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Abstract—A model for two-dimensional layered medium is proposed
for through-wall imaging problem. It is integrated with the subspace-
based optimization method for reconstructing the relative permittivity
profile in a fast and robust manner. Numerical results have shown that
the concealed targets within walls can be reconstructed well using the
proposed model even though full aperture of targets is not available
due to the presence of walls. The model has also been employed for
studying the effect of the presence of walls on imaging.

1. INTRODUCTION

Through-wall imaging aims to provide vision into otherwise obscured
area by illumination of the area using electromagnetic waves. It has a
variety of practical applications including fire rescue, emergency relief,
and military operations. To our knowledge, such imaging problem
has been approached in two ways: Some employed SAR processing
methods and appropriately modified them in order to account for the
presence of walls [1, 2]; others cast the imaging problem into an inverse
scattering problem governed by wave equations [3–6]. In either case,
it is well known that such inverse problem is nonlinear and ill-posed.

The focus of the present work is on the reconstruction using inverse
scattering approach. Among the inverse scattering approaches, several
numerical reconstruction methods have been applied for through-
wall imaging. One such example is the contrast source inversion
(CSI) [6–10]. Recently, subspace-based optimization method (SOM)
has been proposed to solve inverse scattering problems [11–16].
SOM exhibits several advantages, such as robustness against noise
and fast convergence. SOM divides the contrast source into two
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parts: The deterministic part and the ambiguous part. Whereas the
deterministic part is obtained by spectrum analysis, the ambiguous
part is determined by optimization.

This paper extends the applicability of SOM to the through-wall
imaging problem. In doing so, we notify several contributions to
the inverse scattering problems in general and through-wall imaging
problem in particular. One contribution of this paper is to present
SOM as a fast solver for such an imaging problem. In contrast to CSI,
which typically requires a few hundred iterations, SOM converges very
fast owing to the spectrum analysis.

It is a well-known fact that the aperture plays a very important
role in the inverse scattering problems. Even though most inverse
scattering problems assume the availability of full aperture, often
full aperture is not available and only a partial view of the imaging
domain has to be employed. In such scenario, the quality of
reconstruction often degrades significantly. Through the application
of SOM in through-wall imaging, we demonstrate that SOM provides
good reconstruction even when only partial aperture is available.

Even though the overall problem of through-wall imaging is
complicated and challenging, numerical results show that the location,
shape, and the constitutive parameters of the concealed targets are
reconstructed well using SOM.

It is well known that the layered medium problem has wide
applicability, not just in through-wall imaging, but also subsurface
imaging, bio-medical imaging, etc. While many models resort to a
homogeneous approximation of the scenario, the proposed model is
applicable to a more realistic scenario in which layers are explicitly
taken into account while imaging. Thus, the proposed method has
wider applicability in the inverse problems and realistic imaging
applications.

Another important contribution of the paper is to study the effect
of the presence of walls on the quality of reconstruction. Generally,
it is considered that multiple scattering effect enhances the quality
of reconstruction. However, this opinion has not been conclusively
proven to be true or otherwise [17]. Since the presence of walls or
layers increases the amount of multiple scattering, it is interesting to
see if multiple scattering indeed helps in improving the reconstruction.
Since the effect of the presence of layers has been explicitly taken
into account, it provides a direct framework for studying the effect of
presence of walls on the imaging. We have presented a few examples
for studying the effect of the presence of walls on the quality of
reconstruction.

The outline of the paper is as follows. In Section 2, we describe
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Figure 1. Schematic configuration of the layered medium model.

the problem and the setup. Section 3 presents the forward model for
layered medium. SOM and the use of the forward model developed
in Section 3 for reconstruction are presented in Section 4. Several
numerical examples are presented in Section 5. The presented work is
concluded in Section 6.

