordinate system. (b) The computational domain is
surrounded with numerically transparent borderlines indicated by four
dashed lines.

fields in the waveguide intersection by a general FD-FD method we
need to enclose the computational domain with transparent boundary
conditions (TBC) on all four borderlines shown as the dash lines in
Figure 1(b). The TBC is crucial for a successful crossing analysis.
Because a “good” TBC not only reduces the size of the computational
domain but also guarantees the accuracy of computed scattered wave
fields. Let Dx and Dz be the microwave waveguide (or dielectric
waveguide core) thickness of the horizontal and vertical waveguide
respectively and λ be the wavelength of the incident field which we
assume to be the fundamental mode coming from the left side.

We can further reduce FD-FD computational domain by taking
the advantage of the symmetries in the device. The plus (+) symmetry
shown in Figure 2(a) is always there for a perpendicular crossing.
When both waveguides are identical in shape we have also the cross (×)
symmetry as shown in Figure 2(b). In 2009, we reported the simulation
of a dielectric waveguide crossing using a hybrid FD-FD method and
by exploiting the cross symmetry [25]. When the plus/cross symmetry
is applied to a crossing waveguide, the original problem can be broken
down into two/four subproblems each being one quarter of the full
size. The sub-solutions are then reassembled to form the full solution.
In doing so we reduce both CPU time and memory requirement of
the full problem and in the case of cross symmetry we also avoid the
difficulty of implementing two TBCs on the top and left boundaries of
Figure 2(a).

In the plus symmetry, we have both the horizontal and the vertical
axes as symmetric lines. The two lines divide the device into four parts.
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We choose the second quadrant as our reduced computational region.
Among the four boundaries, the right and the bottom boundaries are
PECW/PMCWs (perfect electric/magnetic conducting walls). The
left and the top boundaries are transparent boundaries. In the open
dielectric waveguide case locations of TBCs are placed far enough to
reduce side effects due to the PECW/PMCW corner, but not too far
to keep the computational requirement in check. Our LM-TBC is
used on the left boundary to simultaneous launch the incident field
and to allow the reflected wave fields to pass through this boundary.
As for the top TBC, we are not able to directly apply LM-TBC due
to the limitation of our matrix solver which uses a modified Thomas
method [26, 27] to perform the Gaussian elimination. The block tri-
diagonal structure of the resulting matrix is destroyed by the top LM-
TBC that uses a full matrix to connect the unknowns in the top row
of Figure 3(a). As a result, we are forced to simplify the top TBC by
using the fundamental-mode approximation for the upward traveling
waves. Nevertheless, this one-term TBC approach demonstrates a four
digit precision in our numerical results for microwave cases with just
one even mode and perhaps one odd mode. It fails to deliver a good
solution in the dielectric case where there are many more cladding
modes. For those cases where the plus symmetry fail we will consider
the cross symmetry.

In the cross symmetry shown in Figure 2(b), we have two
±45◦ symmetric lines perpendicular to each other. We choose the
left triangular area as our computational domain. In reality we
place the triangular area into an enclosing rectangular domain so
that our existing matrix solver will continue to work. This model
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Figure 2. Schematic illustration of dual two-fold symmetries in a
perpendicular crossing waveguide. (a) Plus (+) symmetry on x and z
axes. (b) Cross (×) symmetry on two diagonal axes.
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includes one LM-TBC and two symmetric lines each with an equivalent
PECW/PMCW pair. By using the combination of PEC/PMC walls,
we reduce the original full problem to four subproblems requiring less
computing resources. We shall compute the microwave and dielectric
waveguide crossings and compare computed power coefficients between
plus and cross symmetry.
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Figure 3. FD-FD grid layouts for the plus symmetry (a) and for the
cross symmetry (b).

3. BUILDING TWO SYMMETRY MODELS

3.1. FD Approximation of Helmholtz Equation

We write down the two-dimensional Helmholtz equation for TE and
TM modes as the following:

∂2

∂x2
Ey +

∂2

∂z2
Ey + n2(x, z)k2

0Ey(x, z) = 0,

∂

∂x

[
1

n2(x, z)
∂

∂x
Hy

]
+

∂

∂z

[
1

n2(x, z)
∂

∂z
Hy

]
+ k2

0Hy(x, z) = 0.

