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Abstract—It is a current need of research to extensively use the
freely available satellite images. The most commonly available satellite
images are Moderate Resolution Imaging Spectroradiometer (MODIS)
and Advanced Very High Resolution Radiometer (AVHRR). The
problems with these images are their poor spatial resolution that
restricts their use in various applications. This restriction may be
minimized by application of the fusion techniques where high resolution
image will be used to fuse with low resolution images. Another
important aspect of fusion of different sensors data as optical and radar
images (where both can provide the complimentary information), and
the resultant fused image after fusion may give enhanced and useful
information that may be beneficial for various applications. Therefore,
in this paper an attempt has been made to fuse the full polarimetric
Phased Array type L-band SAR (PALSAR) image with MODIS image
and assess the quality of fused image. PALSAR image has a advantage
of availability of data in four different channels. These four channels
are HH (Transmitted horizontal polarization and received also in
horizontal polarization), HV (Transmitted horizontal polarization and
received vertical polarization), VH (Transmitted vertical polarization
and received horizontal polarization) and VV (Transmitted vertical
polarization and received vertical polarization), which provides various
landcover information. The curvelet based fusion technique has been
applied to MODIS Bands 1 and 2 and PALSAR (HH, HV and VV)
bands for assessing the effect of fusion in land cover distinction.
The three major land covers i.e., agriculture, urban and water are
considered for evaluation of fusion of these images for the Roorkee
area of India. The results are quite encouraging, and in near future
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it may provide a better platform for the maximize the use of MODIS
images.

1. INTRODUCTION

Earth observation satellites provide data at different spatial, temporal
and spectral resolutions. For the full exploitation of increasingly
sophisticated multisource data, advanced analytical or numerical data
fusion techniques are being developed [1, 2]. Multisource data fusion is
probably the most difficult aspect in the integration of remote sensing
image data products. In fact, while fusion is relatively straightforward
when using data from the same satellite, the integration of imagery
originating from different satellites carrying similar sensors, or even
different sensors, is quite complicated.

Satellite remote sensors can be divided into two major types of
imaging systems: optical and radar imaging systems. These two
sensor types are very different in terms of the wavelength of their
electromagnetic energy, sensor structure, and image product [3–6]. In
regions with frequent cloud cover the number of suitable optical data
is often limited. The all weather capability is one major advantage
of radar systems with respect to optical systems. Furthermore, radar
sensors provide information that is complementary to that of visible to
infrared imagery. In the optical range of the electromagnetic spectrum,
the information depends on reflective and emissive characteristics of
the Earth’s surface, whereas the radar system generates image data
by recording microwave signals that are backscattered towards the
antenna. Because of the differences in their data acquisition processes,
image data obtained using two sensor systems often provide dissimilar
and unique information over the same surface target [7]. Various
Researchers [8–10] have demonstrated the benefit of combining optical
and radar data for improved land cover mapping in several studies.
With the availability of multifrequency and high-resolution spaceborne
radar data, such as provided by the Advanced Land Observing
Satellite (ALOS) Phase Array type L-Band Synthetic Aperture Radar
(PALSAR) missions, an increased interest in tools to exploit the full
information content of both data types is arising.

For the full exploitation of increasingly sophisticated multisource
data fusion techniques are being developed. The interpretation
capabilities may be enhanced by the fused images. The images used
for fusion have different temporal and spatial resolution, hence a more
complete view of the observed objects is provided by fused image. It
is one of the main aims of image fusion to integrate different data in
order to obtain more information that can be derived from each of the
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single sensor data alone. A good example of this is the fusion of images
acquired by different sensors having a different spatial resolution and of
different spectral resolution. [1] states that the fusion of these disparate
data contributes to the increasing land cover enhancement.

Researchers are applying the fusion technique since from three
decades and propose various useful methods and techniques. A detailed
review in the literature is given by [1]. In which some methods, like
intensity-hue-saturation (IHS) [11, 12], Brovey transform [13, 14], and
principal component analysis [14, 15], provide superior visual high-
resolution multispectral fused images, but have a limitation of the
need of high-quality spectral information as input, while these methods
are useful for visual interpretation. More recently, an underlying
multiresolution analysis employing the discrete wavelet transform has
been used in image fusion. It was found that multisensor image
fusion is a tradeoff between the spectral information from a low
resolution multi-spectral images and the spatial information from a
high resolution multi-spectral images. With the wavelet transform
based fusion method, it is easy to control this tradeoff [16].

A high spectral quality is being provided by the wavelet-transform
fusion method. However, images fused by wavelets have much less
spatial information than those fused by the intensity-hue-saturation,
Brovey transform, principal component analysis [17, 18]. For Land
cover enhancement, the spatial information of a fused image is just
as important as the spectral information. To use these information, a
new transform, the curvelet transform was used in recent years by [19].
A ridgelet transform [20] is applied to square blocks of detail frames
of undecimated wavelet decomposition, consequently the curvelet
transform is obtained. Since the ridgelet transform possesses basis
functions matching directional straight lines therefore, the curvelet
transform is capable of representing piecewise linear contours on
multiple scales through few significant coefficients. This property
leads to a better separation between geometric details and background
noise, which may be easily reduced by thresholding curvelet coefficients
before they are used for fusion [19]. Therefore, the boundaries are
better represented by curvelet transform than wavelets and may be
well suited for extracting detailed spatial information as well as spectral
information from an image, and hence, can be very useful for clustering
the various targets.

