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Abstract—A Modular Toroidal Coil (MTC) is composed of several
solenoidal coils (SCs), which are connected in a series and distributed
in the toroidal and symmetrical form. This paper presents analytical
equations of mutual inductance and electromagnetic torque of the
MTC applicable to Tokamak reactors. These equations are based
on those formulated by Neumann. The numerical analysis of the
integrations resulting from these equations is solved using the extended
three-point Gaussian algorithm. The results obtained from the
numerical simulation agree with the empirical results, the experimental
results, and the virtual work theorem, which indicates the reliability
of the presented equations. The behavior of the mutual inductance of
the coil shows that the maximum stored energy is obtained when the
electromagnetic torque is zero, and vise versa.

1. INTRODUCTION

Recent research in the area of plasma reactors (e.g., Tokamak),
Superconductor Magnetic Energy Storage (SMES), and nuclear fusion
reactors concerns studying different coils. As an example, Tokamak
reactors consist of coils with various structures, such as the modular
toroidal (MTC), the helical toroidal, the solenoidal, and the poloidal.

The capability of modular implementation of the MTC is one of
its main advantages over the helical toroidal coil. Because the MTC
has not been studied as extensively as other coils, the mathematical
modeling and analysis of this coil are presented in this paper. The
optimal design of an MTC may be carried out using different objective
functions such as the minimization of the imposed electromagnetic
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(a) (b)

Figure 1. Modular toroidal coil composed of 8 SCs. (a) Three
dimensional diagram of the modular toroidal coil. (b) Projection of
the structure of the modular toroidal coil on the x-y plane.

torque and translational forces on SCs for an optimized holding fixture
design, the maximization of the stored magnetic energy through a
determination of mutual inductances, the minimization of the leakage
flux, the stabilization of Tokamak reactors, and the elimination of
stress. In this article, we present the analytical equations of the mutual
inductance and the electromagnetic torque of this coil. Fig. 1 depicts
the structure of an MTC with solenoid coils (SCs) that are connected
in a series and distributed in the toroidal and the symmetrical form.
Fig. 1(b) shows the projection of this coil on the x-y plane.

In this figure, Rmk is the distance between the symmetry center
of the kth SC from z-axis, υmk is the angle between Rmk direction and
the latitudinal axis of the kth SC, ϕmk is the toroidal angle of the kth
SC, and Hmk defines the distance between the longitudinal axis of the
kth SC and plane z = 0. As mentioned above, usually in the MTC,
Rmi is assumed constant and υmi = 0 for i = 1, . . . , k, . . . , S.

The dependency of analytical equations of inductance of the MTC
on the geometrical parameters of the SCs such as Rmi, υmi, ϕmi,Hmi,
i = 1, . . . , k, . . . , S, when the dimensional parameters of the SCs are
known, shows that these parameters can be used as the degrees of
freedom of the objective function and thus can be manipulated to
satisfy the optimization function.

The structure of this paper is as follows: in Section 2, an
appropriate coordinate system for simplifying the mathematical
equations is presented, and the longitudinal components of the ring
element of each SC in this coordinate system are introduced. In
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Section 3, we discuss our study of the analytical equations of the
mutual inductance. In Section 4, the numerical results of the mutual
inductance are compared with the experimental and empirical results.
In Section 5, the analytical equations of electromagnetic torque are
presented. Finally, in Section 6, the validity of torque equations is
confirmed using virtual work theorem.

2. COORDINATE SYSTEM AND LONGITUDINAL
COMPONENTS

Figure 2 shows the ith and the jth hypothetical rings of the MTC with
the geometrical parameters of υi, ϕi, Ri, ai, Hi and υj , ϕj , Rj , aj ,Hj ,
respectively. To consider these parameters, the coordinate system
should be non-orthogonal, semi-toroidal, three dimensional and
rotational, which is named as NSCS by the authors. This new
coordinate system is to simplify the mathematical equations. An
arbitrary point such as P in the space is defined by ρ, θ, and ϕ (see
Fig. 2). In this coordinate system, unit vectors ~aρ,~aθ, and ~aϕ are
defined in the directions ρ, θ,andϕ, respectively. Fig. 2 shows the unit
vectors of this coordinate system for the point P , located on the ith
ring. The Cartesian coordinate system (CCS) of this point can be
expressed as Equations (1)–(3) using the projection of the ith ring on
the x-y plane as shown in Fig. 3. The longitudinal components of this

