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Abstract—This paper presents SPICE models to analyze the radiated
and conducted susceptibilities of multiconductor shielded cables in
the time and frequency domains. These models, which can be used
directly in the time and frequency domains, take into account the
presence of both the transfer impedance and admittance, and allow the
transient analysis when the termination is nonlinear or time-varying.
The radiated and conducted susceptibilities are studied by using an
incident plane-wave electromagnetic field and an injection current on
the cable shield as the source, respectively. Results obtained by these
models are in good agreement with those obtained by other methods.

1. INTRODUCTION

Shielded cables are usually used in wired communication systems to
protect signal transmission from external interference. Multiconductor
shielded cables are more appealing compared with coaxial shielded
cables due to the capability to transmit differential signals.
Nevertheless, there exists coupling between the exterior and interior
of the shield due to the imperfect nature of the shield. Consequently,
prediction of the susceptibility of multiconductor shielded cables will
be helpful for the optimization of system design.

SPICE equivalent circuit models for multiconductor transmission
lines without shields have drawn much attention, and lots of researches
have done on them and their applications [1–9]. Recently, some interest
has been addressed to the development of SPICE models for the
susceptibility analysis of shielded cables. SPICE models to analyze the
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conducted immunity of both lossless and lossy coaxial cables have been
presented in [10], and the inverse Fourier transform (IFT) is needed
to get the time domain results. Then, some SPICE models have been
proposed for the time and frequency domain analyses of bulk current
injection test on lossless shielded cables [11, 12]. However, the radiated
immunity can not be directly analyzed with these models. Recently,
some circuit models have been developed to analyze the conducted and
radiated immunity of shielded cables [13], and the IFT is required for
the models to obtain the time domain results. After then, some lossless
models have been proposed to analyze the radiated and conducted
susceptibilities of coaxial shielded cables [14]. These models can be
employed directly in the time and frequency domains and take into
account both the transfer impedance and admittance of the shield.

This paper presents compact SPICE models for the radiated and
conducted susceptibility analyses of multiconductor shielded cables.
These models are derived from the transmission-line equations of
multiconductor shielded cables. They do not need the discretization
of shielded cables and allow the transient analysis when there are
nonlinear or time-varying loads at the termination. Multiconductor
shielded cables over a ground excited by an incident plane-wave
electromagnetic field or a lumped current source on the shield are
studied with the proposed models. The differential and common mode
voltages obtained by these models agree well with those from other
methods.

2. DEVELOPMENT OF SPICE MOEDLS FOR
MULTICONDUCTOR SHIELDED CABLES

A shielded cable over an infinite and perfectly conducting ground, as
shown in Figure 1, can be considered as two transmission line systems,
when its cross section and height over the ground are electrically small

Figure 1. A multiconductor shielded cable over an infinite and
perfectly conducting ground.
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compared with the wavelength [15, 16]. The exterior of the shield and
the ground compose the outer system, while the interior of the shield
and the inner wires form the inner system. These two systems are
coupled through the transfer impedance and admittance of the shield.

2.1. SPICE Models for Radiated Susceptibility Analysis

A multiconductor shielded cable with n parallel wires located inside
the shield above the ground, excited by an incident plane-wave
electromagnetic field, can be described by [13]
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where V̂out is the shield-to-ground voltage, Îout is the current
flowing between the external shield and the ground, V̂in =[
V̂in1, V̂in2, · · · , V̂inn

]T
is the inner voltage vector whose kth element

V̂ink is the voltage of the kth wire versus the internal part of the shield,

and Îin =
[
Îin1, Îin2, · · · , Îinn

]T
is the inner current vector whose kth

element Îink is the current of the kth wire. Ẑout and Ŷout are the per-
unit-length (p.u.l.) impedance and admittance of the outer system,

respectively. Ẑt =
[
Ẑt1, · · · , Ẑtn

]T
is the transfer impedance vector

whose kth element Ẑtk is the shield transfer impedance relative to the

kth wire, while Ŷt =
[
Ŷt1, · · · , Ŷtn

]T
the transfer admittance vector of

which kth element Ŷtk refers to the shield transfer admittance relative
to the the kth wire. The submatrices Ẑin and Ŷin are the p.u.l.
impedance and admittance matrices of the inner system, respectively.
V̂sout and Îsout are the distributed voltage and current sources of the
outer system, respectively, generated by the incident electromagnetic
field [17, 18].