2. PROBLEM DESCRIPTION

The experimental setup and the problem are described in this section.
In Figure 1, the square surrounded by dashed lines shows the domain
of interest. The domain of interest is centered at the origin O with side
length m1. We discretize the domain of interest into M subunits, such
that the electrical quantities on each unit can be considered constant.
Two walls are positioned at a distance of h1 from the x axis and the
thickness of each wall is h2 (shown in solid gray bars in Figure 1).
Free space background is assumed between and beyond the walls. The
complete setup, including the background medium, the walls and the
scatterers, is non-magnetic. At a distance of h3 from the origin, two
linear arrays, each with a span of m2, are set parallel to the walls. Each
array has Ns number of antennas on it, thus 2Ns antennas in total.
Antennas are symbolized by the crosses in Figure 1. The electric fields
are along the z axis. Thus, the overall setting is transverse magnetic.
Each antenna functions as a line source as well as a receiver.
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While performing the measurements, one antenna acts as a source,
while the scattered electric field is measured at all the antennas. This
process is repeated for all the sources and a total number of 2Ns×2Ns

measurements are collected. The measurements are stored in the
matrix Esca, where the (d, s)th element of Esca contains the scattered
field corresponding to the dth detector and sth source. The problem
of reconstruction involves the use of the measured scattered electric
fields for determining the relative permittivity profile of the scatterers
present in the domain which are concealed by the walls.

3. FORWARD MODEL

As shown in Figure 1, the presence of walls divides the region into
five layers. Consequently, apart from direct propagations, we have
to take into account both reflected and refracted signals coming from
interactions with walls. The influence of walls is embedded into layered
medium Green’s Function [18–20].

3.1. Wave Propagation in Layered Medium

With reference to Figures 1 and 2, sources and receivers are located in
the layers l = 0 and 4, whereas the domain of interest is located in the
layer l = 2. Layers l = 1 and 3 are the layers of walls. The amplitude
Al (l = 0, 1, 2, 3, or 4) represents all wave components in layer l that
have a propagating velocity component along the ŷ direction, and Bl

represents all wave components in layer l with a velocity component
along the (−ŷ) direction. The wave number of the wave in layer l is
given as follows:

k2
l = k2

ly + k2
x. (1)

Figure 2. Wave propagation in layered model.
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3.2. Layered Medium Green’s Functions

3.2.1. Mapping from Sources to the Domain

The Green’s function that maps the line current source located at
~rs(xs, ys) (in the layer l = 0 or 4) to the electric field incident at a
point ~r(x, y) in the domain (layer 2) is as follows:

Gl2 (~r, ~rs) =
(
−ωµ0

4π

)∫ +∞

−∞

eikx(x−xs)

kly(
A2e

i(k2yy−klyys) + B2e
i(−k2yy−klyys)

)
dkx, (2)

where ω denotes the angular frequency of incidence, and µ0 is the
permeability of free space. It is worth noticing that A2 and B2 are
the functions of integration variable kx, the permittivity of the walls,
and the geometric configuration of the walls. The exact expressions
of A2 and B2, when the source is located in layer 0 or 4, can be
obtained by matching the boundary conditions as done in [20]. For
later convenience, we collect the above Green’s function in a matrix
Ginc = [ G02 G42 ], where the (m, s)th element of G02 is G02(~rm, ~rs)

and G42 is G42(~rm, ~rs), ~rm represents the center point of the mth
subunit, m = 1 to M , and s = 1 to Ns. Thus, the electric field
incident at any subunit in the domain can be expressed as

Ēinc = Ginc · Īsrc, (3)

where Īsrc contains the amplitude of currents at various sources.

3.2.2. Mapping from Current Induced in the Domain to Detectors

The Green’s function that maps the induced current at a point ~r(x, y)
in the domain (layer 2) to the scattered electric field received at a
detector located at ~rd(xd, yd) (in layer l = 0 or 4) is as follows:

G2l (~rd, ~r) =
(
−ωµ0

4π

)∫ +∞

−∞

eikx(xd−x)

k2y(
A2e

i(k2yy−klyyd) + B2e
i(−klyyd−k2yy)

)
dkx, (4)

Similar to the previous subsection, we collect the above Green’s
function into a matrix Gsca = [ G

∗
20 G

∗
24

]∗, where the asterisk
denotes the Hermitian operation, the (d,m)th element (d = 1 to
Ns corresponds to the detectors) of G20 is G20(~rd, ~rm) and G24 is
G24(~rd, ~rm).
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It is notable that using the principle of reciprocity, for an antenna
— subunit pair, Equations (2) and (4) are the same, and Gsca is the
transpose of Ginc. Thus, the scattered electric field due to the currents
induced at various subunits in the domain can be expressed as:

Ēsca = Gsca · Īd, (5)

where Īd contains the amplitude of induced currents at various
subunits.