The MODIS image is freely and easily available whereas PALSAR
image has to be purchased. Another important aspect of MODIS image
is that it is highly temporal (i.e., image is available in a couple of days).
Therefore, the MODIS image may also be very useful for time series
analysis. The spatial resolution of PALSAR image is 6.25 to 50 m
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while as the spatial resolution of MODIS image is 250 m to 1000m
and the PALSAR image is obtained irrespective of the cloud cover.
Hence in this paper, the PALSAR image is fused with the MODIS
image. There is a need of research to explore the possibility of use
of MODIS image for land cover enhancement with fusion techniques.
Therefore, in this paper, we have attempted to explore to find the
possible methodology to check the effect of fusion of MODIS and
PALSAR image on land cover enhancement. For this purpose, MODIS
Band 1 and Band 2 which has a special characteristics for land cover
application and PALSAR (HH, HV and VV) images are being used for
fusion. To critically analyze the effect of fusion we have fused MODIS
Band 1 with individual channel of PALSAR images (i.e., HH, HV and
VV), then MODIS Band 2 with the same bands of PALSR and after
that we have fused MODIS Bands 1 and 2 image and the resultant
image after this fusion is fused with individual channel of PALSAR
data.

Paper contains six sections where in the second section, the study
area used in this paper is discussed. In the third section, theoretical
basis of the curvelet transform as well as the physical significance of
the Quality Assessment indicators is explained. Implementation and
results of the proposed approach are explained in the fourth section.
Experimental results are dealt in the fifth section and finally the paper
is concluded in the sixth section.

Figure 1. Location of the study area (Roorkee region) in the Haridwar
district, India.
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2. STUDY AREA

Roorkee Region is located in the Hardwar district of the state of
Uttaranchal, India, depicted in Fig. 1, and it lies between latitudes
29◦77′N and 30◦N and longitudes 77◦83′E and 78◦01′E. The Roorkee
Region has a blend of urban, water and agriculture bodies with a flat
region.

2.1. Data Used

The MODIS [21] instrument provides high radiometric sensitivity
(12 bit) in 36 spectral bands ranging in wavelength from 0.4µm to
14.4µm and also it is freely available. Two bands are imaged at a
nominal resolution of 250 m at nadir, with five bands at 500m, and
the remaining 29 bands at 1 km. In this paper, the Band 1 of spatial
resolution 250 m and bandwidth 620–670 nm, and Band 2, of spatial
resolution of 250 m and bandwidth 842–876 nm is considered as these
bands has special features to identify the agriculture and other land
covers. In this paper, the MODIS image considered is MODIS/Terra
Surface Reflectance 8-Day L3 Global 250 m SIN Grid (MOD09Q1).
And the MODIS image is of April 7th 2009.

The Phased Array type L-band SAR (PALSAR) sensor
onboard the satellite acquires SAR imagery at a wavelength of
23.5 cm (frequency 1.27 GHz) with capabilities of multimode and
multipolarization observation. PALSAR can operate in several
modes: the fine-beam single (FBS) polarization mode(HH), fine-beam
dual (FBD) polarization mode (HH/HV or VV/VH), polarimetric
(PLR) mode (HH/HV/VH/VV), and ScanSAR (WB) mode (HH/VV)
(Rosenqvist et al., 2007), where HH, HV, VH and VV represent the
polarizations in transmitting and receiving directions (H represents
horizontal polarization and V represents vertical polarization).
Depending on the different modes, PALSAR acquires image at spatial
resolutions ranging from 6.25 to 50 m, with swath widths from 70
to 360 km, and off-nadir looking angles from 9.7◦ to 50.8◦ [22]. In
overlapping areas, PALSAR could reach a temporal resolution higher
than the satellite orbit repeat cycle of 46 days. These features,
coupled with the regional observation strategy, make PALSAR imagery
very attractive for spatially and temporally consistent monitoring
system. In this paper, the PALSAR is of product L1.0CEOS. The
PALSAR image has the incidence angle of 21.5◦ and approximately
30m resolution. And the PALSAR image was acquired on April 6th
2009.

The PALSAR, which is side-looking Radar will have distortion
depends on terrain. As the Roorkee region is of flat region, the
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PALSAR is not affected.

3. THEORETICAL BASIS

3.1. Curvelet Transform for Fusion

The main feature of the curvelet transform is that it is sensitive to
directional edges and capable of representing the highpass details of
object contours at different scales through few sparse nonzero coef-
ficients. Different steps are given below for applying curvelet fusion
technique.

Step 1: ATrous Wavelet Transform
The ATrous wavelet transform (ATWT) [23, 24] is a nonorthogonal

multiresolution decomposition defined by a filter bank {hn} and {gn =
δn − hn}, with the Kronecker operator δn denoting an all pass filter.
The filter bank does not allow perfect reconstruction to be achieved if
the output is decimated. In the absence of decimation, the low pass
filter is up sampled by 2j , before processing the jth level; hence the
name “ATrous” which means “with holes”. In two dimensions, the
filter bank becomes {hmhn} and {δmδn−hmhn} which means that the
2-D detail signals is given by the pixel difference between two successive
approximations.

For J-level decomposition, the ATWT accommodates a number of
coefficients J + 1 times greater than the number of pixels.

Due to the absence of decimation, the synthesis is simply obtained
by summing details levels to the approximation:

f(m, n) = cJ(m,n) +
J∑

j=1

dj(m,n) (1)

where, cJ(m,n) and dj(m,n), j = 1, . . . , J are obtained through 2-D
separable linear convolution with the equivalent lowpass and highpass
filters, respectively.