Figure 2. The coordinate system and the two hypothetical rings of
the modular toroidal coil.
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Figure 3. The projection of the th ith ring on the x-y plane.

coordinate system are defined by Equation (4).

xp = (Ri cos(ϕ− ϕi) + ai cos θ cos(vi − ϕ + ϕi)) cos ϕ (1)
yp = (Ri cos(ϕ− ϕi) + ai cos θ cos(vi − ϕ + ϕi)) sin ϕ (2)
zp = Hi + ai sin θ (3)

dli = ~aϕ(Ri cos(ϕ−ϕi)+ai cos θ·cos(vi−ϕ+ϕi))dϕ+~aθaidθ+~aρdρ

= ~axdlix + ~aydliy + ~azdliz (4)

where
Ri: the distance between the symmetry center of the ith ring from

z-axis;
ai: the radius of ith ring;
Hi: the distance between the symmetry center of the ith ring from

x-y plane;
ϕi: toroidal angle of the symmetry center of ith ring;
vi: the angle between Ri direction and the latitudinal axes of the

ith ring;
ρ, θ, ϕ: three parameters defining an arbitrary point such as P in

the NSCS;
xp, yp, zp: Cartesian coordinates of an arbitrary point such as P

in the CCS;
dlix, dliy, dliz: longitudinal components of the ith ring;
~ax,~ay,~az: unit vectors of the CCS;
~aρ,~aθ,~aϕ: unit vectors of the NSCS.
The dot product of the unit vectors of this coordinate system

and the Cartesian coordinate system using the projection of the unit
vectors of the two mentioned coordinate systems on the x-y plane are
presented in Table 1. The longitudinal components of the ith ring
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Table 1. The dot product of the unit vectors for the two mentioned
coordinated system.

~ax • ~aθ − sin θ cos(vi − ϕ + ϕi) cos ϕ

~ax • ~aϕ − sinϕ

~ax • ~aρ cos θ cos(vi − ϕ + ϕi) cosϕ

~ay • ~aθ − sin θ cos(vi − ϕ + ϕi) sinϕ

~ax • ~aϕ cosϕ

~ay • ~aρ sinϕ cos(vi − ϕ + ϕi) cos θ

~az • ~aθ cos θ

~az • ~aϕ 0
~az • ~aρ sin θ

element in the Cartesian coordinate system are obtained using Table 1
as Equations (5)–(7). Since the ith ring’s geometric loci is given by
ρ = ai, the longitudinal components of the ith ring by substitution of
dρ = 0 can simplify Equations (4) to (7). Furthermore, the relation
between θ and ϕ for the ith ring and the differential of ϕ, using Fig. 3
can be expressed as Equations (8) and (9).

dlix =dli ·~ax =−ai sin θ cos(vi−ϕ+ϕi)·cosϕdθ+cos θ cos(vi−ϕ+ϕi)
· cosϕdρ− sinϕ(Ri cos(ϕ− ϕi) + ai cos θ cos(vi − ϕ + ϕi))dϕ (5)
dliy =dli ·~ay =−ai sin θ cos(vi−ϕ+ϕi)·sinϕdθ+cos θ cos(vi−ϕ+ϕi)
· sinϕdρ + cosϕ(Ri cos(ϕ− ϕi) + ai cos θ cos(vi − ϕ + ϕi))dϕ (6)
dliz = dli · ~az = ai cos θdθ + sin θdρ (7)

ϕ = ϕi + tan−1

(
ai cos θ sin vi

Ri + ai cos θ cos vi

)
(8)

dϕ =
−aiRi sin vi sin θ

R2
i + a2

i cos2 θ + 2aiRi cos θ cos vi
dθ (9)

The dependency of the presented equations on the geometrical
parameters of the ith ring indicates that the relationship between the
geometrical parameters of the kth SC and the geometrical parameters
of the rings of the same SC should be defined. In Fig. 4, the
latitudinal cross-section of the kth SC of the MTC with the geometrical
parameters of this coil, i.e., υmk, Rmk, ϕmk,Hmk is shown.