3.2.3. Mutual Multiple Scattering

It is well known that with the presence of extended scatterers, the
electric fields from the sources are not the only electric fields observed
at a point in the domain. The incident electric fields from primary
sources induce secondary sources in the scatterers that have different
electrical characteristics from the background, which contribute to the
total electric fields observed at other points in the domain. This
effect is called the multiple scattering effect. Among various ways
of incorporating the mutual multiple scattering, we have used coupled
dipole method [13, 21]. According to this model, the currents induced
in a domain can be expressed as:

Īd = ξ ·
(
Ēinc + Gd · Īd

)
= ξ · Ētot, (6)

where ξ is a diagonal matrix containing the electric polarization at
the various subunits, Ētot represents the total electric field observed
on the subunits, and Gd maps the current induced at the subunits
to the scattered electric field incident at the other subunits due to
these induced currents. The mth diagonal element in ξ is given by
ξm = −iωε0am(εm−1), where am and εm are the area and the relative
permittivity of the mth subunit, respectively. The (m,n)th element in
Gd contains Gd(~rm, ~rn) which maps the induced current at a point ~rn

to the scattered field at the point ~rm, both ~rn and ~rm in the domain.
Evidently, Gd(~rm, ~rn) can be split into two parts: The mapping

from currents in the domain to the subunits without considering the
reflection from both of the walls, G22(~rm, ~rn), and the mapping from
currents in the domain to the subunits considering only the reflection
from the walls, G22,walls(~rm, ~rn). The expression for G22(~rm, ~rn) is as
follows:

G22 (~rm, ~rn) = −ωµ0

4π
H

(1)
0 (k2 |~rm − ~rn|) , (7)
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The expression for G22,walls (~rm, ~rn) is given as:

G22,walls (~rm, ~rn) =
(
−ωµ0

4π

) ∫ +∞

−∞

eikx(xm−xn)

k2y(
A2e

ik2y(ym−yn) + B2e
ik2y(−ym−yn)

)
dkx, (8)

The exact expressions of A2 and B2, when the source is located in
layer 2, can be obtained by matching the boundary conditions as done
in [20]. Subsequently, Gd (~rm, ~rn) can be written as:

Gd (~rm, ~rn) = G22 (~rm, ~rn) + G22,walls (~rm, ~rn) (9)

4. INVERSE SOLUTION: SOM

The Equations (5) and (6) together form the complete forward model.
Equation (5) is called the field equation, while Equation (6) is called
the state equation. In this section, we introduce the subspace based
optimization method in the context of this formulation [11]. The
singular value decomposition (SVD) of Gsca can be represented as
Gsca = U · S · V ∗

, where U consists of the left singular vectors ūp,
V consists of the right singular vectors v̄p, and S is a diagonal matrix
containing singular values σp. It is notable that the rank of Gsca is
much lesser that the number of subunits (due to lesser number of
measurements) and the trailing values of σp are negligibly small, close
to zero.

Because of this, the problem is under-determined and Īd cannot
be retrieved correctly. SOM decomposes the space spanned by
Īd into two subspaces, the signal subspace composed of the first
L right singular vectors and the noise subspace composed of the
remaining right singular vectors. The choice of the value of L is
discussed in [13]. Due to this decomposition, the induced current
Īd can be understood as composed of the deterministic part Īs and
ambiguous part Īn, corresponding to the signal and noise subspaces
respectively. Accordingly, Īs can be uniquely determined analytically

as Īs =
L∑

p=1
σ−1

p (ū∗p · Ēsca)v̄p, and Īn has to be retrieved through

optimization [11].
Let the ambiguous portion of the induced currents be Īn = V

n ·ᾱn,
where V

n
comprises of the right singular vectors v̄p (p > L), and ᾱn

contains the weights of vectors v̄p (p > L) in Īn. The cost function,
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which is a combination of the residues in the field equation and the
state equation for all the incidences, is defined as:

∆=
2Ns∑

s=1




∥∥∥Gsca · V
n · ᾱn

s +Gsca · Īd
s−Ēsca

s

∥∥∥
2

∥∥Ēsca
s

∥∥2 +

∥∥∥A · ᾱn
s−B̄s

∥∥∥
2

∥∥Īd
s

∥∥2


, (10)

where A = (V
n − ξ ·Gd · V

n
), B̄s = ξ · (Ēinc

s + Gd · Īd
s ) − Īd

s , ᾱn
s can

be computed by applying least squares pseudoinverse on A · ᾱn
s = B̄s,

and the optimization variables ξm ( m = 1 to M) are embedded in
the cost function ∆ through ξ. We use Levenberg-Marquardt (LM)
optimization method to reconstruct the variables ξm (m = 1 to M).