Step 2: Ridgelet Transform
The next step is finding a transformation capable of representing

straight edges with different slopes and orientations. A possible
solution is the ridgelet transform [20], which may be interpreted as
the 1-D wavelet transform of the Radon transform. This is the basic
idea behind the digital implementation of the ridgelet transform. The
ridgelet basis function is given by [24–26]:

ψa,b,θ(x1, x2) = a
−1
2 ψ

(
(x1 cos θ + x2 sin θ − b)

a

)
(2)
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for each a > 0, each b ∈ R and each θ ∈ [0, 2π). This function is
constant along lines x1 cos θ + x2 sin θ = const.

Thus, the ridgelet coefficients of an image f(x1, x2), are
represented by

Rf (a, b, θ) =

∞∫

−∞

∞∫

−∞
ψa,b,θ(x1, x2)f(x1, x2)dx1dx2 (3)

This transform is invertible and the reconstruction formula is given by:

f(x1, x2) =

2π∫

0

∞∫

−∞

∞∫

0

Rf (a, b, θ)ψa,b,θ(x1, x2)
da

a3
db

dθ

4π
(4)

The Radon transform for an object f is the collection of line integrals
indexed by θ ∈ [0, 2π)×R and is given by:

Rf(θ, t) =
∫ ∞

−∞

∫ ∞

−∞
f(x1, x2) ∗ δ (x1 cos θ + x2 sin θ − t) dx1dx2 (5)

Thus, the ridgelet transform can be represented in terms of the Radon
transform as follow:

Rf (a, b, θ) =

∞∫

−∞
Rf(θ, t)a

−1
2 ψ

(
(t− b)

a

)
dt (6)

Hence, the ridgelet transform is the application of the 1-D wavelet
transform to the slices of the Radon transform where the angular vari-
able θ is constant and t is varying.

Step 3: Curvelet Transform
The curvelet transform is given by filtering and applying multi-

scale ridgelet transform on each bandpass filters which is described as
following in different steps.

Step 3.1: Subband Decomposition
The image is filtered into subbands

f → (Pof, ∆1f, ∆2f, . . .) (7)

where a filter Po deals with frequencies ξ ≤ 1 and the bandpass filter
∆s is concentrated near the frequencies [2s, 22s+2], e.g.,

∆s = ψ2s ∗ f, Ψ2s (ξ) = Ψ
(
2−2sξ

)
(8)

Step 3.2: Smooth Partitioning
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Each subband is smoothly windowed into “squares” of an
appropriate scale.

∆sf → (wQ∆sf) Q ∈ Qs (9)

Step 3.3: Renormalization
Each resulting square is renormalized to unit scale

gQ = (TQ)−1 (wQ∆Sf) , Q ∈ Qs (10)

Step 3.4: Ridgelet Analysis
Each square is analyzed via the discrete ridgelet transform.
For improved visual and numerical results of the digital curvelet

transform, [19] presented the following discrete curvelet transform
algorithm:

i) apply the ATWT algorithm with J scales as implied in (1)

f(m,n) = cJ(m, n) +
J∑

j=1

dj(m,n)

ii) set B1 = Bmin;
iii) for j = 1, . . . j do

a) partition the subband wj with a block size Bj and apply the
digital ridgelet transform to each block;
b) if j modulo 2 = 1 then Bj+1 = 2Bj ;
else Bj+1 = Bj .

iv) Apply the ridgelet transform to each block.

Figure 2 depicts the flow chart of Curvelet Transform which
explains the decomposition of the original image into subbands followed
by the spatial partitioning of each subband. The Ridgelet transform
is then applied to each block [19].

3.2. The Quality Assessment

In order to assess the quality of the fused product by means other than
simple visual inspection of the images, some quantitative assessment
criteria have been defined by comparing the fused product and the low
spatial resolution multispectral images [27]. A series of indicators have
been used for this purpose:
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3.2.1. Correlation Coefficient

The correlation coefficient [29] of two images is often used to indicate
their closeness between the images. Comparing the original image
with the fused image, one can find the degree of differences. The
correlation coefficient ranges from −1 to +1. A correlation coefficient
of +1 indicates that the two images are highly correlated, i.e., very close
to one another, and a correlation coefficient of −1 indicates that the
two images are exactly opposite each other. The correlation coefficient
is given by

corr(A,B) =

n∑
j=1

m∑
i=1

(xi,j − µ(A))
(
x′i,j − µ(B)

)

√
n∑

j=1

m∑
i=1

(xi,j − µ(A))2
n∑

j=1

m∑
i=1

(
x′i,j − µ(B)

)2
(11)

where A and B are two images, xi,j and x′i,j the elements of the image
A and the image B, respectively. µ(A) and µ(B) stand for their
mean values. The fused image which will best preserve the spectral
information of the original low resolution multispectral image is the
one that has the maximum correlation with the initial low resolution
multispectral image [28, 30].

3.2.2. RMSE

The Root Mean Square Error (RMSE) [31] measures the spectral
fidelity between the original and the fused image. It measures the
amount of change per pixel due to the processing and is described by

RMSE(A,B) =

√√√√√
n∑

j=1

m∑
i=1

(
xi,j − x′i,j

)2

n ∗m
(12)

where A and B are two images, xi,j and x′i,j the elements of the image
A and the image B, respectively.

3.2.3. RMD

The Relative Difference of Means (RMD) [30] between the fused
product and the original low spatial resolution multispectral image
is given by

RMD(F, LR) =
F − LR

LR
(13)
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where F is the mean value of the fused image and LR is the mean
value of the original low spatial resolution image.

The fused image which will best preserve the spectral information
of the original low resolution multispectral image is the one that has
the smallest possible relative difference of means.

