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Abstract—Synthetic aperture radar (SAR) imagery technology is
one of most important advances in space-borne microwave remote
sensing during recent decades. Completely polarimetric scattering
from complex terrain surfaces can be measured. Polarimetric SAR
(POLSAR), and its relevant technologies, such as POL-interferometric
SAR (POLINSAR), bistatic SAR (POL-BISAR), high resolution (in
m and dm resolution) SAR, inverse SAR (ISAR) etc., have been
providing rich all-weather, all-time and high-resolution data and
images of active miscrowave remote sensing. Fully understanding
and retrieving information from polarimetric scattering signatures of
natural media and SAR images have become a key issue for the
SAR remote sensing and its broad applications. Many researches
on polarimetric scattering and SAR imagery technology have been
carried out (e.g., [1–6]). This paper presents a review of the research
works in Fudan University (FDU) during recent years on theoretical
modeling of the terrain surface for polarimetric scattering simulation
and Mueller matrix solution, mono-static and bistatic SAR image
simulation, new parameters for unsupervised surface classification,
DEM inversion, change detection from multi-temporal SAR images,
and reconstructions of buildings from multi-aspect SAR images,
etc. [7–46]. Some applications are briefly reported.
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1. MODEL OF VEGETATION CANOPY AND MUELLER
MATRIX SOLUTION

As a polarized wave Einc(χ, ψ) is incident upon the natural media, the
scattering field is written as [47–49]

[
Evs

Ehs

]
=

eikr

r

[
Svv Svh

Shv Shh

]
·
[

Evi

Ehi

]
≡ eikr

r
S ·Einc(χ, ψ) (1)

where 2× 2-D (dimensional) complex scattering amplitude function S
can be measured by the polarimetry [50]. The incident polarization
is indicated by the elliptic and orientation angles (χ, ψ). Using the
Mueller matrix solution of vector radiative transfer equation [15] and
Eq. (1), the scattered Stokes vector (four Stokes parameters) can be
obtained or measured as [13].

Is (θ, φ) = M (θ, φ; π − θ0, φ0) · Ii (χ, ψ) (2)

The Mueller matrix solution of a layer of scatterers model, as shown
in Fig. 1, is written as

M (θ, φ; π − θ0, φ0) = M0 + M1 + M2 + M3 + M4 (3)

M0 = exp [−d sec θκe (θ, φ)] ·R (θ, φ; π − θ0, φ0)
· exp [−d sec θ0κe (π − θ0, φ0)] (4a)
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Figure 1. A model of non-spherical scatterers for vegetation canopy.
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where κe, P, R are the extinction matrix, phase matrix of non-
spherical scatterers, and reflectivity matrix of underlying rough
surface, respectively. Five contributions from scatterers and underlying
surface are illustrated in Fig. 1. κe, P can be expressed by < SpqS

∗
st >

of S in Eq. (1). The co-polarized and cross-polarized backscattering
coefficients, σc and σx, polarization degree ms for scattered Stokes
echo with partial polarization and other functions can be numerically
calculated [26].

Equations (4a)–(4e) will be applied to numerical simulation
of polarimetric scattering from the terrain surface with physical
parameters of scatterers [13], as described in next sections.

The Mueller matrix is a 4 × 4-D real matrix with complex
eigenvalues and eigenvectors. To be physically realizable, this matrix
must satisfy the Stokes criterion together with several other restrictive
conditions. Unfortunately, however, these restrictions do not have
any direct physical interpretation in terms of the eigenstructure of the
Mueller matrix.

The coherency matrix C is applied to the study of polarimetric
scattering of SAR image [18, 51–53]. Define the scattering vector as

kP = 1
2 [Svv+Shh, Svv−Shh, Svh+Shv, i(Svh−Shv)]T = 1

2 [A, B,C, iD]T
(5)

where A, B, C, D are sequentially defined in Eq. (5), and the subscript
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P denotes Pauli vectiorization. The coherency matrix is defined as

C =
〈
kPk+

P

〉
=

1
4



〈AA∗〉 〈AB∗〉 〈AC∗〉 〈AD∗〉
〈BA∗〉 〈BB∗〉 〈BC∗〉 〈BD∗〉
〈CA∗〉 〈CB∗〉 〈CC∗〉 〈CD∗〉
〈DA∗〉 〈DB∗〉 〈DC∗〉 〈DD∗〉


 (6)

