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Abstract—Analytical expressions for the average intensity, mean-
squared beam width and angular spread of partially coherent standard
and elegant Laguerre-Gaussian (LG) beams propagating in turbulent
atmosphere are derived. The properties of the average intensity,
spreading and directionality of partially coherent standard and elegant
LG beams in turbulent atmosphere are studied numerically and
comparatively. It is found that the beam parameters and structure
constant of turbulence together determine the properties of the beams
in turbulent atmosphere. Partially coherent standard and elegant
LG beams with smaller coherence length, larger beam orders and
longer wavelength are less affected by the turbulence. A partially
coherent elegant LG beam is less affected by turbulence than a partially
coherent standard LG beam under the same condition. Furthermore,
it is found that there exist equivalent partially coherent standard and
elegant LG beams, equivalent fully coherent standard and elegant LG
beams, equivalent Gaussian Schell-model beams that may have the
same directionality as a fully coherent Gaussian beam both in free
space and in turbulent atmosphere. Our results will be useful in long
distance free-space optical communications.
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1. INTRODUCTION

As applied to free-space optical communications, laser radar, remote
sensing, imaging and radar system, propagation of laser beams in
turbulent atmosphere are recently studied in detail [1–24]. Various
methods have been proposed to overcome or reduce the turbulence-
induced degradation of laser beams [1]. It was shown that partially
coherent beams are less affected by turbulence than fully coherent
beams [2, 7, 10, 13–18, 20–23]. The use of higher-order beams such
as Hermite-Gaussian, Hermite-Sine-Gaussian, Hermite-sinh-Gaussian
and Laguerre-Gaussian (LG) beams also can reduce the turbulence-
induced degradation [3–6].

Standard LG beams are commonly encountered in laser optics,
material processing and atomic optics [25]. Takenaka et al. proposed
the elegant LG beam as an extension of standard LG beam [26]. Both
standard LG modes and elegant LG modes satisfy the paraxial wave
equation, while the elegant LG modes have a more symmetrical form.
Various methods have been proposed to generate standard and elegant
LG beams [27–32]. Paraxial and non-paraxial propagation properties
of standard and elegant LG beams in free space or through paraxial
optical system have been studied extensively [33–42]. Propagation
properties of a standard LG beam in turbulent atmosphere were
investigated in [3]. More recently, partially coherent standard and
elegant LG beams of all orders were proposed as an extension of
corresponding fully coherent beams, and their paraxial propagations
in free space or through ABCD optical system have been studied in
detail [43]. In this paper, our aim is to investigate the propagation
properties of partially coherent standard and elegant LG beams in
turbulent atmosphere comparatively, and to explore the advantage
of such beams for application in free-space optical communications.
Analytical formulae for the average intensity, mean-squared beam
width and angular spread are derived and numerical examples are
provided.

2. AVERAGE INTENSITY OF PARTIALLY COHERENT
STANDARD AND ELEGANT LG BEAMS
PROPAGATING IN TURBULENT ATMOSPHERE

The second-order statistical properties of a partially coherent beam
are generally characterized by the cross-spectral density (CSD)
W (x1, y1, x2, y2; z) = 〈E∗(x1, y1; z)E(x2, y2; z)〉, where 〈〉 denotes the
ensemble average and “*” is the complex conjugate. In the cylindrical
coordinates, the CSD of a partially coherent standard or elegant LG
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beam of orders p and l generated by a Schell-model source (z = 0) can
be expressed as [43]
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where ri and ϕi (i = 1, 2) are the radial and azimuthal (angle)
coordinates. ω0 is the beam width of the fundamental Gaussian
mode, σg is the transverse coherence length. Ll

p denotes the Laguerre
polynomial with mode orders p and l. For q =

√
2, Eq. (1) denotes

the CSD of a partially coherent standard LG beam; for q = 1, Eq. (1)
denotes the CSD of a partially coherent elegant LG beam; also for p = 0
and l = 0, Eq. (1) degenerates to the CSD of a Gaussian Schell-model
(GSM) beam [44–47].