3.2.4. RVD

The Relative Variation Difference (RVD) [30] between the fused
product σ2

F and the original low spatial resolution multispectral image
σ2

LR

RV D(F, LR) =
σ2

F − σ2
LR

σ2
LR

(14)

where σ2
F = 1

N−1

N∑
i=1

(Fi − F )2, σ2
LR = 1

N−1

N∑
i=1

(LRi − LR)2.

The fused image which will best preserve the spectral information
of the original low resolution multispectral image is the one that has
the smallest possible relative variation difference.

3.2.5. DI

The Deviation Index (DI) [32], measuring the normalized global
absolute difference of the fused image (F ) with the low spatial
resolution multispectral image (LR):

DI(F,LR) =
1

N ∗N

N∑

i=1

N∑

j=1

|Fi,j − LRi,j |
LRi,j

(15)

The fused image which will best preserve the spectral information of
the original low resolution multispectral image is the one that has the
smallest possible deviation index.

3.2.6. PSNR

The peak signal to noise ratio (PSNR) [33] index reveals the
radiometric distortion of the final image compared to the original.

PSNR = 20 log10

peak√
MSE

(16)

where

MSE =
1
N

N∑

i=1

(Fi − LRi)
2
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where Fi is the fused image pixel i value, LRi is the low spatial
resolution image pixel i value, N is the number of non-null image
pixels, Peak is the maximum possible pixel value.

The fused image which will best preserve the spectral information
of the original low resolution multispectral image is the one that has
the highest possible PSNR.

3.2.7. UQI

The Universal Image Quality Index (UQI) [34] introduced by

UQI =
4σF.LRFLR

σ2
F + σ2

LR

[(
F

)2 +
(
LR

)2
] (17)

where F = 1
N

N∑
i=1

Fi, LR = 1
N

N∑
i=1

LRi, σ2
F = 1

N−1

N∑
i=1

(Fi − F )2,

σ2
LR = 1

N−1

N∑
i=1

(LRi − LR)2, σF.LR = 1
N−1

N∑
i=1

(Fi − F )(LRi − LR).

The fused image which will best preserve the spectral information of
the original low resolution multispectral image is the one that has the
highest possible UQI.

4. IMPLEMENTATION AND RESULTS

Figure 2 represents the basis of curvelet transform used for the fusion of
PALSAR and MODIS data; whereas Figs. 3, 4 and 5 show the flowchart
of the proposed methodology for the curvelet fusion of MODIS data
and PALSAR data for land cover enhancement.

The raw MODIS data is initially calibrated and geo-referenced and
the raw PALSAR data are also geo-referenced. Before fusing the PAL-
SAR images, Wishart Gamma filter is applied on the PALSAR images.
The Wishart Gamma Map Filter is a polarimetric filer which is suit-
able for polarimetric data. It performs well in the presence of regular
texture and moderate relief. The filter operates under the assumption
of target reciprocity (i.e., HV = VH) [35]. Hence for the PALSAR
data, Wishart Gamma Map Filter is applied, and thus only three fil-
tered images are produced (HH, HV and VV). Consequently MODIS
and PALSAR data are subsetted to Roorkee region and the care is
taken so that area of sub-set region of both satellite images should
be approximately equal. Therefore, MODIS has 108 ∗ 108 pixels and
PALSAR has 1071 ∗ 1071 no of pixels after subsetting, by which both
are acquiring approximately the same area. The Subsetted MODIS
Band 1 and Band 2 are shown in Figs. 8(a) and 8(b) respectively and
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the subsetted PALSAR HH, HV and VV Polarized images are shown
in Figs. 7(a), 7(b) and 7(c) respectively.

Fusion of MODIS Band 1 on MODIS Band 2
MODIS Band 1 and Band 2 are considered initially. The Band 1

is fused with the Band 2, through the curvelet transform Fig. 2. (For
ATWT transform, (1) is computed for Band 2, thereby Band 2 is
decomposed into J + 1 subbands, which includes CJ & dj , where
CJ is a coarse or smooth version of Band 2, and dj is the details
of Band 2 at scale 2−j , here j = 2. CJ is replaced by Band 1 and then
the Ridgelets transform ((2) to (6)) is applied to all the decomposed
subbands, i.e., dj bands, thereby obtained ridgelet coefficients are hard-
thresholded in order to enhance edges in the fused image and inverse
ridgelet transforms (IRT) is carried out to obtain a new image which

Figure 2. Curvelet transform flowgraph. The figure illustrates the
decomposition of the original image into subbands followed by the
spatial partitioning of each subband (i.e., each subband is decomposed
into blocks). The ridgelet transform is then applied to each block [28].
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MODIS Band 1 

Interpolate
(1071*1071)

PALSAR

Subset
(1071*1071)

Georeferene
Georeferene

Curvelet

MO1_PA
(1071*1071)

Wishart Gamma 

Map Filter

Subset

(108*108)

Figure 3. Flowchart the method-
ology, for the fusion of MODIS
(Band 1) on PALSAR data.

MODIS Band 2 

Interpolate
(1071*1071)

PALSAR

Subset
(1071*1071)

Georeferene
Georeferene

Curvelet

MO2_PA
(1071*1071)

Wishart Gamma 

Map Filter

Subset

(108*108)

Figure 4. Flowchart the method-
ology, for the fusion of MODIS
(Band 2) on PALSAR data.