(1)

The detailed hybrid FD-FD formulations can be found in reference [24]
where the entire problem is divided into one FD-FD region for
the central structure and one to several analytical regions for
waveguide structures. Here we derive the corresponding FD-FD
coefficients for unknowns near the PECW/PMCW boundaries. In
the following derivation, superscript ‘e’ denotes TE mode with the
Ey component and ‘h’ stands for the TM mode with Hy component.
Subscripts c, u, d, `, r denotes center, up, down, left and right
respectively. Applying the second-order accurate FD approximation to



222 Chang, Wu, and Cheng

Equation (1), we obtain the discrete 2-D Helmholtz equation for field
uc which is a five-point formula connecting itself to the four neighboring
points uu, ud, u`, ur. We have

ce
uuu + ce

dud + ce
`u` + ce

rur + ce
cuc = 0,

ch
uuu + ch

dud + ch
` u` + ch

rur + ch
c uc = 0,

(2)

where the coefficients are given by
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(3)

Here k0 is the wave number in vacuum. n2
c is given by the areal average

of n2(x, z) centered around uc over a grid cell area ∆x ·∆z. TM case
requires 1/n2

p average which is defined as the areal average of 1/n2
p(x, z)

centered at up. When p = u, d, `, r, the center of the integration point is
located half a grid up, down, left and right from uc respectively. TE and
TM FD coefficients are identical except for those points laid within one
grid away from boundaries between two materials. Figure 3 shows the
complete grid layout for both the plus and the cross symmetry cases.
All grid points are located on the center of each grid cell. For points
bordering a PECW (PMCW) or a symmetry wall, they are placed
half a grid inside these walls. The exceptions are the two PEC/PMC
walls of the 45 degree symmetric lines. The grid points are on these
lines. In LM-TBC the interface between the FD-FD domain and the
analytical domain also passes through the grid points which are shared
by the two domains. The above setup of the grid layout is convenient
for the boundary conditions and the material averaging scheme in our
numerical analysis.

3.2. Boundary Conditions for the Plus-symmetry Model

Figure 4 presents the grid layout and the boundary conditions for the
plussymmetry model. In our numerical simulation we assume that
Dx = Dz, ∆x = ∆z and there are total N field points along x and
z axis. Referring to Figure 4, to the left is the LM-TBC and to the
right a PECW or PMCW. The boundary condition of the bottom wall
is treated with even symmetry for the fundamental incident mode and
with odd symmetry for other higher anti-symmetric modes Depending
on the particular symmetry, we have ud = ±uc due to the fact that the
PEC/PMC wall is located exactly half way in between. Equation (2)
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at the bottom boundary can be rewritten as

ce
uuu + ce

`u` + ce
rur + (ce

c ± ce
d)uc = 0,

ch
uuu + ch

` u` + ch
rur + (ch

c ± ch
d)uc = 0.

(4)

The coefficients for points near the bottom boundary are

(ce
c)new = (ce

c ± ce
d) , (ce
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)
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(
ch
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)
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Here the plus/minus sign is taken depending on the even/odd
symmetry of the boundary condition. Similarly, the coefficients for
points near the right boundary are given by
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As discussed earlier, our direct FD-FD solver prevents the application
of full LM-TBC for the top boundary; we assume that the outgoing
waves are dominated by the fundamental mode. Thus, for all m =
1, . . . , N, outside field point uN+1,m can be related to inside point uN,m

by the following equation:

uNx+1,m = uNx,m · exp
(−jβx

1
·∆x

)
, (7)

where βx
1 is the propagation constant of the fundamental mode of the

vertical waveguide, x = e/h is the type of polarization. The resulting
coefficients for these grids on the top row are given by

(cx
c )new = cx

c + cx
u · exp

(−jβx
1
·∆x

)
, (cx

u)new = 0, x = e, h. (8)

For microwave crossing waveguides we need to take care of the
two PECWs (part of the waveguide structure, depicted by solid lines
in Figure 4) inside the computational domain. The coefficients for
inside points bordering the plate are rewritten as

(ce
c)new = ce

c − ce
x, (ce

x)new = 0, x = r, d,(
ch
c

)
new

= ch
c + ch

x,
(
ch
x

)
new

= 0, x = r, d.
(9)