By use of the following relation between an LG mode and an
Hermite-Gaussian mode [48]
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with Hm(x) being the Hermite polynomial of order m,
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being binomial coefficients, Eq. (1) can be expressed in the following
alternative form in Cartesian coordinates
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Within the validity of the paraxial approximation, the propagation
of a laser beam in turbulent atmosphere can be treated with the well-
known extended Huygens-Fresnel integral formula, and the average
intensity of a partially coherent laser beam in the receiver plane is
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given as follows [1–23]
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where ρ0 = (0.545C2
nk2z)−3/5 is the coherence length (induced by

the atmospheric turbulence) of a spherical wave propagating in the
turbulent medium, C2

n is the structure constant describing how strong
the turbulence is [1], k = 2π/λ is the wavenumber with λ being
the wavelength of the light, z is the propagation axis. In the
derivation of Eq. (4), we have employed Kolmogorov spectrum and
quadratic approximation for Rytov’s phase structure function [1–
23]. The extended Huygens-Fresnel integral and the quadratic
approximation are known to be valid for both weak and strong
turbulence conditions [1, 9, 16].

Substituting from Eq. (3) into Eq. (4), and by applying following
integral and expansion formulae [49, 50],
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we obtain following expression for the average intensity of a partially
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coherent standard or elegant LG beam in the receiver plane
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Eq. (9) can be used conveniently to study the properties of the average
intensity of partially coherent standard and elegant LG beams in
turbulent atmosphere.
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(a) (b)

(c) (d)

Figure 1. Normalized average intensity of a partially coherent
standard LG beam with different initial transverse coherence length
σg in turbulent atmosphere at several propagation distances.

Now we study the properties of the average intensity of partially
coherent standard and elegant LG beams in turbulent atmosphere
numerically using Eq. (9). Figure 1 shows the normalized average
intensity of a partially coherent standard LG beam with different values
of the initial transverse coherence length σg in turbulent atmosphere
at several propagation distances with q =

√
2, p = 2, l = 1, ω0 =

20mm, λ = 632.8 nm and C2
n = 10−14 m−2/3. The average intensity at

a propagation distance z, in Figure 1 and in the figures to follow,
is normalized with respect to its maximum value at z. One finds
from Figure 1 that the source beam profiles of coherent and partially
coherent standard LG beams gradually disappear on propagation
and eventually take Gaussian shapes in turbulent atmosphere. The
evolution properties of the average intensity of a coherent standard LG
beam in turbulent atmosphere are much different from its properties
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in free space, where its beam profile remains invariant on propagation
although its beam spot spreads. The evolution properties of the
average intensity of a coherent standard LG beam in turbulent
atmosphere are similar to those of a partially coherent standard LG
beam in free space [43]. This can be explained by the fact that the
turbulence degrades the coherence of the standard LG beam [51].
It is clear from Figure 1, that the transition from a standard LG
beam into a Gaussian beam becomes quicker as the initial coherence
length decreases. Figure 2 shows the normalized average intensity of a
partially coherent elegant LG beam with different values of the initial
transverse coherence length σg in turbulent atmosphere at several
propagation distances with q = 1, p = 2, l = 1, ω0 = 20 mm, λ =
632.8 nm and C2

n = 10−14 m−2/3. As shown in Figure 2, similar to
standard LG beams, the source beam profiles of coherent and partially

(a) (b)

(c) (d)

Figure 2. Normalized average intensity of a partially coherent elegant
LG beam with different initial transverse coherence length σg in
turbulent atmosphere at several propagation distances.
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coherent elegant LG beams also gradually disappear on propagation
and eventually take Gaussian shapes in turbulent atmosphere. At
suitable distance, a flat-topped beam profile can be observed (see
Figure 2(c)). The conversion from an elegant LG beam to a Gaussian
beam becomes quicker for a smaller coherence length.