For the sake of simplicity, some assumptions are made. These
assumptions are: 1) the loss of the multiconductor shielded cable is
neglected, which may be not reasonable when the cable is extremely
long and the frequency is very high [19], but ensures the worst case
condition; 2) the energy transferred from the inner system to the outer
system through the shield is neglected, which implies the good shielding
approximation; 3) the transfer impedance Ẑtk (k = 1, . . . , n) is taken
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as Ẑtk (ω) = Rdck + jωLtk where Rdck is the constant p.u.l. transfer
resistance of the shield relative to the kth wire, which is greater than
its true value but the worst case is considered [11], and Ltk is the p.u.l.
transfer inductance of the shield relative to the kth wire. Under these
assumptions, Equation (1) can be written as

d

dz
V̂out + jωLoutÎout = V̂sout (2a)

d

dz
Îout + jωCoutV̂out = Îsout (2b)

d

dz
V̂in + jωLinÎin = ẐtÎout (2c)

d

dz
Îin + jωCinV̂in = −ŶtV̂out, (2d)

where Lout and Cout are the p.u.l inductance and capacitance of the
outer system, respectively, while Lin and Cin the p.u.l inductance and
capacitance matrices of the inner system.

The responses of the outer loads can be obtained with some
already developed SPICE models [1, 2], so the solutions to the response
of the inner loads are the interest of this paper. Equations (2c)
and (2d) can be decoupled with a similarity transformation. Define
the transformation to mode quantities as

V̂in = TV V̂inm (3a)

Îin = TI Îinm. (3b)

Substituting (3) into (2c) and (2d) gives

d

dz
V̂inm + jωLinmÎinm = V̂F inm (4a)

d

dz
Îinm + jωCinmV̂inm = ÎF inm, (4b)

where

Linm = T−1
V LinTI (5a)

Cinm = T−1
I CinTV (5b)

V̂F inm = T−1
V ẐtÎout (5c)

ÎFinm = −T−1
I ŶtV̂out. (5d)

Both Linm and Cinm are diagonal matrices, and the matrices TV and
TI are frequency independent when the loss is neglected. From (4),
the relation between the terminal mode voltages and currents can be
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written as
V̂inm (0)− ZCinmÎinm (0)

= e−jωΛL
[
V̂inm (L)− ZC inmÎinm (L)

]
+ V̂0inm (6a)

V̂inm (L) + ZCinmÎinm (L)

= e−jωΛL
[
V̂inm (0) + ZCinmÎinm (0)

]
+ V̂Linm, (6b)

where L is the length of the cable, ZCinm is the mode characteristic
impedance diagonal matrix of the inner system, and Λ is a diagonal
matrix defined by Λ =

√
LinmCinm. V̂0inm and V̂Linm are the effect

of the distributed source of the inner system, given by

V̂0inm = −
∫ L

0
e−j βinz

{
Req

dcIout (z) + jω [Leq
t Iout (z) + ZCinmCeq

t Vout (z)]
}

dz (7a)
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∫ L

0
e−j βin(L−z)

{
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dcIout (z) + jω [Leq
t Iout (z)− ZCinmCeq

t Vout (z)]
}

dz, (7b)
where

βin = ωΛ (8a)
Req

dc = T−1
V Rdc (8b)

Leq
t = T−1

V Lt (8c)

Ceq
t = T−1

I Ct. (8d)
Equation (6) can be considered as n independent single-wire
transmission lines, and each element can be written in the time domain
as

[Vinm (0, t)− ZCinmIinm (0, t)]i
= [Vinm (L, t− Ti)− ZCinmIinm (L, t− Ti)]i + [V0in (t)]i (9a)

[Vinm (L, t) + ZCinmIinm (L, t)]i
= [Vinm (0, t− Ti) + ZCinmIinm (0, t− Ti)]i + [VLin (t)]i , (9b)

where Ti is the one-way delay of the ith mode line. The elements of
V̂0inm and V̂Linm are similar to those of the coaxial cable, so [V0in (t)]i
and [VLin (t)]i can be written as [14]

[V0in (t)]i = − 1
2ZCout

([
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dc

]
i
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d
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)
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+
1

2ZCout

([
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]
i
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d
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)
Ei2 (t) (10a)
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Ei3 (t)