Finally, for microwave cases, we assign a simple equation such as
ui,j = 0 for points (hollow points of Figure 4) inside the computational
domain but outside these two PECWs so they will be decoupled from
points inside the crossing waveguide. The LM-TBC equations together
with Equations (2)–(9) form the self-consistent discretized Helmholtz
equation for a crossing waveguide with the plus-symmetry model. The
FD-FD solution for points on the left/top boundary will provide us
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Figure 4. The grid layout and the boundary conditions for the
quarter-size subproblem in the plus-symmetry model.

with the reflection/transmission coefficient vectors in the analytical
regions [24].

The final FD-FD equations for all field points inside the
computational domain form an N2 × N2 sparse matrix. With the
one-mode TBC approximation for the top boundary, this matrix is
in a block tri-diagonal form with its diagonal blocks as N × N tri-
diagonal matrices and off diagonal blocks as N ×N diagonal matrices.
We solve this matrix equation by the direct method using the Gaussian
elimination or LU factorization. With a modified Thomas method, we
are able to obtain a solution with up to a quarter million unknowns
under ten CPU minutes on a PC using Matlab. The complete crossing
field Ey(x, z) or Hy(x, z) can be constructed from the even sub-solution
F e and the odd sub-solution F o of Figure 4. There are two ports —
an input F e

i , F o
i and an output port F e

0 , F o
0 in both solutions. They

are symmetrical with respect to y-z plane. After we obtain the even
and odd results of the field in the second quadrant, we then extend
the field to other quadrants by flipping the field image, first across the
x axis with no sign change, and then across the z axis with a proper
sign change. Thus, F e

i /F o
i is on the left half of Figure 3(a) and F e

0 /F o
0

on the right half of Figure 3(a). We will arrive at two full solutions
shown in Figures 5. From the average of these two full solutions, we
obtain the complete solution of a crossing waveguide excited by an even
waveguide mode incident from the left (port No. 1). The reflection
coefficient (R1), cross transmission coefficients for port 2, 4 (T2, T4)
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Figure 5. Illustration of constructing the complete solution of the
plus-symmetry model. The equivalent boundary conditions can be
realized by sending an (even) incident field from the left waveguide
and also from the right waveguide with or without a sign change. This
would make z-axis even and the x-axis even (a) or odd (b) note that
the average of (a) and (b) leads to the original full solution of a crossing
waveguide in Figure 2(a).

and through transmission coefficients for port 3 (T3) are given by:

R1 =
Re + Ro

2
, T2 =

T e + T o

2
,

T3 =
Re −Ro

2
, T4 =

T e + T o

2
.

(10)

Here Re/Ro and T e/T o is the reflection and transmission coefficients
of the even/odd sub-solution respectively. Port three is the through
waveguide and ports two and four are the cross waveguides.

3.3. Boundary Conditions for the Cross-symmetry Model

Figure 6 illustrates the grid layout and boundary conditions for the
crosssymmetry model. We divide the grids in the z direction into two
regions. The first one consists of a short section of a parallel-plate
waveguide (Nz1 ×Nx grids) is acting as the buffer region between the
analytic domain and FD domain. It has two PECWs on the top and
bottom borders and a TBC on the left boundary. The second region
is made of one quarter of the overlapped waveguides (Nz2×Nx grids).
For this region, there are four combinations of PECW and PMCW
along the two diagonal axes.
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Figure 6. The grid layout
and boundary conditions for the
quarter-size subproblem in the
cross-symmetry model.
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Figure 7. The grid layout around
the waveguide corner for the cross-
symmetry model.

The PECW boundary conditions for the parallel-plate waveguide
section are handled in the same way as in Equation (9) for the plus-
symmetry model. However, we need to take extra care to modify FD
coefficients for those grids on the symmetry lines, around the corner
and on the tip of the quarter structure in Figure 6. In Figure 7, point g
represents a regular point on one of the symmetry line whereas point f
is another point but lies near the waveguide corner. Each regular point
has four neighbors, points b′, c′ outside the substructure and points b, c
inside the substructure. Field at point b′(c′) is equal or opposite to field
at b(c) depending on symmetry type of the line dividing them. For the
central point g we need to transfer the FD coefficients associated with
outside points to their corresponding inside points as the following

(cx
` )new = cx

` ± cx
u, (cx

u)new = 0, x = e, h,

(cx
d)new = cx

d ± cx
r , (cx

r )new = 0, x = e, h.
(11)

Like Equations (5)–(6), the plus/minus sign is taken depending
on the even/odd symmetry of the diagonal lines. For point f
Equation (11) is only an approximation since the field at point a′ does
not have a simple mirror point (point a) due to the nearby corner. We
have found the additional error associated with this corner point can
be reduced with the increase of the Nz2 parameter.

