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Abstract—The energy conservation of lossless network reflects a
series of novel symmetry in S parameter. This paper presents
the generalized modulus symmetry, spurious reciprocity, constant
characteristic phase and determinant of the lossless block network. The
perfect matching condition of block load network [Γl] and the invariable
lossless property of S parameter of generalized block network are
developed. Application examples are given to illustrate the application
and validity of the proposed theory.

1. INTRODUCTION

The lossless network is a very important basis for microwave synthesis
in microwave engineering. In fact, with the assumption of the
lossless condition synthetic models of a considerable amount of
microwave components can reasonably approximate a number of
practical engineering problems, such as microwave filters [1], power
dividers [2] and directional couplers [3].

The most essential property of the lossless network is the energy
conservation. In other words, all energy entering into the network can
be expressed in terms of reflection or scattering. As Emmy Noether,
a known mathematician, revealed, any sort of the conservation must
correspond to some kind of symmetry. In the lossless network, it is the
Hermite symmetry. Specifically, scattering matrix [S] satisfies

[S]+ [S] = [I] (1)

where [ ]+ = [∗]T = ([ ]T )∗. Here superscript ∗ represents conjugation.
[ ]T denotes matrix transpose, and [I] is a unity matrix. Eq. (1)
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is referred to the lossless unitarity. For a two-port lossless network,
the unitary condition (1) can be expressed as three independent
equations [4] 



|S11|2 + |S21|2 = 1
|S12|2 + |S22|2 = 1
S∗11S12 + S∗21S22 = 0

(2)

By some derivations of (2), the S parameter properties of the two-port
lossless network can be summarized as follows [5]:

1. Modulus symmetry
|S11| = |S22| (3)

That is to say, there is an electromagnetic asymmetry at port 1
and port 2, i.e., S11 6= S22. But with the lossless condition, we
can obtain the same moduli.

2. Spurious reciprocity
|S12| = |S21| (4)

Similarly, the two-port lossless network can be nonreciprocal, viz.
S12 6= S21. However, the lossless condition guarantees the same
moduli.

3. Characteristic phase Φ

Φ = (ϕ12 + ϕ21)− (ϕ11 + ϕ22) = ±π (5)

in which Sij = |Sij |eϕij (i, j = 1, 2). There is a constant
characteristic phase or standing property in the lossless network.
The determinant of S parameter of the lossless network det[S] can
be expressed as

det [S] = ej(ϕ11+ϕ22) = −ej(ϕ12+ϕ21) (6)

and the modulus of det [S] is equal to 1.
One of the applications of the two-port lossless network is the

perfect matching problem. Specifically, the network is connected by
the lossy load ΓL through [S] in order to get Γin = 0. In this case, the
perfect matching condition becomes

S∗22 = ΓL (7)

In recent years, a lot of researches on the multi-port lossless
network have been done on the basis of S parameter properties of
the two-port lossless networks. Liang and Qiu [6] first extended
the modulus symmetry of the two-port lossless networks to a multi-
port lossless reciprocal network. The phase relation of the two-port
lossless network has been generalized to a lossless n-port network [7].
Characteristic phase Φ of the three- and four-port even symmetry
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networks has been discussed [8]. Liang et al. further developed the
characteristic phase Φ of a lossless n-port network in the case of a
non-square sub-matrix S parameter [9]. Heiber and Vernon derived
the matching conditions for a reciprocal lossless five-port network [10].
In [11], a condition to achieve a kind of completely matching problem,
i.e., min |Sii| (i = 1, 2, . . . , n), has been derived. Some bounding
conditions for S parameter of a three-port reciprocal lossless network
have been discussed by Butterweck [12]. A lot of works on the modulus
symmetry, spurious reciprocity and characteristic phase of the lossless
n-port network have been carried out, but to our knowledge the perfect
matching problem and invariable lossless property of the multi-port
lossless network have not been studied yet.

In this paper, the block network method is first utilized to develop
the modulus symmetry, spurious reciprocity, constant characteristic
phase and determinant of the multi-port lossless network in analogy
with those of the two-port lossless networks. In the following,
the perfect matching condition of the multi-port lossless network is
proposed when the block load network [Γl] is considered. Furthermore,
the invariable lossless property of S parameter of generalized block
network is studied. Finally, some practical multi-port lossless networks
are given to validate the proposed theory.

2. THE LOSSLESS BLOCK NETWORK

With development of the large complex systems, the multi-port
network theory [6–12] becomes increasingly important. Especially the
block network in essence is the function division of the complex system.
Fig. 1 shows a general n-port network. According to the function of
the network, the ports can be divided into two parts: Part I denotes
the input port or generalized source port consisting of p ports; Part II
denotes the output port or generalized load port consisting of q ports.
Here n = p + q.