− 1
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i
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)
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where the coefficients Bi and Ci are given by

Bi = [Leq
t ]i + ZCout [ZCinm]i [C

eq
t ]i (11a)

Ci = [Leq
t ]i − ZCout [ZCinm]i [C

eq
t ]i , (11b)

and the voltages Eik (k = 1, . . . , 4) is composed of two parts Etik (t)
and Esik (t). Etik (t) (k = 1, . . . , 4) are the outer system’s terminal
voltage and current’s contribution to Eik, and are given by [14]

Etik (t) =
∫ t

−∞
Ftik

(
t′
)
dt′, k = 1, . . . , 4 (12)

where

Fti1 (t) =
L

Ti + Tout
{[Vout (0, t) + ZCoutIout (0, t)]

− [Vout (0, t−Ti−Tout)+ZCoutIout (0, t−Ti−Tout)]} (13a)

Fti2 (t) =
L

Tout − Ti
{[Vout (L, t− Ti)− ZCoutIout (L, t− Ti)]

− [Vout (L, t− Tout)− ZCoutIout (L, t− Tout)]} (13b)

Fti3 (t) =
L

Tout − Ti
{[Vout (0, t− Ti) + ZCoutIout (0, t− Ti)]

− [Vout (0, t− Tout) + ZCoutIout (0, t− Tout)]} (13c)

Fti4 (t) =
L

Ti + Tout
{[Vout (L, t)− ZCoutIout (L, t)]

− [Vout (L, t−Ti−Tout)−ZCoutIout (L, t−Ti−Tout)]} . (13d)

Here Tout is the one-way delay of the outer system. Thus the voltage
Etik (k = 1, . . . , 4) can be realized through integral circuits, delay lines
and controlled sources. When Ti = Tout, (13b) and (13c) seem to
be undefined, however, they can be realized by differential circuits.
Esik (t) (k = 1, . . . , 4) are the contributions related to external fields.
When the incident electromagnetic field is a plane wave, and its
incident direction and polarization are defined as in [1, 2], Esik (t)
(k = 1, . . . , 4) can be written as [14]

Esik (t) =
∫ t

−∞
Fsik

(
t′
)
dt′, k = 1, . . . , 4 (14)



Progress In Electromagnetics Research, PIER 103, 2010 247

where

Fsi1 (t) = 2hLexTz − ezTx − exTout

Tz − Tout{E 0 (t)−E 0 (t−Ti−Tout)
Tout+Ti

−E 0 (t)−E 0 (t−Tz−Ti)
Tz+Ti

}
(15a)

Fsi2 (t) = −2hLexTz − ezTx + exTout

Tz + Tout

{E 0 (t)− E 0 (t− Tz − Ti)
Tz + Ti

+
E 0 (t− Tz − Ti)− E 0 (t− Tz − Tout)

Ti − Tout

}
(15b)

Fsi3 (t) = 2hLexTz − ezTx − exTout

Tz − Tout{E 0 (t−Tz)−E 0 (t−Ti)
Tz−Ti

−E 0 (t−Ti)−E 0 (t−Tout)
Ti−Tout

}
(15c)

Fsi4 (t) = 2hLexTz − ezTx + exTout

Tz + Tout

{E 0 (t− Tz)− E 0 (t− Ti)
Tz − Ti

+
E 0 (t− Tz)− E 0 (t− Tz − Ti − Tout)

Ti + Tout

}
. (15d)

Here h is the height of the cable over the ground, E0 is the expression
for the electric field, ex and ez are the x and z components of the
incident electric field vector, and Tx and Tz are defined as Tx = L/vx

and Tz = L/vz, where vx and vz are the velocities of the wave
propagation along the x and z axes. According to (14) and (15),
Esik (t) (k = 1, . . . , 4) can be realized through integral circuits, delay
lines, controlled sources, and differential circuits when they are needed.