Next, we consider FD coefficients for points near the tip where
the two symmetry lines meet. A blow-up version of Figure 6 is shown
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Figure 8. The grid points around the sub-structure tip for the cross-
symmetry model. (a) For an even Nx no points on the tip. (b) For an
odd Nxone grid point on the tip.

in Figures 8 where we consider both the even Nz2 and the odd Nz2

cases. In either case Nz2 = Nx is assumed. Figure 8(a) shows two
regular points which are close to but not on the tip. Point c and d
follow the rules of Equation (11). The case with an odd Nx is shown
in Figure 8(b). It has a grid point located on the tip. The fields at
grids a′, b′, c′ can be referred to the value at point a by symmetry. The
field at this point is nonzero only when both symmetry lines are even.
And we need to modify the coefficients in Equation (2) according to
the following rules

(cx
` )new = (cx

` + cx
u + cx

r + cx
d), x = e, h,

(cx
r )new = (cx

u)new = (cx
d)new = 0.

(12)

The other three combinations of this “x” symmetry pair imply a null
field for point on the tip and the following rules apply

(cx
r )new = (cx

u)new = (cx
d)new = (cx

` )new = 0.

(cx
c )new = 1.

(13)

The procedure for obtaining full FD-FD simulation results of
cross-symmetry model is similar to that of the plus-symmetry model.
For cross symmetry there are four independent simulation of the sub-
structure of Figure 6 with a pair of symmetry denoted by a subscript
of MM, EM, ME and EE. The first letter represents the PEC/PMC
wall (EW/MW for short) on the upper right border and the second
letter for the lower right boundary. Furthermore there are only three
independent calculations. We observe that the EW/MW and the
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Figure 9. Illustration of constructing the complete solution of the
cross-symmetry model. This cross symmetry can be realized by
sending identical incident fields toward the device center from all
four waveguide ports. For the TE polarization each specific sign
arrangement of the incident field will generate equivalent boundary
conditions of (a) MW/MW, (b) EW/MW, (c) EW/EW and (d)
MW/EW on the two diagonal lines Note that the average of (a), (b),
(c) and (d) leads to the original full solution to a crossing waveguide
as in Figure 2(b).

MW/EW cases produce results which are mirror (on the y-z plane)
images of each other. Figure 9 illustrates ways to form field with two-
fold diagonal symmetries by launching an identical mode with proper
sign toward the crossing zone from all four waveguides. These four
fields are denoted by UMM, UEE, UEM, UME. We see that one quarter
sum of all four simulations will produce no incident wave field from the
top, down and right waveguide but just once incident field coming from
the left waveguide. Denoting the reflection coefficient of the Figure 6
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waveguide by RMM, REE, REM, RME, we obtain the reflection cross
and through transmission coefficients for port 1 to 4 as the following
equation:

R1 =
RMM+REE+REM+RME

4
, T2 =

RMM−REE−REM+RME

4
,

T3 =
RMM+REE −REM−RME

4
, T4 =

RMM−REE+REM−RME

4
.

(14)

4. RESULTS AND DISCUSSION

In this section, we report the numerical results on the wave fields
and power reflection, through and cross transmission coefficients of
microwave and dielectric crossing waveguides for both TE and TM
cases. Detailed reports on the effect of modeling parameters such as
discretization density, the PECAM corner side effects due to LM-TBC
are given in one of the author’s thesis [26].