[ ]S

1

p

1p +

n

Port  I Port  I I

Figure 1. A n-port lossless block network.
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According to the lossless unitarity (1), we can obtain the
determinant of (1) as

|det [S]| = 1 (8)

Using the function division above, we have in the form of the block
matrix: [

bI

bΠ

]
=

[
SI I SI Π

SΠ I SΠ Π

] [
aI

aΠ

]
(9)

where SI I and SΠ Π are the p× p and q× q square matrixes, and SI Π

and SΠ I are the p× q and q × p arbitrary matrixes. Using (1) we can
obtain three independent equations similar to (2) as





S+
I ISI I + S+

Π ISΠ I = Ip

S+
I ΠSI Π + S+

Π ΠSΠ Π = Iq

S+
I ISI Π + S+

Π ISΠ Π = 0p q

(10)

2.1. Generalized Modulus Symmetry

Similar to the derivation process in [9], introducing matrix [U ]

[U ] =
[

SI I 0p q

0q p Iq

]
(11)

and left multiplying [S] by [U ]+, we can get

[U ]+ [S] =
[

S+
I I

SI I S+
I I

SI Π

SΠ I SΠ Π

]
(12)

By calculating the determinant of (12), we can obtain

detS+
I I

det [S] = det
[

S+
I I

SI I + S+
Π ISΠ I S+

I I
SI Π + S+

Π ISΠ Π

SΠ I SΠ Π

]

= det
[

Ip 0p q

SΠ I SΠ Π

]
= det [SΠ Π] (13)

Considering (8), we can get [9]

|det SI I| = |detSΠ Π| (14)

Eq. (14) is the generalized modulus symmetry. Note that in general
cases SI I and SΠ Π are the square matrices of different orders.

2.2. Generalized Spurious Reciprocity

The definitions of the inverse matrixes have two kinds of forms, i.e.,
the left inverse and right inverse. Due to the definition of the unitarity
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matrix similar to that of the inverse matrix, we have the other form of
the lossless unitarity except (1) [9]

[S] [S]+ = [I] (15)

Eq. (15) can be expanded as




SI IS
+
I I + SI ΠS+

I Π = Ip

SΠ IS
+
Π I + SΠ ΠS+

Π Π = Iq

SΠ IS
+
I I + SΠ ΠS+

I Π = 0q p

(16)

By left multiplying the third equation in (10) by SΠ I and considering
the third equation in (16), we can get

SΠ ΠS+
I ΠSI Π = SΠ IS

+
Π ISΠ Π (17)

Taking the determinant of (17), we have

det
(
S+

I ΠSI Π

)
= det

(
SΠ IS

+
Π I

)
(18)

Similarly, we also obtain

det
(
SI ΠS+

I Π

)
= det

(
S+

Π ISΠ I

)
(19)

Here (18) and (19) denote the generalized spurious reciprocity. Note
that (18) is not equivalent to (19), because SI ΠS+

I Π is a p-order square
matrix, whereas S+

I ΠSI Π is a q-order square matrix. When p is equal
to q, we further have from (18) and (19) [7]

|det SI Π| = |detSΠ I| (20)

In addition, according to (10) and (16) we also get

SI ΠS+
I Π − S+

Π ISΠ I = S+
I ISI I − SI IS

+
I I (21)

S+
I ΠSI Π − SΠ IS

+
Π I = SΠ ΠS+

Π Π − S+
Π ΠSΠ Π (22)

Therefore, only if

S+
I ISI I = SI IS

+
I I (23)

SΠ ΠS+
Π Π = S+

Π ΠSΠ Π (24)

we can get

SI ΠS+
I Π = S+

Π ISΠ I (25)

S+
I ΠSI Π = SΠ IS

+
Π I (26)

In this scenario, we can clearly see the reciprocity in (25) and (26).
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2.3. Determinant of Lossless Network det[S ]

Assume

detSI I = |detSI I| ejΦI I det SΠ Π = |detSΠ Π| ejΦΠ Π (27)

Substituting (27) and (14) into (13), we can obtain

det [S] = ej(ΦI I+ΦΠ Π) (28)

Eq. (28) indeed is the generalization of the determinant of the two-
port lossless network. In order to further express det [S] using the
block matrix, we introduce the block inverse matrix of S

[S]−1 =
[

RI I RI Π

RΠ I RΠ Π

]
(29)

in which

RI I =
(
SI I − SI ΠS−1

Π ΠSΠ I

)−1 (30)