Figure 3 shows the normalized average intensity of partially
coherent standard and elegant LG beams with different values of
the beam orders in turbulent atmosphere at z = 1500 m with ω0 =

(a) (b)

Figure 3. Normalized average intensity of partially coherent standard
and elegant LG beams with different values of the beam orders in
turbulent atmosphere at z = 1500 m.

(a) (b)

Figure 4. Normalized average intensity of partially coherent standard
and elegant LG beams with different values of the wavelength λ in
turbulent atmosphere at z = 600 m.
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20mm, λ = 632.8 nm, C2
n = 10−14 m−2/3 and σg = 20 mm. Figure 4

shows the normalized average intensity of partially coherent standard
and elegant LG beams with different values of the wavelength λ in
turbulent atmosphere at z = 600 m with p = 1, l = 2, σg = 10 mm,
ω0 = 20 mm and C2

n = 10−14 m−2/3. One finds from Figures 3 and
4 that the transition from a standard LG beam into a Gaussian
beam becomes quicker for a longer wavelength and smaller beam
orders. Furhermore, numerical results (omitted to save space) also
shown this transition becomes quicker for a larger structure constant
of turbulence.

3. MEAN-SQUARED BEAM WIDTH AND ANGULAR
SPREAD OF PARTIALLY COHERENT STANDARD
AND ELEGANT LG BEAMS IN TURBULENT
ATMOSPHERE

In the rectangular coordinates, the mean-squared beam width of a laser
beam is defined as [52, 53]
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Substituting from Eqs. (3) and (4) into Eq. (10) and making use
of the integral transform technique, after some integral calculations
and operations (see Appendix A), we obtain the following expressions
for the mean-squared beam width of partially coherent standard and
elegant LG beams in the receiver plane in turbulent atmosphere
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The first three terms inside the square root sign in Eq. (11) or Eq. (12)
represent the effect of diffractive spreading of a partially coherent
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standard or elegant LG beam in free space, while the fourth term stands
for the spreading due to turbulence. From Eqs. (11) and (12), it is
clear that the mean-squared beam width of partially coherent standard
and elegant LG beams are determined by the beam parameters (beam
orders p, l, beam waist width ω0, wavelength λ, initial transverse
coherence length σg) and the structure constant of turbulence (C2

n).
The value of mean-squared beam width increases as the beam orders
and the structure constant increases or as the initial coherence length
decreases.

Now we analyze three special cases of Eqs. (11) and (12):
(a) For p = 0 and l = 0, Eqs. (11) and (12) reduce to
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Eq. (14) gives the expression for the mean-squared beam width of
a GSM beam in turbulent atmosphere [16]. Under the condition of
σg = ∞, Eq. (14) reduces to the expression for the mean-squared beam
width of a fully coherent Gaussian beam in turbulent atmosphere.

(b) For p = 0, Eqs. (11) and (12) reduce to
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In this case, partially coherent standard and elegant LG beams have
the same mean-squared beam width when the beam parameters are
the same. This is caused by the fact that Ll

0(x) = 1, the expressions
of the CSD of partially coherent standard and elegant LG beams with
p = 0 (see Eq. (1)) are almost the same except for a constant coefficient
q2l.

(c) For l = 0, p 6= 0, Eqs. (11) and (12) reduce to
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In this case, the mean-squared beam width of a partially coherent
elegant LG beam in the source plane (z = 0) is independent of the
beam order p, while its value depends on p upon propagation. The
mean-squared beam width of a partially coherent standard LG beam
depends on p everywhere.
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(a) (b)

(c)

Figure 5. Mean-squared beam width of a partially coherent standard
LG beam versus the propagation distance z in free space and in
turbulent atmosphere for different values of beam parameters.