MODIS  

Band 1 Band 2

Subset

(108*108)

Subset

(108*108)

Interpolate

(1071*1071)

PALSAR

Subset
(1071*1071)

Georeferene Georeferene

Georeferene

Curvelet
Curvelet

MOD12
(108*108)

MO_PA
(1071*1071)

Wishart Gamma 
Map Filter

Figure 5. Flowchart the methodology, for the fusion of MODIS
(Band 1 and Band 2) on PALSAR data.
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reflects the fused image (MOD12) of Band 1 and Band 2, i.e., the
resultant fused image MOD12 of 108 ∗ 108 pixels. The flowchart is
depicted in Fig. 5. This MOD12 image is interpolated through bi-linear
interpolation technique to the scale of the PALSAR data of 1071∗1071
pixels. The fused image is shown in Fig. 11(a). The flowcharts for the
fusion of PALSAR images with the MODIS images are deciphered in
the following steps.

Step 1: Fusion of MODIS Band 1 with the PALSAR
polarized images

Figure 3 implies the proposed methodology for the fusion of
MODIS Band 1 and PALSAR polarized image. MODIS Band 1 and
PALSAR polarized image are considered initially and MODIS Band 1
is interpolated through bi-linear interpolation technique to the scale
of the PALSAR data of 1071*1071 pixels. ATWT transformation is
applied for PALSAR and CJ (j = 3 for present case) is replaced by
MODIS Band 1 which gives the resultant fused image MO1 PA that
has 1071 ∗ 1071 pixels. The PALSAR polarized HH band is fused with
the MODIS Band 1 and the resultant fused is MO1 PA(HH) and is
revealed in Fig. 9(a). Similarly the fused image of PALSAR polarized
HV band is MO1 PA(HV) and is depicted in Fig. 9(b) and the fused
image of PALSAR polarized VV band is MO1 PA(VV) and is shown
in Fig. 9(c).

Figure 6. Toposheet of the study area (Roorkee region) in the
Haridwar district, India.
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(a) (b)

(c)

Figure 7. (a) PALSAR HH polarized. (b) PALSAR HV polarized.
(c) PALSAR VV polarized.

Step 2: Fusion of MODIS Band 2 with the PALSAR polarized
images

The proposed methodology for the fusion of MODIS Band 2 and
PALSAR polarized image is shown in Fig. 4. MODIS Band 2 and
PALSAR polarized image are considered initially and MODIS Band 2
is interpolated through bi-linear interpolation technique to the scale
of the PALSAR data of 1071 ∗ 1071 pixels. ATWT transformation is
applied for all the PALSAR polarized bands and CJ (j = 3 for present
case) is replaced by MODIS Band 2 which gives the resultant fused
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(a) (b)

Figure 8. (a) MODIS Band 1. (b) MODIS Band 2.

image MO2 PA that has 1071 ∗ 1071 pixels. The PALSAR polarized
HH band is fused with the MODIS Band 2 and the resultant fused
is MO2 PA(HH) and is revealed in Fig. 10(a). Similarly the fused
image of PALSAR polarized HV band is MO2 PA(HV) and is depicted
in Fig. 10(b) and the fused image of PALSAR polarized VV band is
MO2 PA(VV) and is shown in Fig. 10(c).

Step 3: Fusion of MOD12 image with the PALSAR
polarized images

In the flowchart of Fig. 5, the MOD12, the interpolated fused
image of MODIS bands and PALSAR polarized bands are considered
for the fusion. ATWT transformation is applied for all the PALSAR
polarized bands and CJ (j = 3 for present case) is replaced by
MOD12 which gives the resultant fused image MO PA that has
1071 ∗ 1071 pixels. The PALSAR polarized HH band is fused with
the MOD12 and the resultant fused is MO PA(HH) and is revealed
in Fig. 11(b). Similarly the fused image of PALSAR polarized HV
band is MO12 PA(HV) and is depicted in Fig. 11(c) and the fused
image of PALSAR polarized VV band is MO12 PA(VV) and is shown
in Fig. 11(d).
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(a) (b)

(c)

Figure 9. (a) MO1 PA(HH), the resultant fused image of MODIS
Band 1and HV polarized image. (b) MO1 PA(HV), the resultant fused
image of MODIS Band 1 and HH polarized image. (c) MO1 PA(VV),
the resultant fused image of MODIS Band 1 and VV polarized image.

5. ANALYSIS OF EXPERIMENT RESULTS

5.1. Visual Interpretation

The toposheet for the Roorkee region is shown in Fig. 6, and on the
toposheet, 4 regions are selected and it is named by A, B, C and D
respectively. Region A and D are urban region, B and C are river
channels. In MODIS Band 1, Fig. 8(a), only the region D can be seen
and in MODIS Band 2, Fig. 8(b), none of the regions can be seen
clearly.
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(a) (b)

(c)

Figure 10. (a) MO2 PA(HH), the resultant fused image of MODIS
Band 2 and HH polarized image. (b) MO2 PA(HV), the resultant fused
image of MODIS Band 2 and HV polarized image. (c) MO2 PA(VV),
the resultant fused image of MODIS Band 2 and VV polarized image.

Where as, the MODIS bands (Band 1, Band 2, and MOD12)
fused with the HV PALSAR bands, i.e., MO1 PA(HV), MO2 PA(HV)
and MO PA(HV) have a distinguish river channels, i.e., the region
represented by B and C are represented more clearly, and it is marked
by B and C in respective Figs. 9(b), 10(b) and 11(c). The region
represented by A is urban and it is clearly shown in all the fused images,
i.e., MO1 PA(HH), MO1 PA(HV), MO1 PA(VV), MO2 PA(HH),
MO2 PA(HV), MO2 PA(VV), MO PA(HH), MO PA(HV) and
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(a) (b)

(c) (d)

Figure 11. (a) MOD12, the resultant fused image of MODIS Band 1
and MODIS Band 2. (b) MO PA(HH), the resultant fused image of
MOD12 and HH polarized image. (c) MO PA(HV), the resultant
fused image of MOD12 and HV polarized image. (d) MO PA(VV),
the resultant fused image of MOD12 and VV polarized image.