The eigenvalue and eigenvector of the coherency matrix are defined as

C =
〈
kPk+

P

〉
=

4∑

i=1

λi

〈
kPik+

Pi

〉
(7)

All eigenvalues are real and non-negative, and λ1 ≥ λ2 ≥ λ3 ≥ λ4.
The coherency matrix is also related with the Mueller matrix as

Mi+1,s+1 =
∑

t

∑
u

1
2
Trace (σiσtσsσu)

[
C

]
tu

(8)

where σi, i = 0, 1, 2, 3 are the Pauli matrices.
Usually, the case of Svh = Shv is simply assumed. The entropy H

is defined by the eigenvalues of the coherency matrix as [51–54]

H = −
3∑

i=1

Pi log3 Pi, Pi = λi/(λ1 + λ2 + λ3) (9)

The entropy is an important feature since it relates the randomness
of scatter media with other physical parameters, such as canopy
configuration, biomass, etc.

The coherency matrix is 4 × 4-D positive semidefinite Hermitian
and as such has real non-negative eigenvalues and complex orthogonal
eigenvectors. Amplitude and difference of four eigen-values are
functionally related with polarimetric scattering process of the terrain
canopy. Eigen-analysis of the coherency matrix yields better physical
insight into the polarimetric scattering mechanisms than does the
Mueller matrix and further, it can be employed to physically identify
a Mueller matrix by virtue of the semi-definite nature of the
corresponding coherency matrix.

For the first-order solution in small albedo, cross polarization is
small and correlations such as the terms < CA∗ >, < CB∗ >, <
DA∗>, <DB∗> etc. in Eq. (6) are always very small, and might be
neglected in our following derivations. Actually, for weak assumption of
azimuthal symmetric orientation, these correlations have been proved
to be zero. Applying this approximation to Eq. (6), the eigenvalues of
C have been derived as [18]

λ1,2 =
1
8

[〈|A|2〉+
〈|B|2〉±

√
(〈|A|2〉−〈|B|2〉)2+4 〈A∗B〉 〈AB∗〉

]
,

λ3 =
1
4

〈|C|2〉
(10)
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It is interesting to see that if < AB∗ >< A ∗B >=< AA∗ >< BB∗ >
at an ordered case, it yields λ2 = 0.

Substituting A, B, C and D of Eq. (6) into Eq. (10), the eigen-
values are derived using the power terms of < |Svv|2 >, < |Shh|2 >, <
|Shv|2 > as follows,

λ1 =
1
2

(〈|Svv|2
〉

+
〈|Shh|2

〉)− λ2,

λ2 =
1
2

〈|Svv|2
〉 〈|Shh|2

〉

(〈|Svv|2〉+ 〈|Shh|2〉)(1−∆),

λ3 =
〈|Shv|2

〉
(11)

where the configuration parameter

∆ =
〈SvvS

∗
hh〉 〈S∗vvShh〉

〈|Svv|2〉 〈|Shh|2〉 (12)

varies from 0 of totally random media to 1 of ordered media, i.e., no-
random case.

It can be seen that the first eigen-value λ1 now indicates the total
vv and hh co-polarized power subtracting their coherence defined by
the parameter ∆ of Eq. (12), which varies from 1 at ordered case to
0 in totally random medium. The second eigen-value λ2 now takes
into account for the vv and hh coherent power. As ∆ approaches to
one, λ2 → 0 for ordered media, and as ∆ approaches to zero, λ2 would
increase to indicate the loss of the vv and hh power coherency for totally
random media. The third eigen-value λ3 is now due to depolarization
caused by the media randomness.

The (p, q = v, h)-polarized backscattering coefficient is

σpq = 4π cos θ
〈|Spq|2

〉
(13)

Substituting Eq. (13) into Eqs. (11), (12), the functions Pi, i =
1, 2, 3, of Eq. (9) are then derived as

P1 = 1− P2 − P3, P2 = X(1−∆)(1− δ), P3 = δ(1− δ) ¿ 1 (14)

where
X ≡ σhh/σvv

(1 + σhh/σvv)2
, δ =

2σhv

σvv + σhh
(15)

Note that all functions Pi, i = 1, 2, 3, can be now calculated by
polarized backscattering coefficient σpq, p, q = v, h, not by Eq. (7)
from full Mueller matrix solution. Then, the entropy H of Eq. (9) is
calculated using Pi of Eq. (14). It can be seen that the function P1 is
related with the total vv and hh co-polarized power σhh+σvv; P2 is due
to the difference between σhh and σvv; and P3 is due to depolarization
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σhv. They are modulated by the media configuration and randomness
via the parameters ∆ and δ. As the medium becomes more random
or disordered, δ increases and ∆ approaches zero. Vice versa, as the
medium becomes more ordered, δ decreases and ∆ increases. Thus, the
relationship between the entropy H and backscattering measurements
σpq (pq = vv, hh, hv) is established.

