
Progress In Electromagnetics Research B, Vol. 21, 299–328, 2010

ANALYTICAL METHODS IN THE THEORY OF THIN
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Abstract—The advantages and disadvantages of more extended
approximated analytical methods of the integral equations solution
for the current in thin perfectly conducting and impedance vibrators
have been investigated in details in this paper. The solutions of
the problem about the electromagnetic waves scattering by the thin
vibrators with the distributed surface impedance, obtained with the
help of the method of expansion of the searched function for the current
in a series on small parameter. The method of consistent iterations
and asymptotic averaging method are given. The comparison of the
calculated results with the experimental data in the case of excitation of
the vibrator in the centre by the point source of voltage is represented.

1. INTRODUCTION

A great number of publications (see, for example, [1–20]) are
devoted to the investigation of the electrodynamic characteristics
of material bodies of different configurations, on the surface of
which the impedance boundary conditions are set. Thin vibrators,
applied to antenna-waveguide engineering widely, take a special place
among them. Both direct numerical and approximate analytical or
numerical-analytical methods of the solution of the corresponding
boundary problems of electrodynamics are applied to the mathematical
analysis of the functional characteristics of different devices, the
components of which are thin impedance vibrators. The undoubted
advantage of analytical methods is that they are physically more
visual in comparison with the numerical methods, and they permit
to use available calculated resources more effectively. There is no
comparative analysis of advantages and disadvantages of the known
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approximated analytical methods of the integral equations solution for
the current in thin impedance vibrators in the literary sources. At
present, suggestions of new numerical-analytical approaches, allowing
to eliminate existing disadvantages of the electromagnetic theory of
impedance vibrator antennas, are also absent. The author’s aim is to
fill up these principle gaps in this paper.

2. GENERAL QUESTIONS OF THE THEORY OF THIN
IMPEDANCE VIBRATORS IN SPATIAL-FREQUENCY
REPRESENTATION

2.1. Problem Formulation and Initial Integral Equations

Let us formulate the general problem about scattering (radiation)
of electromagnetic waves by the material body, having finite sizes.
The problem geometry and accepted symbols are represented in
Figure 1. Let the electromagnetic field of the set impressed sources
{ ~E0(~r), ~H0(~r)}, depending on the time t as eiωt (~r is the radius-
vector of the observation point; ω = 2πf is the circular frequency;
f is the frequency, measured in Hertz), influence the body of
the volume V , which is bounded by the smooth closed surface S
and is characterized by the homogeneous material parameters (the
permittivity ε, permeability µ and conductivity σ). The body is
located inside the electrodynamic volume V1, bounded by the perfectly
conducting (or impedance) surface S1 (including the infinitely remote
one) and filled by the medium with the parameters ε1, µ1 (being
complex piece-constant functions of the coordinates in a more general
case). The field of the impressed sources can be set as the field of
the electromagnetic wave, incident on the body (the problem about
scattering) or as the field of the electromotive forces (EMF), applied

Figure 1. The problem general formulation.
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to the body, different from null only in some part of the volume V
(the problem about radiation), or as a combination of these fields
in a general case. We need to define the full electromagnetic field
{ ~E(~r), ~H(~r)} in the volume V1, satisfying the Maxwell’s equations and
boundary conditions on the surfaces S and S1.

As known, the set problem can be investigated on the basis of the
equations for the electromagnetic fields in a differential or an integral
form. The advantage of the integral equations use consists in that
their solutions satisfy the required boundary conditions on the body’s
surface automatically [21]. Besides they are differentially effective for
the cases, when the boundary surfaces S and S1 represent themselves
as the coordinate surfaces in different coordinate systems: for example,
S1 — the surface of the waveguide with cylindrical symmetry, and the
body’s surface S can be of quite another symmetry in a general case.

That is why the mathematical model of the electromagnetic
process in question is not created on the basis of the Maxwell’s
equations in their differential form, but on the basis of the integral
equations of macroscopic electrodynamics, equivalent to the boundary
problem in whole — to the Maxwell’s equations together with the
boundary conditions on the surfaces of the body S and of the
electrodynamic volume S1, in which the body is located. They have
the form in the Gauss’ unit system CGS [21, 22]:

~E (~r) = ~E0 (~r) +
(
grad div + k2ε1µ1

)
~Πe (~r)− ikµ1rot~Πm (~r) ,

~H (~r) = ~H0 (~r) +
(
grad div + k2ε1µ1

)
~Πm (~r) + ikε1rot~Πe (~r) .

(1)

Here k = 2π/λ is the wave number, and λ is the wavelength in free
space. ~Πe(~r) and ~Πm(~r) are the Hertz’s electrical and magnetic vector
potentials, correspondingly equal to

~Πe (~r) =
(ε/ε1 − 1)

4π

∫

V

Ĝe
(
~r, ~r′

)
~E

(
~r′

)
d~r′,

~Πm (~r) =
(µ/µ1 − 1)

4π

∫

V

Ĝm
(
~r, ~r′

)
~H

(
~r′

)
d~r′,

(2)

Ĝe(~r, ~r′) and Ĝm(~r, ~r′) are the Green’s electrical and magnetic tensor
functions for the vector potential, satisfying the Helmholtz’s vector
equation and the corresponding boundary conditions on the surface
S1. Let us note that in the case when the surface S1 is removed on
infinity, the corresponding boundary conditions for Ĝe,m(~r, ~r′) transit
into the Zommerfeld’s radiation condition.

Interpretation of the fields, located in the left part of Equation (1),
is changed in the dependence on the observation point ~r location with
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the coordinates x, y, z, in which it is necessary to define the searched
field. If the point ~r belongs to the volume V , then the fields ~E(~r) and
~H(~r) represent the internal fields for the body, that is, the same fields,
located under the integrals signs in the right part of (1). Equation (1)
are the Fredholm’s inhomogeneous linear integral equations of the
second kind in this case, and they have the unique mathematically
correct solution. If the point ~r, in which the field is searched, is
outside the region V , then Equation (1) become equalities, defining
the full electromagnetic field in the medium outside the material body
via the set field of the impressed sources. These equalities solve the
problem about scattering (radiation) of the electromagnetic waves by
the bodies of finite sizes in a more general kind, if the fields inside these
bodies are known.