MO1 PA(VV) (i.e., Figs. 9(a)–(c), 10(a)–(c), and 11(b)–(d) and it
is marked in all the fused images by A. The D region is clearly
shown in the fused images fused with MOD12, and MODIS Band 1,
i.e., MO1 PA(HH), MO1 PA(HV), MO1 PA(VV), MO PA(HH),
MO PA(HV) and MO PA(VV) and is marked in Figs. 9(a), 9(b), 9(c),
11(b), 11(c) and 11(d).

This is not a very clear visual interpretation, but we can interfere



210 Harish Kumar and Singh

(a) (b)

(c)

Figure 12. (a) Minimum distance classified PALSAR HH polarized.
(b) Minimum distance classified PALSAR HV polarized. (c) Minimum
distance classified PALSAR VV polarized.

that fusion of MODIS and PALSAR works and enhances some
landcover. The fused image utility is checked by classification also
which is presented in next section.

5.2. Classification Accuracy

The Minimum Distance classification technique has been applied for
obtaining the major type of land cover classification, i.e., urban,
agriculture and water. ENVI 4.3 software is used for georeferencing,
calibration and classification purpose where as we have developed codes
in MATLAB 7.0 for fusion methodology.
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(a) (b)

Figure 13. (a) Minimum distance classified MODIS Band 1. (b)
Minimum distance classified MODIS Band 2.

We have identified 392 Ground Control points (GCP) for
agriculture, 358 GCP for urban and 311 GCP for water bodies for
training and for testing 209 GCP for agriculture, 318 GCP for urban
and 223 GCP for water bodies from Toposheet of Roorkee region
which is shown in Fig. 6, Google earth, and Ground Survey points.
The Control points were basically collected by ground survey with
the use of GPS and more than 200 points were separately collected
for each classes, and these points were overlapped on Google Earth
and Toposheet for visual interpretation of the points. On the basis of
these GCPs, we have computed the classification accuracy for PALSAR
Bands.

Similarly for MODIS bands, we have identified 35 GCP for
agriculture, 22 GCP for urban and 30 GCP for water bodies for training
and for testing 38 GCP for agriculture, 27 GCP for urban and 28
GCP for water bodies and for the fused images, we have identified
355 GCP for agriculture, 309 GCP for urban and 333 GCP for water
bodies for training and for testing 217 GCP for agriculture, 202 GCP
for urban and 165 GCP for water bodies. On the basis of these
GCPs, the Minimum Distance classification is calculated, and thereby
classification accuracy is computed.

The minimum distance classified image of PALSAR HH, HV and
VV Band are shown in Figs. 12(a), 12(b) and 12(c) respectively. In
Figs. 13(a), 13(b), show the minimum distance classified image of
MODIS Band 1 and Band 2. The minimum distance classified image
of MO1 PA(HH), MO1 PA(HV) and MO1 PA(VV), the resultant
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Table 1. Classification accuracy.

Producers Accuracy Users Accuracy 

Images
Agriculture Urban Water Agriculture Urban Water

Overall

Classificati

on
Accuracy 

MODIS Band 1 23.68       44.44   82.14   42.86       48.00   48.94   47.3118 

MODIS Band 2 63.16       48.15   92.86 60.00       54.17   89.66   67.7419 

MOD12 39.47       59.26   82.14  57.69       53.33   62.16   58.0645 

HH 28.71       79.87  82.06   36.59       100.0   55.12   66.2667 

HV 58.85       96.23   95.07   84.25       100.0 71.14   85.4667 

VV 31.58       80.50   74.44   35.68       100.0 53.72   65.0667 

MO1_PA(HH) 82.95       76.73   75.15   68.18       100.0   75.15   78.5959 

MO1_PA(HV) 82.49       73.76   75.15   66.79       100.0 74.25   77.3973 

MO1_PA(VV) 82.03       76.24   75.15   66.92       99.35   76.07   78.0822 

MO2_PA(HH) 88.02       54.95   95.15   66.55       82.84   96.32   78.5959 

MO2_PA(HV) 89.86       58.91   95.76 70.14       85.00   95.18   80.8219 

MO2_PA(VV) 86.64       55.94   94.55   66.67       82.48   94.55   78.2534 

MO_PA(HH) 96.31       72.77   89.70   74.38       100.0   94.87   86.3014 

MO_PA(HV) 94.47       71.29   88.48   72.70       100.0   92.41   84.7603 

MO_PA(VV) 96.31       71.78   84.85   71.82       100.0   94.59   84.5890 

fused image of MODIS Band 1 and PALSAR bands, is depicted in
Figs. 14(a), 14(b) and 14(c) respectively. In Figs. 15(a), 15(b) and
15(c) shows the minimum distance classified image of MO2 PA(HH),
MO2 PA(HV) and MO2 PA(VV) respectively, the resultant fused
image of PALSAR (HH, HV and VV) and MODIS Band 2. The
minimum distance classified image of MOD12, the resultant fused
image of MODIS Band 1 and Band 2, is depicted in Fig. 16(a).
The resultant fused image of MOD12 and PALSAR (HH, HV and
VV) bands are MO PA(HH), MO PA(HV) and MO PA(VV), and its
minimum distance classified image is depicted in Figs. 16(b), 16(c) and
16(d) respectively.