Define the co-polarized and cross polarized indexes, respectively,
as

CPI ≡ 10 log10(σhh/σvv) (dB), XPI ≡ δ (16)

The entropy H is directly related with backscattering indexes CPI and
XPI via Eqs. (14) ∼ (16).

Figure 2(a) presents an AirSAR image of total power of σvv, σhh

and σvh at the L band. The image data from some typical areas such
as the lake, an island surface, sparse trees, and thick forest (see the
frames in the figure) are chosen, as shown in the discrete points of
Fig. 2(b), and are compared with theoretical results of H, CPI and
XPI. The H is first rigorously calculated by polarimetric data of the
Mueller matrix, i.e., the eigenvalues of coherency matrix C. Using
the AirSAR data σvv, σhh, σvh and the averaged δ in the respective
region, the lines are calculated with appropriate ∆ to match the center
of discrete data.
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Figure 2. An AirSAR image of total power σvv, σhh, σvh at L
band and Entropy H vs CPI. Line 1: ∆ = 0.257, δ = 0.176, Line
2: ∆ = 0.318, δ = 0.156, Line 3: ∆ = 0.365, δ = 0.118, Line 4: ∆ = 0,
δ = 0, Line 5: ∆ = 0.731, δ = 0.0265.
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2. SAR IMAGING SIMULATION

Given the sophisticated mechanisms of electromagnetic (EM) wave
scattering and SAR signal collecting, it is hard to tackle SAR
imagery without the aid of forward simulation of scattering based on
physical modeling. Simulation of SAR imaging presents a different
mode to study inhomogeneous terrain scene under SAR observation.
It may evaluate or predict the SAR observation, interpret the
physical scattering behavior, and take account of the parameterized
characteristics of terrain surface objects. Some approaches to SAR
image simulation in previous literature might be classified into two
catalogues: One focuses on the statistical characteristics of SAR
images, and the other on physical scattering process. Natural scene is
more complicated including randomly, inhomogeneously distributed,
penetrable or impenetrable objects, such as vegetation canopies,
manmade structures and perturbed surface topography. Particularly,
volumetric scattering through penetrable scatterers, e.g., timberland
forests, crops, green plants etc., plays an essential or dominant role
in SAR imagery. It is meaningful to develop computerized simulation
of SAR imaging over comprehensive terrain scene with heterogeneous
terrain objects.

We present an novel approach of the Mapping and Projection
Algorithm (MPA) to polarimetric SAR imaging simulation for com-
prehensive scenarios, which takes account of scattering, attenuation,
shadowing and multiple scattering of spatially distributed volumetric
and surface scatterers (Xu and Jin, 2006). In this approach, scattering
contributions from scatterers are cumulatively summed on the slant
range plane (the mapping plane) following geometric principles, while
their extinction and shadowing effects are cumulatively multiplied on
the ground range plane (the projection plane). It finally constructs a
general imaging picture of the whole terrain scene via mapping and
projection operations. A MPA is then devised to speed up the sim-
ulation of the whole process of scattering, extinction, mapping and
projection in association with a grid partition of the comprehensive
terrain scene. Our SAR simulation scheme incorporates polarimetric
scattering, attenuation or shadowing of several typical terrain surfaces,
as well as the coherent speckle generation.

2.1. The Mapping and Projection Algorithm (MPA)

Since the slant range is much larger than the synthetic aperture,
the incidence angle to the same target is nearly invariant during the
interval of radar flying over a length of synthetic aperture. Thus in the
imaging simulation, the whole scene is divided into cross-track lines
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along the azimuth dimension, and then the scattering contribution
from the terrain objects lying in each line (included in the incidence
plane) are calculated sequentially. It finally constructs a scattering
picture or a scattering map of the whole scene.