It turns out to be expedient to express the full electromagnetic
field in the volume V1 via the fields tangential components on the
surface S, bounding the volume V , at the solution of a great
number of problems. As a result of the corresponding mathematical
transformations [21, 22] in this case, transition to the Kirchhoff-
Kotler’s integral equations, which are completely equivalent to the
initial Equation (1) (k1 = k

√
ε1µ1, ~n is the outer normal to the surface

S) and turns out to be possible:

~E(~r) = ~E0 (~r)+
1

4πikε1

(
grad div+k2

1

)∫

S

Ĝe
(
~r, ~r′

)[
~n, ~H(~r′)

]
d~r′

− 1
4π

rot
∫

S

Ĝm
(
~r, ~r′

)[
~n, ~E

(
~r′

)]
d~r′,

~H(~r) = ~H0 (~r)+
1

4πikµ1

(
grad div+k2

1

)∫

S

Ĝm
(
~r, ~r′

)[
~n, ~E

(
~r′

)]
d~r′

+
1
4π

rot
∫

S

Ĝe
(
~r, ~r′

)[
~n, ~H

(
~r′

)]
d~r′. (3)

The representation (3) is used at the electrodynamic problems solution
in the cases, when the field on the surface of the material body is
defined due to some additional physical considerations. For example,
for good conducting bodies (σ →∞) the current, induced in them, is
concentrated near the body’s surface. Then, neglecting the thickness of
the skin-layer, it is possible to use the Leontovich-Shukin’s approximate
impedance boundary condition [23]:

[
~n, ~E (~r)

]
= Z̄S(~r)

[
~n,

[
~n, ~H(~r)

]]
, (4)
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where Z̄S(~r) = R̄S(~r)+ iX̄S(~r) = ZS(~r)/Z0 is the distributed surface
impedance (normalized on the wave impedance of free space Z0 =
120π Ohm), the value of which can be changed from one point to
another on the body’s surface in a general case. Locating the
observation point ~r on the body’s surface S, we obtain the following
integral equation due to (3), (4)

ZS(~r) ~Je (~r) = ~E0 (~r) +
1

iωε1

(
grad div + k2

1

) ∫

S

Ĝe
(
~r, ~r′

)
~Je

(
~r′

)
d~r′

+
1
4π

rot
∫

S

Ĝm
(
~r, ~r′

)
ZS

(
~r′

) [
~n, ~Je

(
~r′

)]
d~r′, (5)

concerning the density of the surface electrical current

~Je (~r) =
c

4π

[
~n, ~H (~r)

]
, (6)

where c ≈ 2.998 · 1010 cm/sec is the velocity of light in vacuum.
Thus the problem about scattering (radiation) of the electromag-

netic waves by the impedance body of finite sizes is formulated as a
rigorous boundary problem of macroscopic electrodynamics, and it is
reduced to the integral equation for the current, the solution of which
represents itself as an independent problem, connected with substan-
tial mathematical difficulties. If the body’s characteristic sizes exceed
the wavelength many times (the high-frequency region), then the so-
lution of the set problem is usually searched in the form of expansions
in ascending power series on inverse degrees of wave number. When
the body has the sizes less than the wavelength in the low-frequency
(quasi-static) region, representation of the unknown functions in the
form of series in terms of the wave number reduces the problem to the
solution of the electrostatic problems sequence. The resonant region,
in which at least one of the body’s sizes is commensurate with the
wavelength, unlike the asymptotic cases, is the most complex for anal-
ysis, because one needs the rigorous solution of the field equations. Let
us note that from the practical point of view, it is in the very region
that the bodies in the form of thin impedance vibrators, to which the
paper is devoted, represent special interest.

2.2. Green’s Function as the Kernel of the Integral Equation

The dominant problem of analysis of scattering (radiation) of the
electromagnetic waves by the material bodies of finite sizes for the
linear mediums is the definition of the field, excited by means of the
point source. This is a classical problem about searching of the Green’s
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function, which gives the opportunity for analytical representation of
the boundary problems solution of macroscopic electrodynamics. As
known, the Green’s function is the tensor (the symmetrical tensor of
the second rank — affinor) function of mutual location of two points:
the observation point, having the radius-vector ~r, and the source point
with the radius-vector ~r′, in the case of the vector fields. The Green’s
tensor functions have first been considered in [24] in electrodynamics,
and they were investigated by many authors (see, for example, [25–30])
later on.

The Green’s functions of the inhomogeneous vector equations, to
which the Maxwells equations are reduced, are defined by the solution
of one of the following tensor equations:

rotrot ĜE

(
~r, r̄′

)− k2
1ĜE

(
~r, r̄′

)
= 4πÎδ

(∣∣~r − r̄′
∣∣) , (7)

∆ĜA

(
~r, r̄′

)
+ k2

1ĜA

(
~r, r̄′

)
= −4πÎδ

(∣∣~r − r̄′
∣∣) (8)

and they satisfy all boundary conditions of the concrete boundary
problem. Here, in the case of the rectangular coordinate system
δ(|~r−~r′|) = δ(x−x′)δ(y− y′)δ(z− z′) is the Dirac’s three-dimensional
delta-function; Î = (~ex⊗~ex′)+(~ey⊗~ey′)+(~ez⊗~ez′) is the unit affinor;
~ex, ~ey, ~ez are the orts of the Decart’s coordinate system; ∆ is the
Laplace’s operator; ⊗ is the sign of tensor multiplication.

The Green’s functions allows to obtain the expressions for the
electromagnetic fields of the kind of (1) of the arbitrary vector source
in any point of space in a closed form. If some volume distribution of
the ~Je(~r) electrical current density is set as a source, then the electrical
field is represented by one of the following expressions:

~E (~r) =
k2

1

iω

∫

V

ĜE

(
~r, ~r′

)
~Je

(
~r′

)
d~r′, (9)

~E (~r) =
1
iω

(
grad div + k2

1

) ∫

V

ĜA

(
~r, ~r′

)
~Je

(
~r′

)
d~r′, (10)

where the symbol Ĝe(~r, ~r′) = ĜA(~r, ~r′) is introduced, and ~E0(~r) =
0 is accepted for simplicity. The availability of these two
representations may formally be connected with different calibrations
of the electromagnetic field potentials. However, ĜE is called the
Green’s function for the field, and ĜA — the Green’s function for the
vector potential in accordance with the used variant of the equation
for the field or the potential, to which the initial Maxwell’s equations
are reduced in the concrete problem solution. It is not difficult to make
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ratio between them

ĜE =
(

Î +
1
k2

1

{grad⊗ grad}
)

ĜA, (11)

considering the tensor product of two symbolic vectors under the
operation {grad⊗ grad}.