4.1. Two-Dimensional Field Plots

For the analysis of the microwave waveguide crossing, we define a
parameter B as the normalized frequency which is defined as

B =
2D

λ
. (15)

Here D is the microwave waveguide width. The normalized frequency
is a dimensionless quantity and is the key to constructing the universal
curves in this paper. The TE field distributions of plus- and cross-
symmetry models are shown in Figures 10 and 11 for B = 1.6
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Figure 10. Expanded Ey(x, z) field distributions of the plus-
symmetry model for the microwave crossing waveguide with a
normalized frequency B = 1.6. The even symmetry is on the left and
the odd on the right. These are standing wave with only real parts.
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Figure 11. Expanded Ey(x, z) field distributions of the cross-
symmetry model for the microwave crossing waveguide with a
normalized frequency B = 1.6. Note that the EW/MW case is the
anti-mirror version of the MW/EW case. These are standing wave
with only real parts.
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Figure 12. Complete TE and TM field distributions of a microwave
crossing waveguide constructed from averages of Figures 10–11.
Propagating wave fields are made visible with the real part on the
upper halves and the imaginary part on the bottom halves. The
difference between the plus- and the cross-symmetry models is too
small to show.

corresponding to a microwave frequency of 2.45 GHz (λ = 12.5 cm) and
a waveguide width of 10 cm. Figure 10 shows the plus-symmetric cases
after flipping the image with respect to the x and z axis. Complete
microwave crossing field images computed by Equation (10) are shown
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in Figure 12 for both TE and TM case. To clearly observe the 90
degree phase difference between the real and the imaginary part of
a propagating wave field in the waveguide we plot the real part on
the upper halves and the imaginary part on the button halves. No
information is lost due to the even symmetry (toward z-axis) of the
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Figure 13. Expanded Ey(x, z) field distributions of the plus-
symmetry model for the dielectric waveguide crossing. The wavelength
is 1.3µm. The core index is 1.5 and the cladding index is 1. The core
thickness is 0.6µm. The thin blue dashed lines are the symmetry axes
and the core-cladding boundaries are marked by thin dark lines.
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Figure 14. Expanded Ey(x, z) field distributions of the cross-
symmetry model for the dielectric waveguide crossing. The parameters
are same as those in Figure 13.
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Figure 15. TE and TM field distributions of an open dielectric slab
waveguide constructed from averages of Figures 13–14. These complex
EM fields are shown with the real part on the upper halves and the
imaginary part on the bottom halves.

crossing wave fields. To check our result, we re-compute the same
field with the cross-symmetry mode. The four expanded full fields are
shown in Figure 12. The figures provide us with a direct validation of
Equations (12)–(13) in handling the FD coefficients for points on the
cross symmetry axes. We report that for averaged absolute relative
difference between the plus and cross model is less than 0.1% for this
waveguide configuration.

Figures 13–14 show the field distribution of a dielectric waveguide
crossing computed with the plus- and cross-symmetry model for the
TE mode respectively. The open dielectric slab waveguide is air-clad
with a 1.5 core index and a core thickness of 0.6 micron operated
at a wavelength of 1.3 micron. The complete field solution of a
dielectric crossing waveguide is shown in Figure 15 for both TE and
TM polarization.

4.2. Universal and Quasi-universal Curves for the Power
Coupling Coefficients

With the hybrid FD-FD simulation of crossing waveguides, we are
able to obtain mode-to-mode through and cross coupling coefficients as
well as reflection coefficients as function of wavelength and waveguide
structure parameters. In Figures 16–17, we plot total power transfer
coefficients against the normalized frequency for microwave crossing
waveguides for both the plus and cross-symmetry models. Here Pr is
the total reflected power coefficient Pt is the total through-transmission
coefficient and Pv is the total cross-transmission coefficient for the
upper and lower waveguides combined. We denote the sum of
Pr, Pt, Pv as Ps which represents the total scattered power coefficient
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Figure 16. Total power transfer coefficients for the TE mode
microwave crossing waveguide. Data are computed with both the plus-
and the cross-symmetry models Note that TE mode is cutoff for B less
than 1.
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Figure 17. Same as in Figure 16 except for the TM polarization.
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due to an incident mode field. In a lossless waveguide Ps is always one.
It is plotted in Figures 16–17 to verify the power conservation in our
Matlab codes For these microwave cases, we have power conservation
accurate to the fourth decimal place. The results for the plus and
the crosssymmetry cases agree with each other for the B parameter
ranges from 1 to 3. However, we find increasing error for the plus-
symmetry cases after B > 3. Starting from B = 3, we have additional
guiding mode and the single-guiding-mode TBC approximation for the
upper boundary is not valid anymore. Thus, we show only the cross-
symmetry model data beyond that point.
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Figure 18. TE mode, total and fundamental-mode, reflected, cross
and through power coupling coefficients as function of normalized
frequency.