Following from VRT, we derived a general expression of the
scattering power at range r of x-position in azimuth dimension as

S(x, r) =

θ1∫

θ0

exp


−

r∫

r0

dr′κ+
e

(
x, r′, θ

)

P (x, r, θ)

exp


−

r0∫

r

dr′κ−e
(
x, r′, θ

)

 rdxdrdθ (17)

where the phase function P stands for scattering, κ−e (x, r, θ), κ+
e (x, r, θ)

for the backward and forward extinction of an differential element
dv at the position (x, r, θ) of the imaging space. θ is incident
angle. Integrating S(x, r) over the n, i-th pixel i.e., x ∈ [xn, xn+1),
s ∈ [si, si+1), the corresponding discrete scattering map Sn,i can
be obtained. Considering polarimetric scattering, the computational
discrete form of Eq. (17) for both volume and surface scatterer is given
as

Sn,i=
mn+1−1∑
m=mn

pi+1−1∑
p=pi

Q−1∑

q=0

p∏

p′=0

E+
o (m, p′, q)So(m, p, q)

0∏

p′=p

E−
o (m, p′, q) (18)

So(m, p, q) =
{

vef Svol(m, p, q) for volume scatterer
aef Ssurf(m, p, q) for surface scatterer

(19)

E±o (m, p′, q) =
{

exp [−def κ
±
e (m, p′, q)] for volume scatterer

0 for surface scatterer (20)

where vef = γv0 is the effective volume of volume scatterer, calculated
from particle number γ and volume v0; aef = ∆x∆s is the effective
area of surface scatterer; def is the effective penetration depth. All of
them take into account the proportion coefficients of each scatterer in
the same discrete unit. The subscript o denotes scattering or extinction
of a single scatterer. Eq. (18) presents a general description of SAR
imaging which deals with single scattering, attenuation or shadowing
of all possible objects in the imaging space.

We further devise a mapping and projection algorithm (MPA) to
fast compute Eq. (17) The first step is to partition the scene and terrain
objects lying in the horizontal plane xoy into multi-grids. Each grid
unit contains its corresponding parts of the terrain objects overhead,
e.g., ground, vegetation, building, etc.
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Figure 3. The MPA algorithm for natural media scene.

As shown in Fig. 3, two arrays E± and S are deployed for
temporary storage of scattering and extinction (the under-bar denotes
an array). The mapping plane and projection plane are equally divided
into discrete cells corresponding to elements of S, E±. Attenuation or
shadowing effect of each grid unit is counted in the increasing sequence
of y axis and cumulatively multiplied into the array E±.

The MPA calculating sequence of the terrain objects in one grid
unit is: First to calculate the scattering power of the current terrain
object and accumulate onto the array S, where the attenuation or
shadowing from other terrain objects are obtained from array E±; then,
to calculate the attenuation or shadowing caused by the current terrain
object itself, and cumulatively multiply onto the array E±; ultimately
when all grid units of the current line are counted, the scattering map
is exactly produced in the array S.

As shown in Fig. 3, a vertical segment (length L) of volume
scatterers above the current grid unit is firstly divided into K sub-
segments Lk in order to make each sub-segment mapping into one cell
SIk in mapping plane, while its mid-point is projected to cell EIk in
projection plane. After the mapping and projecting, the elements of
array S are refreshed as

S[SIk] := S[SIk] + E+[EIk] · Sk
o ·E−[EIk], k = 1, . . . , K (21)

Sk
o is the scattering of the k-th sub-segment. Assuming that volume
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scatterers always uniformly fill the whole sub-segment, then the
effective volume in Eq. (19) is vef = ∆x∆yLkfs. Therefore, we have

Sk
o = ∆x∆yLkfsSvol = vef Svol (22)

where fs is the fractional volume of scatterers. Otherwise, it is
necessary to estimate the total number of scatterers γ within the sub-
segment, and calculate scattering from Eq. (19). The next step is to
refresh the elements of the array E± as

{
E−[EIk] := E−

o,k ·E−[EIk] k = 1, . . . , K

E+[EIk] := E+[EIk] ·E+
o,k k = 1, . . . , K

(23)

where E±o,k = exp(−def κe) is the attenuation of the k-th sub-segment.
Due to discrete calculation for attenuation, the array E± should store
the averaged attenuation. Thus, the ratio of shadowed area of the sub-
segment to the whole projection cell should be taken into account, when
counting the contribution of the sub-segment to the mean attenuation.
The effective depth in E±o,k is calculated as

def =
vef

RxRr/tan θ
=

∆x∆yLk

RxRr/tan θ
= tan θ

∆x∆yLk

RxRr
(24)

It can be seen from the effective depth def that if we redistribute all
volume scatterers of the sub-segment and make them cover the whole
projection cell under the invariance of density, then the layer depth of
redistributed scatterers along the projection line is seen as the effective
depth.