In this figure, the numbers on each ring indicates the sequence
of the rings connected in series. As seen in this figure, the kth SC
is composed of NkMk rings where Mk is the number of the layers
and Nk represents the number of the rings in each layer. Knowing
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Figure 4. Latitudinal cross-section of the th Kth sc.

the dimensional parameters of the kth SC (Mk, Nk, dk,Hzk, Rouk, Rink)
and the geometrical parameters of the same coil (υmk, Rmk, ϕmk,Hmk),
the geometrical parameters of the ith ring, i.e., υi, ϕi, Ri, ai, and Hi

can be derived as Equations (10) to (14). Consequently, the relation
between the geometrical parameters of each ring of the MTC with the
geometric and the dimensional parameters of the corresponding SCs
are given as Equations (10) to (14).

ηi = tan−1(hi cos vmk/(Rmk − hi sin vmk)) (10)
ϕi = ϕmk + ηi (11)
vi = vmk − ηi (12)
Ri = (Rmk − hi sin vmk)/ cos ηi (13)

Hi = Hmk (14)
where

Rmk: distance between the symmetry center of the kth SC from
z-axis;

ϕmk: toroidal angle of the symmetry center of kth SC;
Hmk: the distance between the symmetry center of the kth SC

from x-y plane;



Progress In Electromagnetics Research M, Vol. 12, 2010 171

vmk: the angle between Rmk direction and the latitudinal axes of
the kth SC;

Mk: the number of the layers of the kth SC;
Nk: the number of rings in each layer of the kth SC;
dk: the diameter of the conductor of the kth SC;
Hzk: the latitudinal distance between two adjacent conductor of

the kth SC;
Hrk: the longitudinal distance between two adjacent conductor of

the kth SC;
Rouk: the radius of the largest ring of the kth SC;
Rink: the radius of the smallest ring of the kth SC;
hi: the distance between the center of the ith ring from

longitudinal symmetrical axes in latitudinal crosssection of the kth
SC;

hj : the distance between the center of the jth ring from
longitudinal symmetrical axes in latitudinal crosssection of the kth
SC.

3. ANALYTICAL EQUATIONS OF MUTUAL
INDUCTANCE

In this section, the analytical equations of mutual inductance between
two rings and between two selonoidal coils are presented. Many
contributions have been made in the literature to the problem
of mutual inductance calculation for coaxial circular coils [1, 2].
Usually, in the classic electrodynamics, the theoretical equations for
calculation of mutual inductance are divided into four equations
namely, Neumann, Graneaus, Weber, and Maxwell. The mutual
inductance of circular rings can be obtained in analytical or semi-
analytical forms expressed over elliptical integrals of the first, second,
and third kind, Heuman’s Lambda function, Bessel functions, and
Legendre functions [3]. Considering that the Neumann’s equation is
brief and to point when compared with other equations, the paper
uses this equation to calculate the mutual inductance of two circular
rings. Some researchers usually use one of the integrations of the
Neumanns’ equation, which is presented as linear double integration,
to calculate the mutual inductance of two circular rings in a way that
by selecting a proper coordinate system, they convert the integration
of the Neumann’s equation to the first, the second, and the third
elliptical integration, if possible. Such researchers solve the second
integration of the Neumann’s equation as numerically if the integrand
is so complicated and the analytical method is not possible or is not
easy [4]. Using Neumann’s equation (Equation (15)), the mutual
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inductance between the ith and the jth ring with the geometrical
parameters of υi, ϕi, Ri, ai,Hi and υj , ϕj , Rj , aj ,Hj can be calculated.
Furthermore, the mutual inductance between the kth and the lth SCs
are calculated using the current filament [12] via Equation (5).