The only boundary condition, imposed on the Green’s function,
for infinite space is the Zommerfeld’s radiation condition, and it is
represented in the form

ĜA

(
~r, ~r′

)
= Î

e−ik1|~r−~r′|

|~r − ~r′| . (12)

If ~r = ~r′, then the functions (12) and (11) become the infinity,
and it is impossible to define the integrals as the limit of the integral
sum in a general sense, because it does not exist. So, strictly speaking,
the formulas (9), (10) are just for those points of space, where the
sources are absent. In the case, when the observation point ~r coincides
with one of the points ~r′ of the source, the volume integrals in (9),
(10) must be considered as improper ones, that is,

∫
V

= lim
ρ→0

∫
V−v

,

where v is the eliminated volume, contained in the sphere of the
infinitely small radius ρ with the centre in the point ~r′. The main
difference of the two kinds of integrals consists in that the improper
integral in (10) can be modified into the absolutely converging one [28],
when, principally, the integral in (9) is the conditionally converging
one [28], and its value depends upon the kind of the eliminated region,
containing the special point ~r = ~r′. It is necessary to consider the
main value of the integral in (9), which makes the main contribution
to the result of integration, for the field physically correct definition
in the source region. One may consider the integrals in a general
sense, expanding the singular part in the Green’s functions. It is rather
difficult to investigate the Green’s tensor function behavior (11) in the
neighborhood of the points of the field source. Rigorous consideration
of these questions requires application of the mathematical apparatus
of the generalized functions [29]. One would note the advantage of the
use of the expression for the field (10), based on the Green’s function
for the vector potential in comparison with (9) and (11), and, namely,
the field (10) has the integrated peculiarity, and one manages to avoid
calculation of the main integral value; though, certainly, it is necessary
to make differentiation in (10), taking into account the dependencies
of the integral from the parameter.

This ground also refers to the bounded regions completely, because
the Green’s function of the bounded region has the same peculiarity at
the coincidence of arguments as in the case of unbounded space [26].
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The general solution of Equation (8) can be represented in this case in
the form [21]:

Ĝ
(
~r, ~r′

)
= ÎG

(
~r, ~r′

)
+ ĜV1

0

(
~r, ~r′

)
, (13)

where G(~r, ~r′) = e−ik1|~r−~r′|
|~r−~r′| , and ĜV1

0 (~r, ~r′) is the everywhere regular
function, satisfying the homogeneous equation

∆ĜV1
0

(
~r, ~r′

)
+ k2

1Ĝ
V1
0

(
~r, ~r′

)
= 0 (14)

and providing the fulfillment of the boundary conditions on the S1

surface of the V1 volume for the point source field, located in the point
~r′, together with ÎG(~r, ~r′).

2.3. Integral Equations for the Current in Thin Impedance
Vibrators

The known mathematical difficulties take place at the direct solution
of Equation (5) for the material body V with a complex shape of
the surface. However, it is sufficiently simplified for the impedance
cylinders, the perimeter of cross section of which is small in comparison
with their lengths and the wavelength in the environment (thin
vibrators). Besides one manages to extend the boundary condition (4)
on the cylindrical surfaces with arbitrary distribution of the complex
impedance, independent of the structure of the exciting field and the
electrophysical characteristics of the material, of which the vibrator is
made, in this case.

Let us transform the integral Equation (5), which is applied to the
thin vibrator, representing itself as a bounded circular cylindrical wire
of the radius r and length 2L (of a curvilinear axial configuration in a
general case), for which the following ratios are performed:

r

2L
¿ 1,

∣∣∣∣
r

λ1

∣∣∣∣ ¿ 1,
r

r̃
¿ 1, (15)

where λ1 is the wavelength in the environment, and r̃ is the curvature
radius of the vibrator axial line. These inequalities permit to consider
that the density of the induced current has only a longitudinal
component (we omit the index “e”)

~J(~r) = ~esJ(s)ψ(ρ, ϕ), (16)

and it is distributed on the cross section of the vibrator as in a quasi-
stationary case [31], what is more,∫

⊥
ψ(ρ, ϕ) ρ dρ dϕ = 1. (17)
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In expressions (16), (17), ~es is the unit vector along the tangent to
the {0s} axis, coupled with the vibrator; ψ(ρ, ϕ) is the function of the
transverse (⊥) polar coordinates ρ and ϕ; J(s) is the searched current,
obeying the boundary conditions on the ends of the vibrator:

J(−L) = J(L) = 0. (18)

Taking all these into consideration and projecting Equation (5) on
the vibrator axis when taking into account that [~n, ~Je(~r)] ¿ 1 due
to (15), we obtain the equation concerning the current in the thin
impedance vibrator, located in the homogeneous isotropic infinitely
extended medium:

zi(s)J(s)=E0s(s)+
1

iωε1

L∫

−L

[
∂

∂s

∂J (s′)
∂s′

+k2
1(~es~es′)J

(
s′

)]
Gs(s, s′)ds′. (19)

Here E0s(s) is the projection of the impressed field, parallel to the ~es

vector, and zi(s) is the internal impedance per unit length ([Ohm/m])
of the vibrator (ZS(~r) = 2πrzi(~r)). ~es′ is the ort of the {0s′} axis,
coupled with the vibrator surface,

Gs

(
s, s′

)
=

π∫

−π

e−ik1

√
(s−s′)2+[2r sin(ϕ/2)]2

√
(s− s′)2 + [2r sin (ϕ/2)]2

ψ (r, ϕ) rdϕ (20)

is the exact kernel of the integral equation.
There are rather great difficulties at the solution of equation (19)

with the kernel in the form of (20), so the “thin-wire” approximation
is used in the theory of vibrators [31]

Gs(s, s′) =
e−ik1R(s,s′)

R (s, s′)
, R

(
s, s′

)
=

√
(s− s′)2 + r2, (21)

which supposes the source points location on the vibrator geometrical
axis and the observation points — on its physical surface. The Gs(s, s′)
function is continuous everywhere in this case, and the equation for
the current is sufficiently simplified without noticeable degradation of
preciseness [32]. Applying further integration in parts with taking
into account the condition (18) in the Equation (19), we have for the
rectilinear conductor ((~es~es′) = 1):

(
d2

ds2
+k2

1

) L∫

−L

J
(
s′

)
Gs

(
s, s′

)
ds′ = −iωε1E0s(s) + iωε1zi(s)J(s). (22)
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If the vibrator is located in the bounded electrodynamic volume
(a waveguide, a resonator), we obtain due to (5) and (13):

L∫

−L

{[
∂

∂s

∂J (s′)
∂s′

+ k2
1 (~es~es′) J

(
s′

)]
Gs

(
s, s′

)