In Figures 18–19, we plot fundamental-mode power coupling
coefficients (reflected, cross and through) for TE and TM modes
computed with the cross-symmetry model. From the numerical results,
part of the power is transferred from the fundamental mode to the other
higher-order modes including the radiation modes. In particular, the
upward and downward powers of the fundamental guiding mode are
quite small and fields are dominated by higher-order guiding modes
and radiation modes.

The normalized frequency of a dielectric slab waveguide with a
full core thickness D and core/cladding indices of ncor, ncld is defined
as

V =
√

n2
cor − n2

cld

2π

λ
D. (16)
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Figure 19. Same as Figure 18 except for TM polarization.
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Figure 20. Total reflected, cross
and through power coupling co-
efficients of the dielectric cross-
ing waveguide versus core thick-
ness expressed in the normalized
frequency for TE case. Data are
computed with both even and odd
Nx grids. The fixed parameters
are λ = 1.3µm, ncor = 1.5 and
ncld = 1.
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Figure 21. Total and
fundamental-mode through
power coupling coefficients versus
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in the normalized frequency for
TE case. Waveguide parameters
are given in Figure 20.
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This normalized frequency uniquely determines the number of guided
modes in a dielectric slab waveguide but exact mode field profiles
depend on values of ncor, ncld as well as its core thickness. There
are no universal curves for the dielectric crossing waveguide even
though V is still the most important parameter for such curves. Thus,
quasi-universal curves for power coupling coefficients of the dielectric
crossing waveguide are plotted in Figures 20–25 as functions of V /π,
the dielectric equivalent to the microwave normalized frequency B of
Equation (15).

These data are computed with just the cross model since the
fundamental-mode approximation used in the plus model produces
noticeable errors. Therefore, for numerical verification we compute
results with both the even and the odd Nx formulation. Our numerical
results in Figures 20 and 23 indicate that differences between even and
odd Nx grids are in the order of 10−4 or less.

In Figure 24 of the TM case, we find the minimum insertion loss
for an air-clad glass slab waveguide, occurs at V/π = 0.7127, is about
0.11 dB (97.6% power transmission coefficient for the fundamental
mode). At this point the cross talk is −28.0 dB. However, for the TE
case in Figure 21 the corresponding insertion loss increases to 0.52 dB
(88.7%) for the fundamental mode and the cross-talk is −26.4 dB. For

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

V/π

P
o
w

e
r 

c
o
e
ff
ic

ie
n
t

Pr: all

Pr: 1st

Pv: all

Pv: 1st

Figure 22. Total and
fundamental-mode reflected
and cross power coupling coef-
ficients versus waveguide core
width expressed in the nor-
malized frequency for TE case.
Waveguide parameters are given
in Figure 20.
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coefficients for TM polarization
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fundamental-mode through
power coupling coefficients for
TM polarization. See Figure 20
for waveguide parameters.
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Figure 25. Total and
fundamental-mode reflected
and cross power coupling co-
efficients for TM polarization.
See Figure 20 for waveguide
parameters.

the TE mode, the minimum insertion loss is at the beginning of the
V parameter which corresponds to a very small core width. Thus,
insertion loss for the dielectric crossing waveguide is highly polarization
dependent as well as highly sensitive to the waveguide parameters.

5. CONCLUSIONS

We proposed a hybrid frequency-domain finite difference method
to study the microwave and the open dielectric crossing waveguide
for both TE and TM modes by exploiting built-in dual structural
symmetries in these devices. The plus and cross symmetry models not
only simplify the implementation of the layer-mode based transparent
boundary conditions but also reduce much required computational
resources. Our numerical data are verified by cross-checking results
from two symmetry models and from using even and odd Nx grids for
the cross model. Finally, FD-FD results are shown with field images
and normalization curves for the reflected, cross and through power
coupling coefficients of the crossing waveguide.
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