In a similar way, larger surface scatterers, like vertical wall
surfaces, cliff slopes etc., are segmented according to mapping cells.
But, for nearly horizontal surfaces, e.g., ground or roof surface, the
facet cut by one grid unit is small enough and is projected into one
projection cell, i.e., K = 1. Hence, given the normal vector of facet n̂,
the effective area and its scattering in Eq. (21) are calculated in two
ways:

Sk
o = aef Ssurf =

{
∆x∆ySsurf cosφ2

/
cosφ1 K = 1

∆xLkSsurf cosφ2

/
sinφ1 K > 1

(25)

where φ1 is the angle between n̂ and z axis; φ2 is the angle between
n̂ and î incidence. Lk is the length of sub-segment. Moreover, the
array E± should be set to zero over all projection interval from the
first projection cell to the last one, i.e.,

E±[j] := 0 EI1 ≤ j ≤ EIK (26)
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The elements of the array E± are initialized to unit matrices at the
start point of calculation for each line, while the array S should be
saved before cleared to start the next line. Note that each line is
strictly computed in the sequence of increasing y in order to precisely
count attenuation caused by the terrain objects ahead.

Double and triple scatterings between terrain objects and the
underlying ground are regarded as shown in Fig. 3. First, the
corresponding ground patch of multiple scattering can be located by
the ray tracing technique. Then the length of propagation path, i.e.,
the effective range ref can be given as

ref =
{

(rObject + rGround + rPath)/2 for double scattering
rObject + rPath for triple scattering (27)

In the same way, multiple scattering of a segment of scatterers
is mapped into the array S by ref . The same step of dividing into
sub-segments is employed if the mapping interval exceeds one cell.

For double scattering, the attenuation or shadowing suffered
through the propagation paths of rObject, rGround are the same with
single scattering of the terrain object and ground patch, respectively.
It means that the array E± can be used as well. The attenuation during
the way from the terrain object to ground patch rPath, is omitted for
simplicity. Therefore, the double scattering contribution can be written
as

S[SIef ] : = S[SIef ] + E+[EIGround] · S2+
Ground · ρS2−

Object ·E−[EIObject]

+E+[EIObject] · ρS2+
Object · S2−

Ground ·E−[EIGround] (28)

where EIGround, EIObject are the projection indices of the terrain
object and the ground patch respectively. S2±

Ground, S2±
Object are the

Mueller matrices of the ground patch and the terrain object along
the forward and backward directions of double-scattering, respectively.
The coefficient ρ = vef or aef is calculated similarly to Eqs. (19), (22)
and (25).

For triple scattering (object-ground-object), the expression can be
directly written as:

S[SIef ] := S[SIef ]+E+[EIObject]·S2+
Object ·S3

Ground ·ρS2−
Object ·E−[EIObject]

(29)
where S3

Ground is the Mueller matrix of ground patch along the triple
scattering path; ρ = vef or aef .

Correct sequence for calculation of each grid unit is first to count
single scattering, then multiple scattering, at last its attenuation or
shadowing. Notice that the ground patch of multiple scattering could
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be located at any place around the terrain object. For simplicity,
we take the projection cell in the current incidence plane as an
approximate substitute. Some other coding techniques are adopted
to guarantee the correct computation and make it more efficient.

2.2. Scattering Models for Terrain Objects

For vegetation canopies, VRT model of a layer of random non-spherical
particles (Jin 1994) is employed. Leaves, small twigs or thin stems
are modeled as non-spherical dielectric particles under the Rayleigh or
Rayleigh-Gans approximation, while branches, trunks or thick stems
are modeled as dielectric cylinders. A tree model is composed of
crown and trunk. The crown is a cloud with a simple geometrical
shape containing randomly oriented non-spherical particles. The trunk
is an upright cylinder with the top covered by the crown. Oblate
or disk-like particles and elliptic crown are adopted for broad-leaf
forest, while prolate or needle-like particles and cone-like crown are for
needle-leaf forest. In addition, the crown shapes take a small random
perturbation. Similarly, a farm filed is modeled as a layer of randomly
oriented non-spherical particles with perturbed layer depth. If the grid
units are small enough, the segment of crown or crops cut by one grid
unit can be regarded as a segment fully filled with particles. Differences
between the trunk and crown are: (a) The trunk is solid within a grid
unit i.e., fractional volume is set to 1; (b) double scattering between
the trunk and ground is taken into account.