Figure 5 shows the mean-squared beam width of a partially
coherent standard LG beam versus the propagation distance z in
free space and in turbulent atmosphere for different values of beam
parameters p, l, σg and λ with C2

n = 10−14 m−2/3. For the convenience
of comparison, we have set ω0 = 10 mm for the partially coherent
standard LG beam with p = 1, l = 1, and ω0 = 7.56mm for the
corresponding beam with p = 2, l = 2, so that they have the same
mean-squared beam width in the source plane (z = 0). Figure 6
shows the mean-squared beam width of a partially coherent elegant LG
beam versus the propagation distance z in free space and in turbulent
atmosphere for different values of beam parameters p, l, σg and λ

with C2
n = 10−14 m−2/3. Similarly we have set ω0 = 17.32mm for

the partially coherent elegant LG beam with p = 1, l = 1, and
ω0 = 15.49mm for p = 2, l = 2 for the corresponding beam with p = 2,
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l = 2. One finds from Figures 5 and 6 that the difference between solid
and dashed curves decreases as the initial coherence length σg decreases
or as the beam orders p, l and the wavelength λ increase, which means
that partially coherent standard and elegant LG beams with larger
beam orders, longer wavelength and smaller initial coherence length
are less affected by the turbulence. Furthermore, we calculate in
Figure 7 the mean-squared beam width of partially coherent standard
and elegant LG beams versus the propagation distance z in turbulent
atmosphere for different values of the beam parameters and structure
constant for comparison. We find from Figure 7 that a partially
coherent elegant LG beam is less affected by the turbulence than a
partially coherent standard LG beam, and this advantage is more
apparent for smaller structure constant C2

n, larger beam orders p, l,
larger initial coherence length σg, and longer wavelength λ.

(a) (b)

(c)

Figure 6. Mean-squared beam width of a partially coherent elegant
LG beam versus the propagation distance z in free space and in
turbulent atmosphere for different values of beam parameters.
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(a) (b)

(c) (d)

Figure 7. Mean-squared beam width of partially coherent standard
and elegant LG beams versus the propagation distance z in turbulent
atmosphere for different values of the beam parameters and structure
constant.

Now we discuss the directionality of partially coherent standard
and elegant LG beams in turbulent atmosphere. From Eqs. (11) and
(12), the angular spread of partially coherent standard and elegant LG
beams in turbulent atmosphere turn out to be
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z→∞
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Under the condition of C2
n = 0, Eq. (18) reduces to the expressions

for the angular spread of partially coherent standard and elegant LG
beams in free space. One finds from Eq. (18) that partially coherent
standard and elegant LG beams with the same beam parameters have
the same directionality both in free space and in turbulent atmosphere.
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Under the condition of p = 0, l = 0, Eq. (18) reduces to

θGSM (z) = 2

√
1

k2ω2
0

+
1

k2σ2
g

+ 2(0.545C2
n)6/5k2/5z6/5. (19)

Eq. (19) stands for the angular spread of a GSM beam in turbulent
atmosphere, which is somewhat different from Eq. (14) in [54] because
of a quadratic approximation of Rytov’s phase structure function is
used; i.e., z6/5 appears in the second term of Eq. (19) here, while z
occurs in [54]. Eq. (19) agrees well with Eq. (31) in [16].
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Under the condition of p = 0, l = 0 and σg = ∞, Eq. (18) reduces

to
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Eq. (21) is the angular spread of a fully coherent Gaussian beam, which
agrees well with Eq. (35) in [16]. From a comparison of Eqs. (18)–
(21), one comes to the conclusion that partially coherent standard and
elegant LG beams, fully coherent standard and elegant LG beams,
GSM beams and Gaussian beams will generate the same angular spread
both in free space and in turbulence if following condition is satisfied
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Above result is valid no matter how strong the turbulence is. Such
beams are called equivalent partially coherent standard and elegant
LG beams, equivalent fully coherent standard and elegant LG beams,
equivalent GSM beams. Figure 8 shows the mean-squared beam width
of the equivalent partially coherent standard and elegant LG beams,
the equivalent fully coherent standard and elegant LG beams, the
equivalent GSM beam and the corresponding fully coherent Gaussian
beam propagating both in free space and in turbulent atmosphere.
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The calculation parameters are listed in Table 1. As expected,
the equivalent partially coherent standard and elegant LG beams,
the equivalent fully coherent standard and elegant LG beams, and
the equivalent GSM beam exhibit the same directionality as the
corresponding fully coherent Gaussian beam both in free space and
in turbulent atmosphere.