+J
(
s′

) [
∂2

∂s2
+ k2

1

]
~es

(
ĜV1

0s

(
s, s′

)
~es′

)}
ds′

= −iωε1E0s(s) + iωε1zi(s)J(s), (23)

where GV1
0s (s, s′) =

∫
⊥

GV1
0s (s, ρ, φ; s′, ρ′, φ′)ψ(ρ′, φ′)ρ′dρ′dφ′. Then the

equation for the current has the form for the rectilinear impedance
vibrator, located in the V1 volume:

(
d2

ds2
+ k2

1

) L∫

−L

J
(
s′

)
Gs

(
s, s′

)
ds′

= −iωε1E0s(s) + iωε1zi(s)J(s)− F0[s, J(s)], (24)

where

F0[s, J(s)] =
(

d2

ds2
+ k2

1

) L∫

−L

J
(
s′

)
GV1

0s (s, s′)ds′. (25)

Let us note that Equation (22) is called the Pocklington’s integral
one [33, 34] in the case, when the volume V1 is free space, zi = 0, and
Equation (19) — the Mei’s equation [35] after integration of its left
and right parts along s in general accepted terminology of the thin
vibrators theory.

2.4. Approximate Analytical Methods of the Integral
Equations Solutions for the Current

We cannot manage to obtain the rigorous solution of the equations
given above for the electrical current in the impedance vibrator in a
closed form. However, it does not result from this that it is impossible
to approximate the current true distribution by the approximate
solution rather precisely. It is natural to use the known methods,
developed for perfectly conducting vibrators earlier, for this. So,
we can extract the methods for rectilinear vibrators in free space:
consistent iterations [31, 36], expansion of the searched function in
a series on small parameter [37], variational [31], of the searching
of the “key” equation [38]. Let us obtain Equation (24) solution
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by the method of expansion of the searched function in a series on
small parameter (briefly, the small parameter method further) and the
method of consistent iterations (the iterations method further) for the
case of the electromagnetic wave, incident on the perfectly conducting
vibrator (zi = 0), located in some volume V1 at ε1 = µ1 = 1 in order
to define advantages and disadvantages of one or another approximate
analytical method.

2.4.1. Method of Expansion of the Searched Function in a Series on
Small Parameter

The following equation is original for analysis:
(

d2

ds2
+ k2

) L∫

−L

J
(
s′

) e−ikR(s,s′)

R (s, s′)
ds′ = −iωE0s(s)− f0[s, J(s)], (26)

where R(s, s′) =
√

(s− s′)2 + r2,

f0[s, J(s)] =
(

d2

ds2
+ k2

) L∫

−L

J
(
s′

)
GV1

0s

(
s, s′

)
ds′ (27)

is the regular part of the vibrator own field, defined by the volume V1

geometry.
Exchanging the differential ds′ on dR in (26) and taking into

account, that
s′ = s−√R2 − r2, if s′ ≤ s

s′ = s +
√

R2 − r2, if s′ ≥ s

}
,

we transform Equation (26) into the form
(

d2

ds2
+ k2

)

−

s∫

−L

J
(
s′

)
e−ikRd ln

[
C

(
R +

√
R2 − r2

)]

+

L∫

s

J(s′)e−ikRd ln
[
C

(
R +

√
R2 − r2

)]




= −iωE0s(s)− f0[s, J(s)], (28)
where C is the arbitrary constant. Making integration in parts with
the use of the boundary conditions for the current (18) in (28), we
obtain

(
d2

ds2
+ k2

)

J(s)e−ikr lnCr +

s∫

−L

ln
[
C

(
R +

√
R2 − r2

)]
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Xd
[
J

(
s′

)
e−ikR

]
−

L∫

s

ln
[
C

(
R +

√
R2 − r2

)]
d

[
J

(
s′

)
e−ikR

]




= iωE0s(s) + f0[s, J(s)]. (29)

Putting in, with taking into consideration (15), that e−ikr = 1 and
choosing C = 1/2L (unlike from [37], where C = k), we reduce
Equation (26) to the following integral-differential equation for the
current with the small parameter

d2J(s)
ds2

+ k2J(s) = α {iωE0s(s) + f [s, J(s)] + f0[s, J(s)]} . (30)

Here α = 1
2 ln[r/(2L)] is the small parameter,

f [s, J(s)] = −
(

d2

ds2
+k2

) L∫

−L

sign
(
s−s′

)
ln

R+(s−s′)
2L

d

ds′

[
J(s′)e−ikR

]
ds′ (31)

is the vibrator own field in free space.
Let us represent J(s) in the form of the power series on small

parameter |α| ¿ 1:

J(s) = J0(s) + αJ1(s) + α2J2(s) + . . . (32)

The substitution of (32) into (27) and (31) permits to expand into
analogous series

fΣ[s, J(s)] = fΣ[s, J0(s)] + α fΣ[s, J1(s)] + α2fΣ[s, J2(s)] + . . . , (33)

where fΣ[s, J(s)] = f [s, J(s)]+f0[s, J(s)] is the vibrator sum own field.
Now, having substituted (32) and (33) into Equation (30) and equated
the multipliers at equal degrees α between each other in the right and
left parts of the equation, we obtain the following system of differential
equations:

d2J0(s)
ds2

+ k2J0(s) = 0,

d2J1(s)
ds2

+ k2J1(s) = iωE0s(s) + fΣ[s, J0(s)],

d2J2(s)
ds2

+ k2J2(s) = fΣ[s, J1(s)],

...............................................................

d2Jn(s)
ds2

+ k2Jn(s) = fΣ[s, Jn−1(s)],

(34)

which can be solved by the method of successive approximations. At
this each equation is solved at the boundary conditions of the form
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of (18), and, namely J0(±L) = 0, J1(±L) = 0, J2(±L) = 0, . . .,
Jn(±L) = 0.

The first equation of system (34) has the solution, independent of
the exciting field E0s(s):

J0(s) = C1 cos ks + C2 sin ks, (35)

which satisfies the boundary conditions only at ratios fulfillment

C1 = 0 at 2L = mλ; C2 = 0 at 2L = (2n + 1)
λ

2
, (36)

where m and n are the integers. If the vibrator length 2L does not
satisfy the conditions (36), then J0 ≡ 0, fΣ[s, J0(s)] ≡ 0 the current in
the first approximation is equal to:

J(s) = αJ1(s) =−α
iω/k

sin 2kL



sin k (L−s)

s∫

−L

E0s

(
s′

)
sin k

(
L+s′

)
ds′

+sin k (L + s)

L∫

s

E0s

(
s′

)
sin k

(
L− s′

)
ds′



 . (37)

As seen, the functions of the own field of the vibrator f [s, J(s)] and
f0[s, J(s)], which, mainly, define the vibrator resonant and energetic
characteristics, are not included into the expressions for the current.
Obviously, it is necessary to obtain the following approximations in
order to take into account fΣ[s, J(s)], what, however, meets essential
mathematical difficulties, and at present only J2(0) is known for the
vibrator in free space, excited in the centre by the point source of
voltage [37].