The forward model developed in Section 3 gives the scattered field
due to the scatterers in the domain only. All the Green’s functions
presented in Section 3 incorporate the effect of the walls and their
combination using (5) and (6) gives the perturbation (scattered field)
due to the scatterers directly. Thus, the SOM model does not need
to consider the walls as the inhomogeneities and the matrix ξ contains
only the domain subunits.

Though the computation of Green’s functions in the proposed
model involves integration, which makes it computation intensive, the
Green’s functions need to be calculated only once for a setup and
can be used for different scatterer profiles. Since the effect of the
walls is taken into account in the Green’s function through a complete
analytical expression, no approximation is needed to account for the
walls. In practice, for calculating the Green’s functions, a finite interval
is chosen instead of the infinite interval of integration. However, if the
finite interval is sufficiently large, the error in the calculation of Green’s
function is small.

5. NUMERICAL EXAMPLES

We consider two numerical examples to demonstrate the efficacy of
SOM in through-wall imaging. In both the examples, the basic setup
is the same while the scatterer profile is different. With reference to
Figure 1, the wall configuration is given by h1 = 1.2m, h2 = 0.2 m,
and the relative permittivity of both the walls is 3. The size of the
domain is given by m1 = 1m. The antenna configuration is given by
h3 = 3 m, m2 = 6m, and Ns = 10 (i.e., total 20 antennas). Due to
the presence of the walls, the aperture available is inherently limited.
The present antenna arrangement is such the antenna array on each
side subtends an angle of 90◦ on the origin. The measurement setup
is shown in Figure 3.
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Figure 3. Measurement setup.

Figure 4. Plots of singular values of ¯̄Gsca for the three frequencies.

The domain is discretized into 25 equal subunits in each direction,
such that M = 625. The measurements are performed for three
different frequencies: 300 MHz, 400 MHz, and 500 MHz. The singular
values of Gsca for the three frequencies are plotted in Figure 4. The
values of L chosen for the three frequencies are 6, 8, and 10 respectively.

In order to facilitate quantitative comparison, we define the
reconstruction error as follows:

error =

√∑
∀m

(εact
m − εrec

m )2

√∑
∀m

(εact
m )2

, (11)

where εact
m is the actual permittivity of the mth subunit while εrec

m is
the reconstructed value of permittivity for the mth subunit.

5.1. Example 1

In the first example, the domain contains two square shaped scatterers
with their centers at (−0.25, 0)m and (0.25, 0) m, and size 0.3 m
each. The relative permittivities of the squares are 2 and 2.5,
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(a) Example 1: Two squares (b) Example 2: Ring and disk

Figure 5. Relative permittivity profile of the scatterers in the two
examples. The color bar shows the relative permittivity.

 

(a) 300 MHz (b) 400 MHz (c) 500 MHz

Figure 6. Reconstruction results for example 1 for the three
frequencies considering initial guess of free space in the presence of
10% white Gaussian noise (after 30 iterations).

respectively. The relative permittivity profile is shown in Figure 5(a).
The measurement data is corrupted with 10% additive white Gaussian
noise. The details regarding the method of addition of noise can be
found in [13].

The reconstruction results for the three frequencies after 30
iterations of optimization are shown in Figure 6. In this case, for all
the three frequencies the initial value of ξm (m = 1 to M) is set to zero
(i.e., free space). The errors in reconstruction for 300 MHz, 400 MHz,
and 500 MHz are 0.192, 0.213, and 0.233 respectively. It can be seen
that the two squares can be satisfactorily reconstructed for 300 MHz
and 400MHz, even though the permittivity of the walls is higher than
both the squares. However, the reconstruction result is poor for higher
frequencies.

In order to improve the reconstruction at higher frequencies, we
use frequency hopping, where the relative permittivity reconstructed
at 300MHz is used as the initial guess for performing optimization on
the measurement data of 400 MHz and the relative permittivity thus
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(a) 300 MHz (b) 400 MHz (c) 500 MHz

Figure 7. Reconstruction results for example 1 using frequency
hopping in the presence of 10% white Gaussian noise (after 30, 4, and
3 iterations for (a), (b), (c) respectively).