Lij =(µ0/4π)
∮

ρ=ai

∮

ρ=aj

dli • dlj
|χij | =

∫ 2π

0

∫ 2π

0
g(θi, θj)dθidθj i 6=j (15)

Mkl =
MkNk∑

i=1

MkNk+MlNl∑

j=MkNk+1

Lij (16)

where in these equations:
χij = χx~ax + χy~ay + χz~az = (xj − xi)~ax + (yj − yi)~ay + (zj − zi)~az

g(θi, θj) =
µ0[dlixdljx + dliydljy + dlizdljz]

4π[(xi − xj)2 + (yi − yj)2 + (zi − zj)2]1.5

dlixdljx = [−ai sin θ cos(vi − λi + ϕi) cosλi − sinλi(Ri cos(λi − ϕi)
+ai cos θ cos(vi − λi + ϕi))γi] · [−aj sin θ cos(vj − λi + ϕj) cos λj

− sinλj(Ri cos(λj − ϕj) + aj cos θ cos(vj − λj + ϕj))γj ]
dliydljy = [−ai sin θ cos(vi − λi + ϕi) sinλi + cos λi(Ri cos(λi − ϕi)
+ai cos θ cos(vi − λi + ϕi))γi] · [−aj sin θ cos(vj − λi + ϕj) sin λj

+cos λj(Ri cos(λj − ϕj) + aj cos θ cos(vj − λj + ϕj))γj ]
dlizdljz = [ai cos θi] · [aj cos θj ]

λi = ϕi + tan−1(ai cos θi sin vi/(Ri + ai cos θi cos vi))

γi =
−aiRi sin vi sin θi

R2
i + a2

i cos2 θi + 2aiRi cos θi cos vi

λj = ϕj + tan−1(aj cos θj sin vj/(Rj + aj cos θj cos vj))

γj =
−ajRj sin vj sin θj

R2
j + a2

j cos2 θj + 2ajRj cos θj cos vj

xi = (Ri cos(λi − ϕi) + ai cos θi cos(vi − λi + ϕi)) cos λi

yi = (Ri cos(λi − ϕi) + ai cos θi cos(vi − λi + ϕi)) sinλi

zi = Hi + ai sin θi

xj = (Rj cos(λij − ϕj) + aj cos θj cos(vj − λj + ϕj)) cos λj

yj = (Rj cos(λj − ϕj) + aj cos θj cos(vj − λj + ϕj)) sin λj

zj = Hj + aj sin θj

Mkl the mutual inductance between kth SC and lth SC;
Lij the mutual inductance between ith ring and jth ring;
µ0 magnetic permeability of vacuum.
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4. CONFIRMATION OF NUMERICAL RESULTS USING
EXPERIMENTAL RESULTS

MATLABr m-files are used to simulate the mutual inductance
between two rings and two SCs. Numerical integrations of the
Equation (15) are performed using the extended three-point Gaussian
algorithm [6]. Fig. 5 displays the mutual inductance of two flat

Figure 5. Comparing the empirical and the numerical results of
mutual inductance.

Figure 6. The behavior of the mutual inductance of two coaxial rings.
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rings with the radius of 0.2 m and 0.25 m, and with the center-to-
center distance of d = 0.1 [m] versus n, which n is the number of
divisions in the integral domain. It also shows the error resulting from
the comparison between the analytical and empirical results [7]. In
order to compare the empirical and the numerical results of the same
condition, the geometrical parameters of the two rings are obtained
as Equation (17). From Fig. 5, it is inferred that the optimum value
of n in order to minimize the computation time in the calculation
of mutual inductance is 5. Fig. 6 shows the behavior of the mutual
inductance between two rings when υ2 = υm [rad] and υ1 = 0. This
figure also shows that in a situation in which the surface of the two
rings is orthogonal or parallel, the minimum or the maximum mutual
inductance is obtained, respectively. Note that these situations occur
at υm + ϕ2 = 90 or 270 and 0 or 180 [deg]for d = 0.3m, respectively.

R1 = 0.3 [m], R2 =
√

d2 + R2
1 [m],

ϕ1 = 0 [rad], ϕ2 = tan−1(d/R1) [rad],

v1 = 0 [rad], v2 = − tan−1(d/R1) [rad],

(17)

where
d: center-to-center distance of two falt rings;
In Fig. 7, the MTC, made from aluminum in the laboratory to

validate the presented analytical equations, is depicted.
Figure 8 compares the experimental and the numerical results of

the mutual inductance of the two adjacent and similar SCs, connected
in series with the dimensional and geometrical parameters shown in
Tables 2 and 3 for the two cases υm1 = 0, υm2 = υm and υm1 = υm2 =
υm.