As an example, let us consider the problem about scattering of
the dominant wave H10 by the vibrator, located in the plain of crossed
section of a standard rectangular waveguide, parallel to its narrow wall.
The impressed field equals in this case:

E0s(s) = E0 sin
πx0

a
. (38)

Here E0 is the amplitude of the dominant wave H10, incident from the
region z = −∞, and x0 is the distance from the waveguide narrow
wall up to the vibrator axial line. Then the current, induced in the
vibrator, equals due to (37)

J(s) = −αE0 sin
πx0

a

iω

k2

(cos ks− cos kL)
cos kL

. (39)

And, finally, the solution of a classical problem about normal incidence
of a plane electromagnetic wave on the vibrator in free space by the
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method of the small parameter in the first approximation gives the
result (E0s(s) = E0):

J(s) = −αE0
iω

k2

(cos ks− cos kL)
cos kL

. (40)

Let us note that the condition of formulas (39) and (40)
application is the inequality [37]∣∣∣kL− n

π

2

∣∣∣ À |α| , (41)

which limits possibilities of the use of the obtained solution in practice
together with the ratios (36) to essential extent.

The solution of Equation (22) for the vibrator, located in free
space (ε1 = µ1 = 1), with the constant (zi(s) = const) distributed
impedance, by the method of a small parameter, has been obtained
in [39]. The zeroth and first approximations for the current have the
following form in this case:
a) for tuned vibrator (˜̃kL = nπ

2 , where n is the integer):

J0(s) = C1 cos ˜̃
ks + C2 sin ˜̃

ks, (42)

b) for untuned vibrator (˜̃kL 6= nπ
2 ):

J(s) = αJ1(s) =−α
iω/

˜̃
k

sin 2˜̃
kL



sin ˜̃

k(L−s)

s∫

−L

E0s

(
s′

)
sin ˜̃

k
(
L+s′

)
ds′

+ sin ˜̃
k(L+s)

L∫

s

E0s

(
s′

)
sin ˜̃

k
(
L−s′

)
ds′



 , (43)

where ˜̃
k = k

√
1 + iαωzi/k2.

2.4.2. Method of the Consistent Iterations

Let us use the method of consistent iterations, suggested by Hallen [36]
and developed by King [31] for the investigation of vibrators
characteristics in free space in order to eliminate the disadvantages,
mentioned above, of the integral equation solution for the current by
the method of the small parameter.

Converting the differential operator in the left part of (26), we
obtain the following integral equation

L∫

−L

J
(
s′

)
GΣ

s

(
s, s′

)
ds′ = C1 cos ks + C2 sin ks
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− iω

k

s∫

−L

E0s

(
s′

)
sin k

(
s− s′

)
ds′, (44)

in which it is taken into account that GΣ
s (s, s′) = Gs(s, s′)+GV1

0s (s, s′).
It is necessary to use the conditions of symmetry [31], which are
definitely connected with the method of vibrator excitation to obtain
one of the arbitrary constants C1 and C2. In other words, one needs
to concretize the field of the impressed sources E0s(s) on this stage of
solution of the initial equation by the method of iterations yet. Let
us put in E0s(s) = E0 due to (38), which corresponds to the vibrator
excitation by the dominant wave in a rectangular waveguide in the
case, when the vibrator axis is located at x0 = a/2. Then

L∫

−L

J
(
s′

)
GΣ

s (s, s′) ds′ = C1 cos ks +
iω

k2
E0 (cos ks cos kL− 1) . (45)

We note that Equation (45) is analogous to Hallen’s linearized integral
equation [31, 36], which is the ground of many publications in the
theory of thin vibrator antennas, for GΣ

s (s, s′) = e−ikR/R.
The kernel of the integral Equation (45) has peculiarity of quasi-

stationary kind on the vibrator surface. Let us extract it, using
smallness of the vibrator cross size in comparison with its length and
wavelength. For this we rewrite the left part of (45) in the following
way:

L∫

−L

J
(
s′

)
GΣ

s

(
s, s′

)
ds′ =

L∫

−L

J
(
s′

) e−ikR(s,s′)

R (s, s′)
ds′ +

L∫

−L

J
(
s′

)
GV1

0s

(
s, s′

)
ds′. (46)

Then
L∫

−L

J
(
s′

)e−ikR(s,s′)

R (s, s′)
ds′ = Ω(s)J(s) +

L∫

−L

[
J

(
s′

) e−ikR(s,s′)

R (s, s′)
− J(s)

R (s, s′)

]
ds′, (47)

where

Ω(s) =

L∫

−L

ds′√
(s− s′)2 + r2

. (48)

The first addendum in the right part of the expression (47) is
logarithmically large in comparison with the second regular term, and
the Ω(s) function differs from its average value Ω̄(s) = 2 ln(2L/r) −
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0.614 only on the vibrator ends, where the current vanishes: J(±L) =
0. Taking this into account, Equation (45) is transformed to the form:

J(s) = −α

[
C1 cos ks +

iω

k2
E0(cos ks cos kL− 1)

]

+α

L∫

−L

[
J

(
s′

)
GΣ

s

(
s, s′

)− J(s)
R (s, s′)

]
ds′, (49)

where α = 1
2 ln[r/(2L)] is the small parameter, coinciding with the one

obtained above in Subsection 2.4.1 at the choice of the constant of
integration C = 1/2L.

Following the method described in [31, 36] further, let us put in
s = L in (49) and subtract the obtained expression from (49) (in fact,
we subtract 0, because J(L) ≡ 0). At this Equation (49) is transformed
in the following way:

J(s) =−α

[
C1(cos ks− cos kL)+

iω

k2
E0 cos kL(cos ks− cos kL)

]

+α





L∫

−L

[
J(s′)GΣ

s

(
s, s′

)− J(s)

R (s, s′)

]
ds′−

L∫

−L

J
(
s′

)
GΣ

s

(
L, s′

)
ds′



 . (50)

Choosing the addendums in the right part of the first line in
Equation (50) as the zeroth-order approximation for the current J0(s)
and using condition (18) to define the C1 constant, we obtain:

J0(s) = −αE0
iω

k2

(cos ks− cos kL)
cos kL

, (51)

that coincides identically with the expression (39) at x0 = a/2,
obtained by means of the small parameter method in the first
approximation. Substituting (51) into (50) now, we obtain the first
approximation for the current with accuracy to the terms of the α2

order:
J1(s) = −αE0

iω

k2

(cos ks− cos kL)
cos kL + αF (kr, kL)

, (52)

where

F (kr, kL) =

L∫

−L

[(
cos ks′ − cos kL

)
GΣ

s

(
L, s′

)]
ds′ (53)

is the vibrator own field function, giving opportunity to analyze both
tuned (cos kL = 0) and unturned (cos kL 6= 0) vibrators already in
the first approximation along α (unlike the small parameter method),
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what is more, the integral in (53) is taken analytically with the help
of the generalized integral functions [31] in the case, when GΣ

s (s, s′) =
e−ikR/R (the vibrator in free space).