Figure 8. Mean-squared beam width of the equivalent partially
coherent standard and elegant LG beams, the equivalent fully coherent
standard and elegant LG beams, the equivalent GSM beam and the
corresponding fully coherent Gaussian beam propagating both in free
space (C2

n = 0) and in turbulent atmosphere (C2
n = 10−14 m−2/3) with

λ = 632.8 nm. The other calculation parameters are listed in Table 1.

Table 1. Parameters of the equivalent partially coherent standard
and elegant LG beams, the equivalent fully coherent standard and
elegant LG beams, the equivalent GSM beam and the corresponding
fully coherent Gaussian beam.

Beam parameter p l ω0 (mm) σg (mm)
a. Gaussian beam 0 0 10 ∞
b. Partially coherent GSM 0 0 24.004 11
c. Fully coherent SLGB 1 0 17.32 ∞
d. Partially coherent SLGB 1 1 23.094 20
e. Fully coherent ELGB 1 0 17.32 ∞
f. Partially coherent ELGB 1 1 23.094 20
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4. CONCLUSION

The average intensity, spreading and directionality of partially coherent
standard and elegant LG beams propagating in turbulent atmosphere
have been studied in detail both theoretically and numerically.
Analytical expressions for the average intensity, mean-squared beam
width and angular spread of such beams in turbulent atmosphere
have been derived. It is found that the properties of the partially
coherent standard and elegant LG beams in turbulent atmosphere
are closely related to its beam parameters and the structure constant
of turbulence. In general, the smaller the coherence length is, the
larger beam orders are and the longer wavelength is, the less partially
coherent standard and elegant LG beams are affected by the turbulence
although the beams with smaller coherence length, larger beam orders
and longer wavelength have greater spreading in free space. A partially
coherent elegant LG beam has advantage over a partially coherent
standard LG beam for overcoming the destructive effect of turbulence,
and this advantage is more apparent for smaller structure constant C2

n,
larger beam orders p, l, larger initial coherence length σg, and longer
wavelength λ. Furthermore, we have found that there exist equivalent
partially coherent standard and elegant LG beams, equivalent fully
coherent standard and elegant LG beams, Gaussian Schell-model
beams that may have the same directionality as a fully coherent
Gaussian beam both in free space and in turbulence atmosphere under
the condition of Eq. (22). Our formulae are valid for both weak and
strong turbulence conditions. Our results will be useful in long distance
free-space optical communications, remote sensing and laser radar.
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APPENDIX A. DERIVATION OF EQS. (11) AND (12)

Equation (10) can be rewritten as:

w(z) =
√

4F1

F2
, (A1)
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with

F1 =

∞∫

−∞

∞∫

−∞
ξ2S(ξ, η, z)dξdη, (A2)

F2 =

∞∫

−∞

∞∫

−∞
S(ξ, η, z)dξdη. (A3)

First we derive the expression (Eq. (11)) for the mean-squared
beam width of a partially coherent standard LG beam (q =

√
2)

propagating in turbulent atmosphere. Substituting from Eqs. (3) and
(4) into Eq. (A2) and after integrating over y1, y2 and η, we obtain

F1 =
ω0
√

π√
2λz

1
24p+2l(p!)2

p∑

m=0

l∑

n=0

p∑

h=0

l∑

s=0

(in)∗ is
(

p
m

)(
l
n

)(
p
h

)(
l
s

)

22p−2m+n(2p− 2m + n)!δ2p−2m+n,2p−2h+s

×
∞∫

−∞

∞∫

−∞
ξ2H2m+l−n

(√
2x1

ω0

)
H2h+l−s

(√
2x2

ω0

)
exp

(
−x2

1 + x2
2

ω2
0

)

exp
(
−(x1 − x2)2

2σ2
g

)
exp

(
−(x1 − x2)2

ρ2
0

)