ϕmi = (i− 1)π/4, i = 1, . . . , 8 [rad]

Rmi = 295, i = 1, . . . , 8 [mm]

Hmi = 1000, i = 1, . . . , 8 [mm]

Table 2. The geometrical parameters of
the SCS.

Figure 7. Schematic dia-
gram of the manufactured
MTC composed of 8 SCS.
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Figure 8. The mutual inductances of two similar and adjacent SCs.

Table 3. Dimensional parameters of the SC.
Dimensional parameters of the solenoid coils

Mi 16

Ni 20

di 1.6 [mm]

Hzi 2.1 [mm]

Rini 75 [mm]

Roui 110 [mm]

In this paper, n = 5 (optimal integration interval) for the
numerical calculation is used. Fig. 8 and Table 4 shows that the
experimental results nearly coincide with the analytical equation,
which is given in (16) with the average of the error being less than
5%. This error might result from an error in measurement, the value
of n, the environmental magnetic field, and so forth.

5. THE ANALYTICAL EQUATIONS OF
ELECTROMAGNETIC TORQUE

In this section, the analytical equations of the electromagnetic torque
between the ith and the jth ring or between the kth and the lth
SCs are presented. It should be noted that if the ith ring or the
kth SC are kept constant, then electromagnetic torque will cause the
postural movement of the jth ring or the lth SC. It is assumed that the
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holding fixture of the SC is able to keep the gravity center of these coils
constant. These gravity centers are also considered to be the torque
center for the electromagnetic torque analysis purposes. Another
assumption is that the ith ring or the kth SC are kept constant, and
the jth ring or the lth SC have only one degree of freedom in the
direction of υj or υml. Therefore, the torque of the jth ring in the υj

direction can be obtained through (18). Also, the torque of the lth SC
in the υml directions is obtained by adding all the imposed torques on
the rings of the lth SC using (19). These equations are based on the
Bio-Savart equation by assuming that the torque arm is rj .

Tij = Tijx~ax + Tijy~ay + Tijz~az =
∮

ρ=aj

dT =
∮

ρ=aj

rj × dF

=
∮

ρ=aj

rj×Ijdlj×Bij =
∮

ρ=aj

rj×Ijdlj×
∮

ρ=ai

(µ0/4π)Iidli×
(
aχij/|χij |2

)

= (µ0IiIj/4π)
∮

ρ=aj

∮

ρ=ai

rj × dlj × dli ×
(
aχij/|χij |2

)

= (µ0IiIj/4π)

2π∫

0

2π∫

0

(tx~ax + ty~ay + tz~az)dθidθj (18)

T = Tx~ax + Ty~ay + Tz~az =
MkNk∑

i=1

NkNk+MlNl∑

j=MkNk+1

Tij (19)

where in these equation;

rj = rx~ax + ry~ay + rz~az

= (xj −Rj cosϕj)~ax + (yj −Rj sinϕj)~ay + (zj −Hj)~az

tx = −ryχz(dliydljy + dlixdljx) + rzχy(dlixdljx + dlizdljz)
+rydliz(χxdljx + χydljy)− rzdliy(χxdljx + χzdljz)
ty = −rzχx(dlizdljz + dliydljy) + rxχz(dliydljy + dlixdljx)
+rzdlix(χzdljz + χydljy)− rxdliz(χxdljx + χydljy)

tz = −rxχy(dlizdljz + dlixdljx) + ryχx(dliydljy + dlizdljz)
+rxdliy(χzdljz + χxdljx)− rydlix(χzdljz + χydljy)

Ii: the current of the ith ring;
Ij : the current of the jth ring.
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Table 4. Confirmation of numerical results using experimental results.

Mutual inductance

υ1 = 0, υ2 = υm [deg]

Electromagnetic torque in z direction

υ1 = 0, υ2 = υm [deg]

υm

[deg]

Num.