Let us note that if one solves Equation (24) at zi(s) = const,
ε1 = µ1 = 1 and E0s(s) = E0 by the method of iterations, then
one obtains the following expression for the current in the impedance
vibrator in the first approximation as a result:

J1(s) = −αE0
iω

k2

(cos ks− cos kL)
cos kL + αF (kr, kL, zi)

, (54)

that is, availability of the distributed impedance in the vibrator
operates (unlike the solution by the method of a small parameter)
only in the function of the vibrator own field, but not in the function
of the current distribution.

2.5. Solution of the Integral Equation for the Current in the
Thin Impedance Vibrator by the Asymptotic Averaging
Method

Let us choose Equation (22) as the original one to analyze (at zi(s) =
const, ε1 = µ1 = 1) with the approximate kernel (21), being quasi-one-
dimensional analogue of the exact integral equation with the kernel
(20):

(
d2

ds2
+ k2

) L∫

−L

J
(
s′

) e−ikR(s,s′)

R (s, s′)
ds′ = −iωE0s(s) + iωziJ(s), (55)

where R(s, s′) =
√

(s− s′)2 + r2. It is obvious that F0[s, J(s)] ≡ 0
here. We extract the kernel logarithmic peculiarity of Equation (55)
analogically with (47):

L∫

−L

J(s′)
e−ikR(s,s′)

R(s, s′)
ds′ = Ω(s)J(s)+

L∫

−L

J(s′)e−ikR(s,s′) − J(s)
R(s, s′)

ds′. (56)

Here

Ω(s) =

L∫

−L

ds′√
(s− s′)2 + r2

= Ω + γ(s), (57)

γ(s) = ln [(L+s)+
√

(L+s)2+r2] [(L−s)+
√

(L−s)2+r2]

4L2 — some function, equal
to zero in the vibrator centre and reaching its largest value on the
vibrator ends, where the current equals zero according to the boundary
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conditions (18), and Ω = 2 ln 2L
r is the large parameter. Then, taking

into account (57), Equation (55) is transformed into the following
integral-differential equation with the small parameter:

d2J(s)
ds2

+ k2J(s) = α {iωE0s(s) + F [s, J(s)]− iωziJ(s)} , (58)

where α = 1
2 ln[r/(2L)] is the problem natural small parameter (|α| ¿ 1),

F [s, J(s)] = −dJ (s′)
ds′

e−ikR(s,s′)

R (s, s′)

∣∣∣∣∣

L

−L

+

[
d2J(s)

ds2
+ k2J(s)

]
γ(s)

+

L∫

−L

[
d2J(s′)

ds′2 +k2J (s′)
]

e−ikR(s,s′)−
[

d2J(s)

ds2 +k2J(s)
]

R (s, s′)
ds′ (59)

is the vibrator own field in free space.
Let us use the asymptotic averaging method. The main grounds

and the principles of which are represented in [40, 41], in order to obtain
the approximate analytical solution of Equation (58). We change the
variables, following the method of variation of arbitrary constants, in
order to reduce Equation (58) to the equations system of a standard
kind [40, 41] with the small parameter:

J(s) = A(s) cos ks + B(s) sin ks,

dJ(s)
ds

= −A(s)k sin ks + B(s)k cos ks,

d2J(s)
ds2

+ k2J(s) = −dA(s)
ds

sin ks +
dB(s)

ds
cos ks,

(60)

where A(s) and B(s) are the new unknown functions. Then
Equation (58) transits into the following system of the integral-
differential equations:

dA(s)
ds

= −α

k

{
iωE0s(s)+F

[
s,A(s), dA(s)

ds , B(s), dB(s)
ds

]

−iωzi[A(s) cos ks + B(s) sin ks]

}
sin ks,

dB(s)
ds

= +
α

k

{
iωE0s(s)+F

[
s,A(s), dA(s)

ds , B(s), dB(s)
ds

]

−iωzi[A(s) cos ks + B(s) sin ks]

}
cos ks.

(61)

The obtained equations are completely equivalent to Equation (58)
and are the system of the integral-differential equations of a standard
kind, unsolved relatively to the derivative. The right parts of these
equations are proportional to the α small parameter, so the functions
A(s) and B(s) in the right parts of Equation (61) can be considered as
slowly changing functions, and the averaging asymptotic method can
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be used to solve the equations system (61). Then putting the simplified
system, in which dA(s)

ds = 0 and dB(s)
ds = 0 in the right parts of the

equations, in accordance to equations system (61) and making partial
averaging along s explicitly input variable in it (the term “partial”
designates the effect by the averaging operator on all addendums
except those ones which contain E0s(s), what is possible [41] for the
system of the kind (61) in this case), we obtain the equations of the
first approximation:

dĀ(s)
ds

= −α

{
iω

k
E0s(s) + F̄ [s, Ā(s), B̄(s)]

}
sin ks + χB̄(s),

dB̄(s)
ds

= +α

{
iω

k
E0s(s) + F̄ [s, Ā(s), B̄(s)]

}
cos ks− χĀ(s),

(62)

in which χ = α iω
2kzi,

F̄
[
s, Ā(s), B̄(s)

]
=

[
Ā

(
s′

)
sin ks′ − B̄

(
s′

)
cos ks′

] e−ikR(s,s′)

R (s, s′)

∣∣∣∣∣
L

−L

(63)

is the vibrator own field (59), averaged along its length.
We shall obtain equations system (62) solution in the following

form [42]:

Ā(s) = C1(s) cosχs + C2(s) sin χs,

B̄(s) = −C1(s) sin χs + C2(s) cos χs.
(64)

Then we have after transformations instead of (62):

dC1(s)
ds

= −α

{
iω

k
E0s(s) + F̄ [s, C1, C2]

}
sin(k + χ)s,

dC2(s)
ds

= +α

{
iω

k
E0s(s) + F̄ [s, C1, C2]

}
cos(k + χ)s.