× exp
[
− ik

2z
(x2

1 − x2
2) +

ikξ

z
(x1 − x2)

]
dx1dx2dξ, (A4)

where δ2p−2m+n,2p−2h+s = 1 for 2p − 2m + n = 2p − 2h + s and
δ2p−2m+n,2p−2h+s = 0 for 2p − 2m + n 6= 2p − 2h + s. In
the derivation of Eq. (A4), we have applied following integral and
expansion formulae [49, 50]

∞∫

−∞
exp(iξx)dξ = 2πδ(x), (A5)

∞∫

−∞
Hm(x)Hn(x) exp(−x2)dx =

√
π2mm!δm,n, (A6)

where δ(x) stands for the Dirac Delta function. By use of the following
variable transformation

u =
x1 + x2

2
, v = x2 − x1 (A7)



50 Wang et al.

Eq. (A4) becomes

F1 =
ω0
√

π√
2λz

1
24p+2l(p!)2

p∑

m=0

l∑

n=0

p∑

h=0

l∑

s=0

(in)∗ is
(

p
m

)(
l
n

)(
p
h

)(
l
s

)

22p−2m+n × (2p− 2m + n)!δ2p−2m+n,2p−2h+s

∞∫

−∞

∞∫

−∞
ξ2H2m+l−n

[√
2

ω0

(
u− v

2

)]
H2h+l−s

[√
2

ω0

(
u +

v

2

)]
× exp

(
−2u2

ω2
0

− v2

2ω2
0

)

exp
(
− v2

L2
c

)
exp

(
ikuv

z
− ikξv

z

)
dudvdξ. (A8)

Applying the following integral formulae [49, 50]
∞∫

−∞
x2 exp

(−i2πxs

λz

)
dx = − λ3z3

(2π)2
δ
′′
(s), (A9)

∞∫

−∞
f(x)δ

′′
(x)dx = f

′′
(0), (A10)

∞∫

−∞
exp(−x2)Hm(x + y)Hm(x + z)dx = 2m√πLm(−2yz), (A11)

where f(x) is an arbitrary function and f ′′(x) is its second derivative.
After integration over u, v, and ξ, Eq. (A8) becomes

F1 =
2πω2

0

22p+lp!

p∑

m=0

l∑

n=0

p∑

h=0

l∑

s=0

(in)∗ is
(

p
m

)(
l
n

)(
p
h

)(
l
s

)

(l + 2m− n)!(2p− 2m + n)!δ2p−2m+n,2p−2h+s[
(l + 2m− n + 1/2)

ω2
0

4
+

z2

k2

(
(l + 2m− n + 1/2)

ω2
0

+
1

2σ2
g

)

+(0.545C2
n)6/5k2/5z16/5

]
. (A12)

In a similar way, we obtain following expression for F2

F2 =
πω2

0

2
(p + l)!

p!
. (A13)

Substituting from Eqs. (A12) and (A13) into Eq. (A1), after some
operation, we obtain following expression for the mean-squared beam
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width of a partially coherent standard LG beam propagating in
turbulent atmosphere

wSLG(z)=2
√

(2p+l+1)ω2
0

4 + z2

k2

(
2p+l+1

ω2
0

+ 1
σ2

g

)
+ 2(0.545C2

n)6/5k2/5z16/5.

(A14)
Eq. (A14) is the same as Eq. (11) in the text.