The classification accuracy is calculated and tabulated in the
Table 1. The fused image of MODIS Band 1 and PALSAR
bands are MO1 PA(HH), MO1 PA(HV) and MO1 PA(VV), and
there overall classification accuracy are 78.5959, 77.3973 and 78.0822
respectively. MO2 PA(HH), MO2 PA(HV) and MO2 PA(VV), the
resultant fused image of MODIS Band 2 and PALSAR bands, and
there overall classification accuracy are 78.5959, 80.8219 and 78.2534
respectively. The fused image of MOD12 and PALSAR bands
are MO PA(HH), MO PA(HV) and MO PA(VV), and there overall
classification accuracy are 86.3014, 84.7603 and 84.5890 respectively.
Thereby, the overall classification accuracy for the fused images with
MOD12 is better that the overall classification accuracy for the fused
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(a) (b)

(c)

Figure 14. (a) Minimum distance classified MO1 PA(HH), the
resultant fused image of MODIS Band 1 and HH Polarized image. (b)
Minimum distance classified MO1 PA(HV), the resultant fused image
of MODIS Band 1 and HV Polarized image. (c) Minimum distance
classified MO1 PA(VV), the resultant fused image of MODIS Band 1
and VV Polarized image.

images with MODIS Band 2, and which is better than the overall
classification accuracy for the fused images with MODIS Band 1.

The producers accuracy of agriculture for the fused image with
MOD12, i.e., MO PA(HH), MO PA(HV) and MO PA(VV) are 96.31,
94.47 and 96.31 respectively, and it is better than the producers
accuracy of agriculture for the fused image with MODIS Band 2, i.e.,
MO2 PA(HH), MO2 PA(HV) and MO2 PA(VV) and there producers
accuracy are 88.02, 89.86 and 86.64 respectively, and which is better
than the producers accuracy of agriculture for the fused image with
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(a) (b)

(c)

Figure 15. (a) Minimum distance classified MO2 PA(HH), the
resultant fused image of MODIS Band 2 and HH Polarized image. (b)
Minimum distance classified MO2 PA(HV), the resultant fused image
of MODIS Band 2 and HV Polarized image. (c) Minimum distance
classified MO2 PA(VV), the resultant fused image of MODIS Band 2
and VV Polarized image.

MODIS Band 1, i.e., MO1 PA(HH), MO1 PA(HV) and MO1 PA(VV)
and there producers accuracy are 82.95, 82.49 and 82.03 respectively.

The producers accuracy of urban for the fused image with
MODIS Band 1, i.e., MO1 PA(HH), MO1 PA(HV) and MO1 PA(VV)
are 76.73, 73.76 and 76.24 respectively, and it is better than the
producers accuracy of urban for the fused image with MOD12, i.e.,
MO PA(HH), MO PA(HV) and MO PA(VV) and there producers
accuracy are 72.77, 71.29 and 71.78 respectively, and which is better
than the producers accuracy of urban for the fused image with MODIS
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(a) (b)

(c) (d)

Figure 16. (a) Minimum distance classified MOD12 (resultant fused
image of MODIS Band 1 and Band 2). (b) Minimum distance classified
MO PA(HH), the resultant fused image of MOD12 and HH Polarized
image. (c) Minimum distance classified MO PA(HV), the resultant
fused image of MOD12 and HV Polarized image. (d) Minimum
distance classified MO PA(VV), the resultant fused image of MOD12
and VV Polarized image.

Band 2, i.e., MO2 PA(HH), MO2 PA(HV) and MO2 PA(VV) and
there producers accuracy are 54.95, 58.91 and 55.94 respectively.

The producers accuracy of water for the fused image with
MODIS Band 2, i.e., MO2 PA(HH), MO2 PA(HV) and MO2 PA(VV)
are 95.15, 95.76 and 94.55 respectively, and it is better than the
producers accuracy of water for the fused image with MOD12, i.e.,
MO PA(HH), MO PA(HV) and MO PA(VV) and there producers
accuracy are 89.70, 88.48 and 84.85 respectively, and which is better
than the producers accuracy of water for the fused image with MODIS
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Band 1, i.e., MO1 PA(HH), MO1 PA(HV) and MO1 PA(VV) and
there producers accuracy are 75.15, 75.15 and 75.15 respectively.

The users accuracy of agriculture for the fused image with
MOD12, i.e., MO PA(HH), MO PA(HV) and MO PA(VV) are 74.38,
72.70 and 71.82 respectively, and it is better than the users accuracy
of agriculture for the fused image with MODIS Band 2, i.e.,
MO2 PA(HH), MO2 PA(HV) and MO2 PA(VV) and there users
accuracy are 66.55, 70.14 and 66.67 respectively, and which is better
than the users accuracy of agriculture for the fused image with MODIS
Band 1, i.e., MO1 PA(HH), MO1 PA(HV) and MO1 PA(VV) and
there users accuracy are 68.18, 66.79 and 66.92 respectively.

The users accuracy of urban for the fused image with MOD12,
i.e., MO PA(HH), MO PA(HV) and MO PA(VV) are 100.00, 100.00
and 100.00 respectively, and it is better than the users accuracy of
urban for the fused image with MODIS Band 1, i.e., MO1 PA(HH),
MO1 PA(HV) and MO1 PA(VV) and there users accuracy are 100.00,
100.00 and 99.35 respectively, and which is better than the users
accuracy of urban for the fused image with MODIS Band 2, i.e.,
MO2 PA(HH), MO2 PA(HV) and MO2 PA(VV) and there users
accuracy are 82.84, 85.00 and 82.48 respectively.