(65)

We obtain C1(s) and C2(s) from (65) and also Ā(s) and B̄(s) from
(64) further, using them as the approximating functions for the current
in (60). As a result, we obtain the general asymptotic (along the α
parameter) expression for the current in the thin impedance vibrator
at its arbitrary excitation:

J(s) = Ā(−L) cos
(
k̃s + χL

)
+ B̄(−L) sin

(
k̃s + χL

)

+α

s∫

−L

{
iω

k
E0s(s′) + F̄

[
s′, Ā, B̄

]}
sin k̃

(
s− s′

)
ds′, (66)
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where k̃ = k + χ = k + i(α/r)Z̄S .
It is necessary to use the boundary conditions (18) and the

conditions of symmetry [31], which are definitely coupled with the
vibrator excitation method: if E0s(s) = Es

0s(s), then J(s) = J(−s) =
Js(s) and Ā(−L) = Ā(+L), B̄(−L) = −B̄(+L); if E0s(s) = Ea

0s(s),
then J(s) = −J(−s) = Ja(s) and Ā(−L) = −Ā(+L), B̄(−L) =
B̄(+L) to define the constants Ā(±L) and B̄(±L). Then taking
into consideration symmetrical (the “s” index) and antisymmetrical
(the “a” index) current components, we, finally, obtain E0s(s) =
Es

0s(s) + Ea
0s(s) at arbitrary excitation of the vibrator:

J(s)=Js(s)+Ja(s)= α
iω

k





s∫

−L

E0s

(
s′

)
sin k̃

(
s−s′

)
ds′

−
sin k̃(L+s)+αP s

[
kr, k̃(L+s)

]

sin 2k̃L+αP s
(
kr, 2k̃L

)
L∫

−L

Es
0s

(
s′

)
sink̃

(
L−s′

)
ds′

−
sin k̃(L+s)+αP a

[
kr, k̃(L+s)

]

sin 2k̃L+αP a
(
kr, 2k̃L

)
L∫

−L

Ea
0s

(
s′

)
sink̃

(
L−s′

)
ds′



, (67)

where P s and P a are the vibrator own field functions, equal to,
correspondingly

P s
[
kr, k̃(L+s)

]
=

s∫

−L

[
e−ikR(s′,−L)

R(s′,−L)
+

e−ikR(s′,L)

R(s′, L)

]
sin k̃

(
s−s′

)
ds′

∣∣∣∣∣
s=L

=P s(kr, 2k̃L), (68a)

P a
[
kr, k̃(L+s)

]
=

s∫

−L

[
e−ikR(s′,−L)

R(s′,−L)
− e−ikR(s′,L)

R(s′, L)

]
sin k̃

(
s−s′

)
ds′

∣∣∣∣∣
s=L

=P a(kr, 2k̃L). (68b)

The field of induced sources equals E0s(s) = Es
0s(s) = E0 in the

problem about normal incident of the plane electromagnetic wave on
the impedance vibrator in free space. Then the expression for the
current in the vibrator has the form (with the accuracy to the terms
of the α2 order) at substitution of E0s(s) into (67):

J(s) = −αE0
iω

kk̃

(
cos k̃s− cos k̃L

)

cos k̃L + αP s
L

(
kr, k̃L

) , (69)
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where due to (68a) P s
L(kr, k̃L) =

L∫
−L

e−ikR(s,L)

R(s,L) cos k̃sds. It follows

from the analysis of formula (69) that the vibrator distributed surface
impedance value is included not only into the function of its own field,
but also into the function of the current distribution

f(s) = cos k̃s− cos k̃L, (70)
what differs the solution of the integral equation for the current by the
averaging method from the solution (54) by the method of iterations
considerably.

3. VIBRATOR EXCITATION IN THE CENTRE BY THE
CONCENTRATED EMF

Let us consider the classical problem about excitation of the vibrator in
its geometrical centre of the concentrated EMF with the V0 amplitude
in order to ground rightness and the ranges of application of the
obtained solution (67). The mathematical model of excitation is
represented in this case as:

E0s(s) = Es
0s(s) = V0δ(s− 0), (71)

where δ(s − 0) = δ(s) is the delta-function. Then the expression for
the current has the form:

J(s) = −αV0

(
iω

2k̃

) sin k̃(L− |s|) + αP s
δ

(
kr, k̃s

)

cos k̃L + αP s
L

(
kr, k̃L

) . (72)

Here P s
δ (kr, k̃s) = P s[kr, k̃(L + s)] − (sin k̃s + sin k̃|s|)P s

L(kr, k̃L),
P s[kr, k̃(L + s)] is defined by formula (68a), and P s

L(kr, k̃L) =
L∫
−L

e−ikR(s,L)

R(s,L) cos k̃sds.

Let us note that using the apparatus of the generalized integral
functions [31], it is possible to obtain P s

δ (kr, k̃s) and P s
L(kr, k̃L) in an

explicit form [11].
Knowledge of real current distribution (72) allows to calculate

the electrodynamic characteristics of the impedance vibrator. So, we
obtain the following expression for the vibrator input impedance in the
feed point Zin = Rin+iXin (or the input admittance Yin = Gin+iBin =
1/Zin):

Zin[Ohm] =
V0

J(0)
=

(
60ik̃
αk

)
cos k̃L + αP s

L

(
kr, k̃L

)

sin k̃L + αPδL

(
kr, k̃L

) , (73)
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in which PδL(kr, k̃L) =
L∫
−L

e−ikR(s,L)

R(s,L) sin k̃|s|ds.

Then the voltage standing wave ratio (VSWR) in the line antenna
feeder with the W wave impedance equals:

VSWR =
1 + |S11|
1− |S11| , S11 =

Zin −W

Zin + W
, (74)

where S11 is the reflection coefficient in the feeder.
Let us give some numerical results. Figure 2 represents the

amplitude-phase distributions of the current J(s) = |J(s)|ei arg J(s) in
the thin (r/λ = 0.007022) perfectly conducting vibrators of different
electrical lengths, calculated by formula (72), in comparison with the
experimental data from [43]. As seen from the plots, the trend of
theoretical curves reproduces the trend of the experimental ones rather
satisfactory, though some differences are observed in the absolute

Figure 2. The current amplitude-phase distributions along the
perfectly conducting vibrators with variable electric length in free space
at r/λ = 0.007022, f = 663 MHz: 1 − 2L/λ = 0.5, 2 − 2L/λ = 1.0,
3−2L/λ = 1.5; the curves — the calculation (formula (72)), the circles
— the experimental data [43].