      

(a) 300 MHz (b) 400 MHz (c) 500 MHz

Figure 8. Reconstruction results for example 1 using frequency
hopping in the presence of 7% white Gaussian noise.

reconstructed at 400MHz is used as an initial guess for the optimization
on the measurement data of 500 MHz. The optimization converges very
fast for 400 MHz and 500 MHz. The frequency hopping results shown
in Figure 7 are obtained after 30 iterations for 300 MHz, 4 iterations
for 400MHz and 3 iterations for 500 MHz. The respective errors in
reconstruction are 0.192, 0.170, and 0.142. It is evident that frequency
hopping improves the reconstruction significantly.

Figure 8 shows the reconstruction results for frequency hopping
corresponding to 7% additive white Gaussian noise. The respective
errors in reconstruction are 0.165, 0.147, and 0.116, which agree with
the fact that the reconstruction results are better if the noise level is
slightly less (7%).

5.2. Example 2

In the second example, we consider a combination of an annular ring
and a circular disk. Both are centered at the origin. The disk has a
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(a) 300 MHz (b) 400 MHz (c) 500 MHz

Figure 9. Reconstruction results for example 2 using frequency
hopping in the presence of 10% noise.

(a) 300 MHz (b) 400 MHz (c) 500 MHz

Figure 10. Reconstruction results for example 2 using frequency
hopping in the presence of 7% noise.

radius of 0.2 m and relative permittivity 1.5, while the annular ring has
inner radius of 0.2 m, outer radius of 0.3 m, and relative permittivity
2.5. The relative permittivity profile is shown in Figure 5(b). Since this
example is more complicated than before, we show the reconstruction
results obtained by frequency hopping only. Figures 9 and 10 show
the reconstruction results for the measurement data corrupted by 10%
and 7% noise respectively. The errors in reconstructions are 0.190 for
Figure 9(c) and 0.145 for Figure 10(c). It is noticeable that the inner
circle’s relative permittivity is also reconstructed well using frequency
hopping.

5.3. Effect of the Walls: Multiple Scattering

In this sub-section, we consider the effect of the presence of walls on the
quality of reconstruction. For this purpose, we consider three scenarios:

1) Layer 1 and layer 3 have walls of relative permittivity 3 (as in
previous examples).
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2) Only layer 1 has a wall (of relative permittivity 3).
3) Both layers 1 and 3 have no walls.

We fix the measurement frequency as 300 MHz for comparing the
three scenarios. For these three cases, we present the plots of singular
values of Gsca in Figure 11. It can be seen that the three cases do not
have any significant difference in terms of the strengths of the singular
values.

     

(a) (b) (c)

Figure 11. Plots of singular values of ¯̄Gsca for the three cases: two
walls, one wall, and no wall. (a) Both walls are present, (b) wall in
layer 1 is present, (c) no wall is present.

(a) (b) (c) 

Figure 12. The reconstruction results of the two examples in the
noise free scenario for the three cases (two walls, one wall, no wall).
(a) Both walls are present, (b) wall in layer 1 is present, (c) no wall is
present.
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For a fair comparison of the quality of reconstruction, we consider
that the measurement is noise-free for all the three cases. The
reconstruction results for both the examples (in Figure 5) are shown
in Figure 12. The optimization takes 9 or 10 iterations in each case
to converge to the results shown. The error in reconstruction for
example 1 is between 0.150 and 0.160 for all the three cases, while
it is between 0.160 and 0.170 for the example 2 for all the three cases.
Though it is difficult to compare the quality of the reconstruction, we
can conclude that the multiple scattering effect does not necessarily
enhance the quality of imaging. However, there is one noticeable
difference in the three cases. When the walls are present (cases 1
and 2), the reconstruction pattern on the left and right sides seem
elongated or broadened. This effect is more strongly visible for the
second example, though present in both the examples. This can be
explained by the presence of larger mutual coupling due to the presence
of walls.

6. CONCLUSION

This paper applies the subspace-based optimization method for
through-wall imaging. It uses an analytical model to account for the
effect of walls such that the subspace-based optimization method can
be applied in a straight forward manner. Hidden targets of different
profiles are well reconstructed even in the presence of significant
amount of noise and absence of full aperture for imaging. In all
the examples presented, at most 30 iterations of optimization are
sufficient. The use of frequency hopping provides good reconstruction
results. Finally, the combination of the analytical model for layered
medium and the subspace-based optimization method has been used
to study the effect of the walls on the quality of reconstruction. It is
shown that the presence of walls does not greatly affect the quality of
reconstruction.
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