To allow loads to be connected between the inner wires and the
ground, the transformation of the voltages and currents of the outer
and inner systems to the voltages (referenced to ground) and currents
of the shield and the wires is needed [10], which are denoted by
V0, V1, . . . , Vn, and I0, I1, . . . , In. With (3), the transformation can be
written as [

V̂0

V̂I

]
=

[
1 0T

1 TV

] [
V̂out

V̂inm

]
(16a)

[
Îout

Îinm

]
=

[
1 1T

0 T−1
I

] [
Î0

ÎI

]
, (16b)

where V̂I = [V1, · · · , Vn]T , ÎI = [I1, · · · , In]T , 0 is a n × 1 vector with
each element equals 0, and 1 is a n × 1 vector whose elements are 1.
Equation (16) can be realized in SPICE by using controlled sources.
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It should be noted that the responses obtained by this model
should be divided by 2 when the wave propagates parallelly to the
ground [14].

The SPICE circuit for a multiconductor shielded cable excited
by an incident plane-wave electromagnetic field is shown in Figure 2,
where R1 and R2 are large resistances (like 1GΩ) to avoid floating
nodes according to the SPICE syntax. The controlled voltage sources
E0out, EΛout, Ei0, and EiΛ, are given by

E0out (t) = −2h (ex − ezTx/(Tz + Tout)) [V (400)− V (403)]

ELout (t) =
{

2h (ex−ezTx/Tz−Tout) [V (401)−V (402)] (Tz 6= Tout)
0 (Tz = Tout)

Ei0 =
1

2ZCout

{[
Req

dc

]
i
[V (i321, i322)− V (i311, i312)]

−BiV (i312) + CiV (i322)}
EiL =

1
2ZCout

{[
Req

dc

]
i
[V (i331, i332)− V (i341, i342)]

−BiV (i342) + CiV (i332)}

2.2. SPICE Models for Conducted Susceptibility Analysis

The development of the SPICE model for conducted susceptibility
analysis is similar to and much simpler than that for radiated
susceptibility analysis. This model can be easily obtained by setting
V̂sout and Îsout to zero, and modeling the excitation with a lumped
source at the end of the cable. The SPICE circuit for conducted
susceptibility analysis can be realized by removing the controlled
sources E0out, ELout, Fsik, and their realization circuits in Figure 2.

(a)
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(b)

(c)

Figure 2. The SPICE circuit for multiconductor shielded cables
excited by an incident plane-wave electromagnetic field. (a) The main
circuit. (b) The realization circuits of the controlled voltage sources
V (201), V (204), V (i201), and V (i204). (c) The realization circuits of
the controlled sources E0out, ELout, Ei0, and EiL.
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Figure 3. The cross section of a two-parallel-wire shielded cable.

Table 1. Parameters of the shield.

C P (mm−1) N d (mm) α (degree)
16 0.17 12 0.18 27.6

3. NUMERICAL VALIDATIONS OF SPICE MODELS

The analysis is carried out on a two-parallel-wire shielded cable as
shown in Figure 3. The outer radius rse and the inner radius rsi

of the braided shield are 7.49 mm and 7.13 mm, respectively. The
characteristics of the braided shield can be defined in terms of the
number of carriers C, the picks P , the ends N , the wire diameter d,
and the weave angle α [15, 16]. The values of these parameters are
given in Table 1. The two inner wires with the diameter d0 = 2 mm
and the distance w = 5.64mm are located symmetrically.

The differential and common mode disturbances at the termina-
tion due to a plane-wave electromagnetic field or a lumped current
source are computed. The differential voltages VDMi (i = 1, 2) are the
voltages across the resistances RDi (i = 1, 2), and the common mode
voltages VCMi (i = 1, 2) are defined as

VCM i = (Ii1 + Ii2)
Ri1Ri2

Ri1 + Ri2
(i = 1, 2) , (17)

where Ii1 and Ii2 are the current through Ri1 and Ri2, and their positive
direction is defined as the direction towards the loads.

3.1. Radiated Susceptibility Analysis

In the radiated susceptibility analysis, an incident electromagnetic
wave with its electric field modeled by a biexponential pulse E0 (t) =
kE0 [exp (−βt)− exp (−αt)], where k = 1.3, E0 = 50 kV/m, α =
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6.0e8 s−1, and β = 4.0e7 s−1, is used for the time domain analysis,
while the electric field of 1 V/m magnitude for the frequency domain
analysis.