Progress In Electromagnetics Research B, Vol. 21, 2010 321

values. They also take place in the input characteristics of the vibrators
Yin = f(2L/λ), calculated by formulas (73) and given in Figure 3.

Analogous conformities to natural laws are observed at the
calculation of the impedance vibrators input characteristics. The plots
of the input admittance for two cases of realization of the surface
impedance are represented in Figures 4, 5: 1) the metallic conductor
of the radius ri = 0.3175 cm, covered by the dielectrical (ε = 9.0) shell
of the radius r = 0.635 cm (Figure 4, the experimental data from [44]);
2) the metallic conductor of the radius ri = 0.5175 cm, covered by
the ferrite (µ = 4.7) shell of the radius r = 0.6 cm (Figure 5, the
experimental data from [45]).

If the vibrator, excited by the δ-generator in the centre, is located
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Figure 3. The input admittance of the perfectly conducting vibrator
in dependence of its electrical length at r/λ = 0.007022: 1 — the
calculation (73), 2 — the calculation (76), 3 — the experimental
data [43].
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Figure 5. The input admittance of the metallic conductor of the
radius ri = 0.5175 cm, covered by the ferrite (µ = 4.7) shell of the
radius r = 0.6 cm in dependence of the frequency at 2L = 30.0 cm: 1
— the calculation (73), 2 — the experimental data [45].

in the material medium with the parameters ε1 and µ1, then the
expression for the current has the form [11]:

J(s) = −αV0

(
iωε1

2k̃1

) sin k̃1 (L− |s|) + αP s
δ

(
k1r, k̃1s

)

cos k̃1L + αP s
L

(
k1r, k̃1L

) . (75)

Here k1 = k
√

ε1µ1 = k′1 − ik′′1 , k̃1 = k1 + i(α/r)Z̄S

√
ε1/µ1,

P s
L(k1r, k̃1L) =

L∫
−L

G(s, L) cos k̃1sds, P s
δ (k1r, k̃1s) = P s[k1r, k̃1(L+s)]−

(sin k̃1s + sin k̃1|s|) P s
L(k1r, k̃1L), and P s[k1r, k̃1(L + s)] is defined by

formula (68a). The plots of the current amplitude-phase distribution
in the perfectly conducting vibrator for the medium (salt water) with
the parameters ε1 = 83.5 − i55.3, µ1 = 1 (k′′1/k′1 = 0.301, λ1 is the
wavelength in the medium) are represented in Figure 6 in comparison
with the experimental data from [43], too.

From our point of view, the differences of the theoretical curves,
obtained on the basis of the integral equation solution for the current
by means of the averaging method, from the experimental values
are explained by that solving the vibrator own field (59) undergoes
averaging, and thus the current amplitude is with some error. However,
as seen from the comparison of the given calculated and experimental
results, the vibrators resonant characteristics ((2L/λ)res at Bin = 0)
are defined rather precisely, and the calculated curves of the currents
normalized amplitudes (|J(s)|/|J |max) agree with the experimental
data in permissible limits. Thus the formulas for the current, obtained
in the format of the first approximation of the averaging method, are
suitable for the vibrators integral characteristics calculation, such as
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Figure 6. The current amplitude-phase distributions along the
perfectly conducting vibrators with variable electric length in salt
water at k′′1/k′1 = 0.301, r/λ1 = 0.0028, f = 28MHz, ∆ = λ/λ1 =
9.58: the curves — the calculation (formula (75)), the circles — the
experimental data [43].

the radiated (scattered) electromagnetic field in all zones of observation
and also at investigation of the vibrators resonant properties.

As indicated in [40],Equation (61) solution can be obtained in the
format of the improved first approximation. It means, in our case,
that the transition from Equation (61) to Equation (62) is made with
the help of substitution of −dĀ(s)

ds sin ks + dB̄(s)
ds cos ks = αiωE0s(s),

and, finally, it leads to the following expression for the vibrator input
impedance:

Zimp
in =

(
60ik̃

αk

) cos k̃L+αP s
L

(
kr, k̃L

)

sin k̃L+αPδL

(
kr, k̃L

)
+

[
sin k̃L+αPδ1

(
kr, k̃L

)
+α2Pδ2

(
kr, k̃L

)] . (76)
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Here Pδ1

(
kr, k̃L

)
=PδL

(
kr, k̃L

)
+sin k̃LP s

0

(
kr, k̃L

)
−cos k̃LPδ0

(
kr, k̃L

)
,

Pδ2

(
kr, k̃L

)
=PδL

(
kr, k̃L

)
P s

0

(
kr, k̃L

)
−P s

L

(
kr, k̃L

)
Pδ0

(
kr, k̃L

)
,

P s
0

(
kr, k̃L

)
=

L∫

−L

e−ikR(s,0)

R(s, 0)
cos k̃sds,

Pδ0

(
kr, k̃L

)
=

L∫

−L

e−ikR(s,0)

R(s, 0)
sin k̃|s|ds.

The calculated curves, corresponding to formula (76), which correlate
with the experimental data very closely, are given in Figure 3 (the
dotted lines). If one solves Equation (61) by the averaging method in
the format of the second approximation further, then, as a result, it is
possible to obtain much more bulk formulas, which, of course, increase
preciseness of the calculated results, but they turn out to be suitable
very little for practical use.

4. CONCLUSION

Thus the solution of the quasi-one-dimensional integral equation for
the electrical current in thin vibrators by the small parameter method
leads to different expressions for the current in the case of a tuned
vibrator (the impressed field frequency differs a bit from the vibrator
own frequency) and an untuned one (when this condition is not
performed), though the solution can be obtained for the untuned
vibrator at its arbitrary excitation in the first approximation. The
solution of the integral equation for the current by the iterations
method is given in the form of one formula, suitable both for tuned
and untuned vibrators. However, application of this method is possible
only at concretization of the impressed sources field at the initial
stage of analysis. The solution of the equation for the current by the
averaging method combines in itself the advantages of the solutions
both by the small parameter method and iteration method, namely,
the analytical expression for the current is obtained in the form of
one formula, suitable both for tuned and untuned vibrators without
concretization of the impressed sources field and electrodynamic
volumes in which they are located. To our mind, it is expedient to
use the functions of the current distribution, obtained by means of
the averaging method as basic ones at realization of the numerical-
analytical methods (for examples, of the method of induced EMF) in
order to increase preciseness of the calculated results at the solution
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of the problems about scattering (radiation) of electromagnetic waves
by thin impedance vibrators.
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