[mH]

Exp.

[mH]

υm

[deg]

Num.

[m Nm]

Exp.

[m Nm]

0 0.8914 0.9395
0 0.0376 0.0396

11 0.0646 0.0678

23 0.8497 0.8939
23 0.2708 0.2830

34 0.6077 0.6350

46 0.5930 0.6221
46 1.0149 1.0646

57 1.3360 1.4055

69 0.0804 0.0840
69 1.4238 1.5007

80 1.2766 1.3455

91 0.3943 0.4120
92 0.9930 1.0466

103 0.6923 0.7297

114 0.6833 0.7168
115 0.4489 0.4722

126 0.2835 0.2974

137 0.8089 0.8510
137 0.1850 0.1933

149 0.1320 0.1379

160 0.8662 0.9130
160 0.1024 0.1074

172 0.0733 0.0771

υ1 = υ2 = υm [deg] υ1 = υ2 = υm [deg]

0 0.8911 0.9392
0 0.0376 0.0396

11 0.1603 0.1682

23 0.7530 0.7922
23 0.4256 0.4448

34 0.7348 0.7679

46 0.3401 0.3568
46 1.0620 1.1140

57 1.3692 1.4404

69 0.4105 0.4290
69 1.5342 1.6170

80 1.0934 1.1524

91 1.0408 1.0876
92 0.4419 0.4658

103 1.0077 1.0621

114 0.2785 0.2921
115 0.6917 0.7277

126 0.4241 0.4449

137 0.4194 0.4412
137 0.2932 0.3064

149 0.2405 0.2513

160 0.7897 0.8323
160 0.2032 0.2132

172 0.1300 0.1368
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6. VALIDITY OF THE ANALYTICAL EQUATIONS OF
ELECTROMAGNETIC TORQUE USING VIRTUAL
WORK THEOREM

Figure 9 and Table 4 depicts the imposed electromagnetic torque
components on the second SC for υm1 = 0, υm2 = υm, and υm1 =
υm2 = υm, versus υm using Equation (19) and n = 5.

As shown in this figure, the torque component in the x and the
y directions (Tx and Ty) are zero. This is because they do not posses
any degree of freedom in these directions. Also, the electromagnetic
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Figure 9. The behavior of the imposed electromagnetic torque on
the second solenoidal coil for cases υm1 = 0, υm2 = υm [deg] and
υm1 = υm2 = υm [deg].

torque using the virtual work theorem in a magnetic structure, in which
the stored magnetic energy varies with its freedom degrees, is defined
as (20). Since in two SCs connected in series, only mutual inductance
varies with υm, Equation (20) can be expressed as (21). It is noted
that the self-inductance of the coils remains constant when υm varies,
so its differential with respect to υm is zero.

Tz =
∂Wm

∂vm
(20)

Tz = IkIl
∂Mkl

∂vm
= I1I2

∂M12

∂vm
(21)

Therefore, the differential of the experimental results of the mutual
inductance between two adjacent SCs connected in series will result in
the torque in z direction, and these results can be compared with
the torque that resulted from Equation (19), shown in Fig. 9. A
comparison of Fig. 8 and Fig. 9 shows that the maximum stored
magnetic energy occurs when the electromagnetic torque is zero and
the mutual inductance is maximum while the minimum energy is
obtained when the electromagnetic torque is maximum (the mutual
inductance is zero). Moreover, Fig. 9 indicates that the presented
analytical equations to determine the electromagnetic torque are highly
reliable, and it fully agrees with the virtual work theorem with an error
of less than 8%.



180 Alizadeh Pahlavani, Shiri, and Shoulaie

7. CONCLUSION

This paper presents analytical equations of mutual inductance and
electromagnetic torque of the MTC applicable to Tokamak reactors.
The MATLAB program was used for a numerical simulation of mutual
inductance and electromagnetic torque. The numerical results and
the experimental results of mutual inductance and also the numerical
results, which are obtained based on the virtual work theorem,
are compared in order to validate the presented equations. This
comparison shows that the obtained errors for mutual inductance
and electromagnetic torque are less than 5%, and 8%, respectively.
Therefore, the proposed equations are highly reliable.
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