The first configuration for the radiated susceptibility analysis
is shown in Figure 4, where the shield is grounded at both ends
(e.g., R1 = R2 = 0), R11, R12, and RD1 are 200 Ω, 50Ω, and
100Ω, respectively, and the loads at the right termination has the
same value as those at the left end. The length and height of the
cable are 3 m and 2 cm, respectively. The incident wave propagates
perpendicularly to the ground with the electric field parallel to the z
axis. Figure 5 and Figure 6 show the differential and common mode
voltages in the time and frequency domain analyses, respectively, where
“multiconductor” means the multiconductor method [20] in which (1)
is solved and the assumptions mentioned above have not been adopted,

Figure 4. The configuration for the radiated analysis.

(a) (b)

Figure 5. The disturbances at the cable ends in the time domain
analysis with the incident wave propagating in the −x direction. (a)
Differential mode voltages. (b) Common mode voltages.
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Figure 6. The disturbances at the cable ends in the frequency domain
analysis with the incident wave propagating in the −x direction.

and “multiconductor *” means the multiconductor method but with
the assumption Ẑtk (ω) = Rdck+jωLtk (k = 1, . . . , n) used. The results
show that the voltages at the two ends have the same size but opposite
polarity, and the differences between the results from the SPICE model
and the multiconductor method are primarily due to the assumption
Ẑtk (ω) = Rdck + jωLtk (k = 1, . . . , n).

The second configuration considered is similar to the first one
but with the incident wave propagating along the z axis, the electric
field parallel to the x axis, and R21, R22, and RD2 set to 1GΩ,
0Ω, and 1 GΩ, respectively. As mentioned above, the SPICE model
can also be used when the loads are nonlinear. Thus, a voltage
clipper, which is formed by two anti-parallel 1N4148 diodes, is added
to the right termination and is in parallel with the load RD2 in this
configuration. Figure 7 and Figure 8 show the differential and common
mode voltages at the cable ends in presence and in absence of the
voltage clipper, respectively. But only the common mode voltage VCM

at the left termination is given, because the right end is grounded,
namely, R22 = 0 Ω. The differences of the curves in presence and
in absence of the voltage clipper reveal the effects of the nonlinear
device, which depresses the differential mode voltages and increases
the common mode voltage.

3.2. Conducted Susceptibility Analysis

The configuration used for the conducted susceptibility analysis is
shown in Figure 9, where a lumped current source is connected to
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(a) (b)

Figure 7. The differential mode voltage induced by the incident wave
in presence and in absence of the voltage clipper. (a) The differential
mode voltage VDM1 at the left termination. (b) The differential mode
voltage VDM2 at the right termination.

Figure 8. The common mode voltage VCM1 induced by the incident
wave at the left termination.

Figure 9. The configuration for the conducted susceptibility analysis.
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the cable shield at the left end. The length and the height of the cable
are set to 5m and 3 cm, respectively. In this configuration, the inner
loads RD1 = ∞, R12 = ∞, and R11 = 0. The outer load R1 equals
to the characteristic impedance of the outer system. The loads at the
right end have same value as those at the left end. Other parameters of
the cable are the same as those in the radiated susceptibility analysis.

The current source adopted for the time domain analysis is a clock
wave of unit amplitude characterized by period Tclk = 20ns, rise and
fall time Tr = Tf = 1ns, and duty cycle η = 0.5, while a AC current
source of 1A for the frequency domain analysis. The outer terminal
voltages and the differential mode voltages obtained by the proposed

(a) (b)

Figure 10. The responses obtained in the time domain analysis.
(a) The voltages of the outer termination. (b) The differential mode
voltages at the cable ends.

Figure 11. The voltage responses in the frequency domain analysis.
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model in the time domain analysis are shown in Figure 10, where
the “FDTD” means the finite difference time domain solution to the
transmission-line equations of the cable. The differential mode voltages
in the frequency domain analysis are shown in Figure 11. The results
show that the solutions from different methods are in good agreement.

4. SUMMARY AND CONCLUSION

Compact SPICE models for the radiated and conducted susceptibility
analyses of multiconductor shielded cables in the time and frequency
domains have been proposed, and their numerical validations have
been given. Based on the four main assumptions: 1) multiconductor
shielded cables are lossless; 2) the energy transferred from the inner to
the outer system can be neglected; 3) the resistance part of the transfer
impedance is frequency independent; 4) the height of cables over the
ground is electrically small, the proposed models are derived from the
transmission-line equations of multiconductor shielded cables. These
SPICE models do not need any discretization of cables and allow the
transient analysis when there are nonlinear or time-varying loads at
the termination. Results obtained by these models agree well with
those from other methods.
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