RΠ Π =
(
SΠ Π − SΠ IS

−1
I I SI Π

)−1 (31)

Considering the lossless condition, i.e., [S]−1 = [S]+, we have

RI I = S+
I I (32)

RΠ Π = S+
Π Π (33)

When p = q, we can obtain

SI I

(
S+

Π Π

)−1 = SI ISΠ Π − SI ISΠ IS
−1
I I SI Π (34)

By taking the determinant of (34) and considering

det
[
SI I

(
S+

Π Π

)−1
]

= ej[ΦI I+ΦΠ Π] (35)

we can derive det [S] of the lossless network in the case of p = q, namely

det [S] = det
[
SI ISΠ Π − SI ISΠ IS

−1
I I SI Π

]
(36)

Similarly, we can also obtain

det [S] = det
[
SI ISΠ Π − SI ΠS−1

Π ΠSΠ ISΠ Π

]
(37)

Eqs. (36) and (37) are the block matrix expressions for det[S] of the
lossless network when p = q.
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2.4. Generalized Characteristic Phase Φ

The generalized characteristic phase of the lossless network is
meaningful only when p is equal to q. In other words, when SI Π and
SΠ I are square matrices, there is a generalized characteristic phase.
Assuming

detSI Π = |det SI Π| ejΦI Π detSΠ I = |det SΠ I| ejΦΠ I (38)

the determinant of the third equation in (16) can be expressed as

|detSΠ I| |detSI I| ej(ΦΠ I−ΦI I) = − |detSI Π| |detSΠ Π| ej(ΦΠ Π−ΦI Π)

(39)
Noticing the phase term in (39), we can define the generalized
characteristic phase Φ as [9]

Φ = (ΦI Π + ΦΠ I)− (ΦI I + ΦΠ Π) = ±π (40)

It can be seen from (40) that the n-port lossless network has the
constant generalized characteristic phase.

If we take into further consideration the magnitude of (39), we
can get the generalized spurious reciprocity (20) in the case of p = q.
Note that it is an inevitable consequence of the lossless phase property
in the case of the generalized modulus symmetry. According to (40),
we further have

det [S] = −ej(ΦI Π+ΦΠ I) (41)

Moreover, det [S] can be expressed as in terms of the block matrix

det [S] =
1

|det SI I|2 + |det SI Π|2
det

[
det SI I detSI Π

det SΠ I det SΠ Π

]
(42)

Note that the valid condition for (42) is p = q.

3. PERFECT MATCHING CONDITION

For an n-port lossless network, the load network [ΓL] is connected with
the Port II, as shown in Fig. 2. According to (9), we have

aΠ = ΓLbΠ (43)

Denoting
bI = SpaI (44)

where Sp is a p-order matrix and can be considered as the generalized
reflection at the Port I of the block network. We can easily get

Sp = SI I + SI Π

(
Γ−1

L − SΠ Π

)−1
SΠ I (45)
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[  ]S [ ]LΓPort  I

1

p

Figure 2. Perfect matching problem for an n-port lossless block
network.

The perfect matching condition for the n-port lossless network becomes
Sp = 0p (46)

In this case, (45) can be rewritten as

SI I = −SI Π

(
Γ−1

L − SΠ Π

)−1
SΠ I (47)

By solving (47), we can obtain the perfect matching condition

ΓL =
{
SΠ Π −

(
SΠ IS

+
Π I

) (
S+

I ΠSI IS
+
Π I

) (
S+

I ΠSI Π

)}−1 (48)

Especially when p = q, (48) becomes

ΓL =
{
SΠ Π − SΠ IS

−1
I I SI Π

}−1 (49)

According to (31) and (33), we can finally get

ΓL = S+
Π Π (50)

Eq. (50) is the generalization of the perfect matching condition of the
two-port lossless networks. Note that for the square matrix of p = q,
if independent load ΓL is a diagonal matrix, SΠ Π must also be a
diagonal matrix so that the perfect matching problem can be achieved;
on the contrary, when there are some non-diagonal elements in SΠ Π,
the perfect matching condition requires that ΓL should include some
non-diagonal elements. However, the problem becomes very complex
for the case of p 6= q. Detailed examples will be discussed in Section 5.