Now we derive the expression (Eq. (12)) for the mean-squared
beam width of a partially coherent standard LG beam (q = 1)
propagating in turbulent atmosphere. Substituting from Eqs. (4) and
(5) into Eq. (A2) and after integrating over y1, y2 and η, we obtain

F1 =
ω0

λz

1
24p+2l(p!)2

p∑

m=0

l∑

n=0

p∑

h=0

l∑

s=0

(in)∗ is
(

p
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)(
l
n

)(
p
h

)(
l
s

)

f1(2p−2m+n, 2p−2h+s)×
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−∞

∞∫
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ξ2H2m+l−n

(
x1

ω0

)
H2h+l−s

(
x2

ω0

)

exp
(
−x2

1 + x2
2

ω2
0

)
exp

(
−(x1 − x2)2

2σ2
g

)
× exp

(
−(x1 − x2)2

ρ2
0

)

exp
[
− ik

2z
(x2

1 − x2
2) +

ikξ

z
(x1 − x2)

]
dx1dx2dξ, (A15)

with

f1(a, b) =





0, a + b is an odd number
(−1)(a+3b)/22(a+b−1)/2Γ [(a + b + 1)/2] ,

a + b is an even number
(A16)

where Γ(x) denotes the Gamma function. In the derivation Eq. (A15),
we have applied integral formula:

∞∫

−∞
exp(−2x2)Hm(x)Hn(x)dx

=





0, m + n is an odd number
(−1)(m+3n)/22(m+n−1)/2Γ((m + n + 1)/2),

m + n is an even number
(A17)

By use of the variable transformation (see Eq. (A7)) and after
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integration over u, v, and ξ, Eq. (15) becomes

F1 =
π
√

πω2
0√

2
1

24p+2l(p!)2

p∑

m=0

l∑

n=0

p∑
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s=0
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(
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)(
l
n

)(
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)(
l
s

) 2m+l−n∑
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2h+l−s∑
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1
2(2l+2m+2h−n−s)/2

×
(

2m + l − n
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)(
2h + l − s
l1

)
2l1+m122m+l−n−m1

(2m + l − n−m1)!δ2m+l−n−m1,2h+l−s−l1

×f1(2p− 2m + n, 2p− 2h + s)
[
(b1 + b2 + b3 + b4)ω2

0/8

+(b1+b3−b2−b4)
z2

2k2ω2
0

+
b1z

2

2σ2
gk

2
+ b1

(
0.545C2

n

)6/5
k2/5z16/5

]
,(A18)

where

b1 =
2

Γ (1/2− l1/2) Γ (1/2−m1/2)
,

b2 =
l1(l1 − 1)

Γ (3/2− l1/2) Γ (1/2−m1/2)
,

b3 =
2m1l1

Γ (1− l1/2) Γ (1−m1/2)
,

b4 =
m1(m1 − 1)

Γ (1/2− l1/2) Γ(3/2−m1/2)
.

(A19)

In the derivation of Eq. (A18), we have used Eq. (7). Similarly, we
obtain the expression for F2

F2 = ω2
0π

(2p + l)!
(p!)222p+l+1

. (A20)

Substituting from Eqs. (A18) and (A20) into Eq. (A1), after some
operation, we obtain following expression for the mean-squared beam
width of a partially coherent elegant LG beam propagating in turbulent
atmosphere

wELG(z) = 2
√

A3ω2
0

4 + z2

k2

(
(2p+l+1)

ω2
0

+ 1
k2σ2

g

)
+ 2(0.545C2

n)6/5k2/5z16/5,

(A21)
where A3 is given by Eq. (13). Eq. (A21) is the same as Eq. (12) in
the text.



Progress In Electromagnetics Research, PIER 103, 2010 53

REFERENCES

1. Andrews, L. C. and R. L. Phillips, Laser Beam Propagation in the
Turbulent Atmosphere, 2nd edition, SPIE press, Bellington, 2005.

2. Ricklin, J. C. and F. M. Davidson, “Atmospheric turbulence
effects on a partially coherent Gaussian beam: Implications for
free-space laser communication,” J. Opt. Soc. Am. A, Vol. 19,
No. 9, 1794–1802, 2002.

3. Young, C. Y., Y. V. Gilchrest, and B. R. Macon, “Turbulence-
induced beam spreading of higher-order mode optical waves,” Opt.
Eng., Vol. 41, No. 5, 1097–1103, 2002.
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