The users accuracy of water for the fused image with MODIS
Band 2, i.e., MO2 PA(HH), MO2 PA(HV) and MO2 PA(VV) are
96.32, 95.18 and 94.55 respectively, and it is better than the users
accuracy of water for the fused image with MOD12, i.e., MO PA(HH),
MO PA(HV) and MO PA(VV) and there users accuracy are 94.87,
92.41 and 94.59 respectively, and which is better than the users
accuracy of water for the fused image with MODIS Band 1, i.e.,
MO1 PA(HH), MO1 PA(HV) and MO1 PA(VV) and there users
accuracy are 75.15, 74.25 and 76.07 respectively.

MO PA(HH) the resultant image of fusion of MOD12 (Resultant
image of MODIS Band 1 and Band 2) and HH PALSAR band is
exemplifying the highest classification accuracy of 86.3014% overall
classification accuracy comprising 96.31% of agriculture, 72.77% of
water and 89.70% of urban producers accuracy, and 74.38% of
agriculture, 100.0% of water and 94.87% of urban users accuracy.

5.3. Quality Assessment

The correlation coefficient, RMSE, RMD, RVD, DI, PSNR and UQI
is computed as by the (11), (12), (13), (14), (15), (16), (16) and (17)
respectively. These quality assessment indicators have been calculated
for the fused images, with respect to MODIS Bands. In Table 2,
the quality assessment indicators are tabulated for the fused images
MO1 PA(HH), MO1 PA(HV), MO1 PA(VV), with respect to MODIS
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Table 2. Quality assessment indicators between MODIS Band 1 and
PALSAR Bands.

MODIS Band 1

Corr RMSE RMD RVD DI PSNR UQI

MO1_PA(HH) 0.9917 4.0861 −0.3044 −0.6249 0.2965 16.6188 0.0080

MO1_PA(HV) 0.9802 6.3747 −0.2434 −0.5399 0.3691 16.5318 0.0060

MO1_PA(VV) 0.9722 7.6103 −0.1974 −0.5933 0.3222 19.4116 0.0072

Table 3. Quality assessment indicators between MODIS Band 2 and
PALSAR Bands.

MODIS Band 2 

Corr RMSE RMD RVD DI PSNR UQI

MO2_PA(HH) 0.9838 4.0841 −0.2739 −0.5428 0.1932 16.2280 0.0078

MO2_PA(HV) 0.9620 6.3744 −0.2758 −0.5174 0.2748 14.8443 0.0062

MO2_PA(VV) 0.9471 7.6093 −0.1917 −0.5070 0.3036 15.9705 0.0075

Table 4. Quality assessment indicators between MOD12 (MODIS
Band 1 + Band 2) and PALSAR Bands.

MOD12

Corr RMSE RMD RVD DI PSNR UQI

MO_PA(HH) 0.9920 4.0749 −0.3717 −0.6388 0.1896 20.8267 0.0118

MO_PA(HV) 0.9807 6.3681 −0.3246 −0.5753 0.2373 17.9525 0.0106

MO_PA(VV) 0.9728 7.6042 −0.3098 −0.6250 0.2724 19.7172 0.0104

Band 1. The quality assessment indicators for the fused images
MO2 PA(HH), MO2 PA(HV), MO2 PA(VV) with respect to MODIS
Band 2 is tabulated in the Table 3. And in Table 4 the quality
assessment indicators are tabulated for the fused images MO PA(HH),
MO PA(HV), MO PA(VV) with respect to MOD12 (Resultant fused
image of MODIS Band 1 and Band 2).

There exists a high closeness between MOD12 and MO PA(HH),
as the correlation indicator has the highest value, from the Tables 2,
3, 4. The degree of change is least between MO PA(HH) and MOD12,
as the RMSE is low. The fused image which will best preserve
the spectral information is the one that has the smallest possible
RMD, and from the Table 2, 3, 4, the smallest possible RMD exists
between MO PA(HH) and MOD12. The RVD between MO PA(HH)
and MOD12 is low, and hence it implies, the RVD of MO PA(HH)
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and MOD12 preserves the best spectral information. The fused image
which will best preserve the spectral information is the one that has the
smallest possible DI, and the DI of MO PA(HH) and MOD12 is low,
and thereby the spectral information is preserved. The PSNR between
MO PA(HH) and MOD12 is high, and hence it implies, the PSNR of
MO PA(HH) and MOD12 preserves the best spectral information. The
fused image which will best preserve the spectral information is the one
that has the highest possible UQI, and the UQI of MO PA(HH) and
MOD12 is high, and thereby the high spectral information is preserved.

Above discussions implies that the quality assessment indicators
like correlation coefficient, RMSE, RMD, RVD, DI, PSNR and UQI
produce a better fused result for MO PA(HH) (i.e., resultant fused
image of MOD12 and HH).

6. CONCLUSION

A curvelet transform based fusion is applied to various combination
of PALSAR with MODIS image to assess the quality of fused
image. The fused images are visually and quantitatively analyzed
by quality assessment indicators (Correlation Coefficient, Root Mean
squared error, Relative Mean Difference, Relative Variation Difference,
Deviation Index, Peak signal-to-noise ratio (PSNR), Universal Image
Quality Index) in one hand, and in another hand land cover
classification accuracy is also compared with fused and without fused
image. It is clearly observed that the resultant fused image of HH-
PALSAR image with MOD12 (Resultant fused image of MODIS
Band 1 and Band 2), i.e., MO PA(HH), is providing maximum
classification accuracy in comparison to other combinations of fused
images. It is evident that the overall classification accuracy of fused
image is quite enhanced in comparison to the classification accuracy
of individual MODIS images, i.e., MODIS Band 1 and MODIS
Band 2. It is inferred with the quality indicators that the fused
images are preserving their spectral behavior but enhancing the spatial
information as it is clear from the results of classification accuracies.
This type of fusion may be helpful in near future to maximize the use
of MODIS images.
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