4. CONSTANT LOSSLESS PROPERTY OF
GENERALIZED BLOCK PARAMETER [S]

In order to easily study the large complex system, the origin parameter[
S0

]
is generally extended to the generalized parameter [S]. The origin

parameter
[
S0

]
is defined as

[
b0

]
=

[
S0

] [
a0

]
(51)
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where
[
a0

]
and

[
b0

]
at Ports I and II are normalized according to

impedance [Ip] and [Iq], respectively. Specifically, we can get

a0
I =

1
2

(VI + II) b0
I =

1
2

(VI − II) (52)

a0
Π =

1
2

(VΠ + IΠ) b0
Π =

1
2

(VΠ − IΠ) (53)

Note that the voltages and currents at Ports I and II have been
normalized according to the characteristic impedance of the system.
The extension of [S0] to [S] can be made using

[b] = [S] [a] (54)

in which [a] and [b] at Ports I and II are normalized according
to arbitrary complex diagonal impedance matrices [Zg] and [ZL],
respectively. They can be expressed as in terms of the voltages and
currents {

aI = 1
2 (VI + ZgII)

[√
Re (Zg)

]−1

bI = 1
2

(
VI − Z∗g II

) [√
Re (Zg)

]−1 (55)





aΠ = 1
2 (VΠ + ZLIΠ)

[√
Re (ZL)

]−1

bΠ = 1
2 (VΠ − Z∗LIΠ)

[√
Re (ZL)

]−1 (56)

Considering (51)∼(56) and assuming

[
S0

]
=

[
S0

I I S0
I Π

S0
Π I S0

Π Π

]
[S] =

[
SI I SI Π

SΠ I SΠ Π

]
(57)

[S] can be expressed as in terms of
[
S0

]

SI I =
[(

I − S0
I IΓg

)− S0
I ΠΓL

(
I − S0

Π ΠΓL

)−1 ΓgS
0
Π I

]−1

·
[(

S0
I I − Γ∗g

)
+ S0

I ΠΓL

(
I − S0

Π ΠΓL

)−1
S0

Π I

] [
e−j2ϕg

]
(58)

SΠ Π =
[(

I − S0
Π ΠΓL

)− S0
Π IΓg

(
I − S0

I IΓg

)−1 ΓLS0
I Π

]−1

·
[(

S0
Π Π − Γ∗L

)
+ S0

Π IΓg

(
I − S0

I IΓg

)−1
S0

I Π

] [
e−j2ϕL

]
(59)

SI Π =
[√

1− |Γg|2
] [(

I−S0
I IΓg

)−S0
I ΠΓL

(
I−S0

Π ΠΓL

)−1 ΓgS
0
Π I

]−1

·S0
I Π

(
I − S0

Π ΠΓL

)−1
[√

1− |ΓL|2
] [

e−j(ϕg+ϕL)
]

(60)
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SΠ I =
[√

1− |ΓL|2
] [(

I−S0
Π ΠΓL

)−S0
Π IΓg

(
I−S0

I IΓg

)−1 ΓLS0
I Π

]−1

·S0
Π I

(
I − S0

I IΓg

)−1
[√

1− |Γg|2
] [

e−j(ϕg+ϕL)
]

(61)

where the source reflection matrix of p-order Γg and load reflection
matrix of q-order ΓL are

Γg = (Zg − I) (Zg + I)−1 = (Zg + I)−1 (Zg − I) (62)

ΓL = (ZL − I) (ZL + I)−1 = (ZL + I)−1 (ZL − I) (63)

and [√
Re (Zg)

]
[Zg + I]−1 =

[√
1− |Γg|2

] [
e−jϕg

]
(64)

[√
Re (ZL)

]
[ZL + I]−1 =

[√
1− |ΓL|2

] [
e−jϕL

]
(65)

(Zg + I)−1 (
Z∗g + I

)
=

[
e−j2ϕg

]
(66)

(ZL + I)−1 (Z∗L + I) =
[
e−j2ϕL

]
(67)

in which[√
1−|Γg|2

]
=diag

[√
1−|Γg1|2

√
1−|Γg2|2 . . .

√
1−|Γgp|2

]
(68)

[√
1−|ΓL|2

]
=diag

[√
1−|ΓL1|2

√
1−|ΓL2|2 . . .

√
1−|ΓLq|2

]
(69)

[
e−jϕg

]
= diag

[
e−jϕg1 e−jϕg2 . . . e−jϕgp

]
(70)[

e−jϕL
]

= diag
[

e−jϕL1 e−jϕL2 . . . e−jϕLq
]

(71){
Zgi = Rgi + jXgi

ϕgi = tan−1
(

Xgi

1+Rgi

)
i = 1, 2, . . . , p (72)

{
ZLm = RLm + jXLm

ϕLm = tan−1
(

XLm
1+RLm

)
m = 1, 2, . . . , q (73)

Note that both the source reflection matrix and load reflection matrix
are diagonal matrices. When origin parameter [S0] is a lossless
network, parameter [S] must also be a lossless network, which can
be proved by considering the energy conservation relation (the input
power at Port I equal to the output power at Port II) and (55) and (56).
This is referred to the invariable lossless property in the generalized
block matrix.
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5. APPLICATION EXAMPLE

In this section, the generalized modulus symmetry and the perfect
matching condition for a completely symmetric reciprocal three-port
network are discussed, as shown in Fig. 3.

The S parameter of the three-port lossless network can be written
as

[S] =

[
α β β
β α β
β β α

]
(74)

in which α = |α| ejϕα and β = |β| ejϕβ . Here we let

SI I = α SΠ Π =
[
α β
β α

]
SI Π = [β β ] SΠ I = [ β β ]T (75)

In this case, the unitarity becomes{ |α|2 + 2 |β|2 = 1
αβ∗ + α∗β + |β|2 = 0

(76)

According to the second equation of (76), we can obtain

cos θ = cos (ϕα − ϕβ) = − |β|
2 |α| (77)

It is easily seen from (77) that |β|/2 |α| ≤ 1.

5.1. Case 1. Generalized Modulus Symmetry

According to (75), we have
|detSI I|=|α| (78)

|det SΠ Π|=
∣∣∣∣det

[
α β
β α

]∣∣∣∣=
√
|α|4 + |β|4 − 2 |α|2 |β|2 cos 2θ (79)

[ ]S

Port  I

Port  I I1

2

3

Figure 3. A three-port lossless completely symmetric reciprocal
network.
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Considering cos 2θ = 2 cos2 θ − 1 and (77), we can get

|detSΠ Π| =
√
|α|4 + 2 |α|2 |β|2 (80)

Substituting the first equation of (76) into (80), we can obtain

|detSΠ Π| = |α| (81)

Hence, we get the generalized modulus symmetry, i.e.,

|det [SI I]| = |det [SΠ Π]| (82)

5.2. Case 2. Perfect Matching Condition

The perfect matching problem for the completely symmetric reciprocal
three-port network is shown in Fig. 4. Assume that two independent
loads ΓL2 and ΓL3 are connected with Ports 2 and 3, respectively.

According to (45), we know

Sm = SI I + SI Π

(
Γ−1

L − SΠ Π

)−1
SΠ I (83)

where

ΓL =
[

ΓL2 0
0 ΓL3

]
(84)

Substituting (84) into (83), we can obtain

Sm = α +
β2 (ΓL2 + ΓL3) + 2β2 (β − α) ΓL2ΓL3

(1− αΓL2) (1− αΓL3)− β2ΓL2ΓL3
(85)

For simplicity, we let
Γl = ΓL2 = ΓL3 (86)

[ ]S

2L
Γ

3L
Γ

0
m

S =

1

2

3

Figure 4. Perfect matching problem for a three-port lossless
completely symmetric reciprocal network.
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Therefore, the perfect matching condition Γin = Sm = 0 becomes[
α

(
α2 − β2

)
+ 2β2 (β − α)

]
Γ2

l + 2
(
β2 − α2

)
Γl + α = 0 (87)

This is a quadratic equation of one variable. For example, we choose
{

α = 1
3

β = −2
3

(88)

It is worthwhile pointing out that the assumption in (88) must satisfy
the unitarity of the S matrix. Substituting (88) into (87), we have

{
Γl1 = −1

3
Γl2 = 1 (89)

Here only Γl1 is kept, because Γl2 makes the denominator of (85) equal
to zero. So when the perfect matching condition is achieved, we have

ΓL2 = ΓL3 =
1
3

(90)

Note that in this example p is not equal to q. Therefore, [ΓL] is a
diagonal matrix although there are non-diagonal elements in SΠ Π.

6. CONCLUSION

It is a problem worthy of much research effort to reflect the
Hermite symmetry of the lossless network in the block form. The
inherent lossless property lies in the energy conservation. Reflecting
on the network, this kind of conservation includes not only the
magnitude conservation but also the phase condition, which reveals
zero interaction term of the energy in depth.

The block network is a very important tool in the analysis of
the large complex systems. In reality, it groups the ports of the
same function as a whole, which is called as the function division.
In this scenario, various properties of the two-port networks can be
generalized including the generalized modulus symmetry, generalized
spurious reciprocity and constant generalized characteristic phases.

It is worthwhile pointing out that this paper not only concentrates
on the theory development, but emphasizes the practical application
background. For example, the problems about maximum power
output in the large complex systems can be converted into the perfect
matching problems or best matching problems. In this way, the origin
problems become clearer and more concise. Further results will be
reported in other papers.
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