Scattering of the building is seen as the surface scattering from
its wall and roof surfaces and multiple interactions with the ground
surface. The integral equation method (IEM) is employed to calculate
surface scattering. The building is modeled as a parallelepiped with
an isoscales triangular cylinder layered upon it. Due to the orientation
of wall surface and roof surface, the incident angle must be transferred
into the local coordinates of the surface, as well as the polar basis of
wave propagation. Geometrical relationships among the wall surfaces,
the roof surfaces, as well as the double and triple scatterings between
the wall and ground can be found in [55–57]. Fig. 2 illustrates the
building model, its image and shadowing in SAR imagery.

For ground facet, the tangent vectors along x, y axes on the current
grid unit are used to construct the facet plane.

The MPA approach is based on the VRT theory for incoherent
scattering power, not coherent summation of scattering fields.
However, speckle due to coherent interference is one of the most critical
characteristics of SAR imagery, especially for studies of SAR image
filtering and optimization. Assuming Gaussian probability distribution
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Figure 4. Image and shadow of a building in SAR imagery.

of the scattering vector kL = [Shh, Shv, Svh, Svv]
T , random scattering

vector is then generated as follows:

kL = k0 ·C
1
2 , k0

i = Ii + jQi, i = 1, . . . , d (30)

where Ii, Qi are independent Gaussian random numbers with the zero
mean and unit variance. Given the positive semidefinite property of
C, its square root can be obtained by Cholesky decomposition.

2.3. Simulation Results

The configurations and parameter settings of the radar and platform
in simulation are selected follow the AIRSAR sensor of NASA/JPL.

A virtual comprehensive terrain scene is designed, as shown in
Fig. 5(a), as according to a true DEM of Guangdong province, south
China. It contains different types of forests covering on the hill, crops
farmland, ordered or random buildings in urban and suburban regions,
roads and rivers.

A simulated scattering map (decibel of normalized scattering
power, from −50 dB to 0 dB, pseudo color: R-HH, G-HH, B-HV.)
at L band with 12m resolution (pixel spacing is 5 m) is displayed in
Fig. 5(b). The simulated SAR image at L band is shown in Fig. 5(c).

Figures 6(a) and (b) give the simulated scattering map and
SAR image at C band, respectively. In this higher band, vegetation
scatterings are significantly increased, as well as attenuation is
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Figure 5. Simulated SAR image at L band. (a) Designed scene. (b)
Scattering coefficient map. (c) Simulated image of total power.

(a) (b) 

Figure 6. Scattering and simulated SAR image at C bands. (a)
Scattering coefficient map. (b) Simulated image of total power.

increased and wave penetrable depth is decreased. It causes that trees
become thinner while the shadowing becomes darker.

At the upper-right corner, the blocks images appear like parallel
lines, which reveal the dominance of double scattering in the urban
area. However, on the other side below the river, the buildings are
oriented nearly 45 degrees to the radar flying direction. As a result,
the cross-pol scattering (blue) is stronger, while double scattering is
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reduced. Timberlands can be classified into two classes: Broad leaves in
yellow color due to balance between HH and VV scattering, and narrow
leaves in green color due to weaker scattering of HH. The narrow
leaves trees make weaker attenuation of HH and therefore stronger
HH scattering of the shadowed ground, which is the reason why most
areas of narrow leaves forest become red. Overlay and shadowing
effects caused by mountainous topography are particularly perceptible.
Croplands are generally uniform and dense, and appear like patches in
the image. Its VV scattering (green) is always stronger than HH. They
have distinguishable brightness due to different density, sizes, shapes
etc. More detail discussion can be seen in [42].

2.4. Bistatic SAR Imaging

Bistatic SAR (BISAR) with separated transmitter and receiver flying
on different platforms has become of great interests [58–61]. Most of
BISAR research is focused on the engineering realization and signal
processing algorithm with few on land-based bistatic experiments or
theoretical modeling of bistatic scattering. The MPA provides a
fast and efficient tool for monostatic imaging simulation. It involves
the physical scattering process of multiple terrain objects, such as
vegetation canopy, buildings and rough ground surfaces [44].

Similar to mono-static MAP, the bistatic-MAP steps are described
as follows,

(1) The arrays E+, E− are initialized as unit matrices, S is as zero
matrices. Then, visit the grid units, sequentially, along +y direction.

(2) Perform 3D projections of the current grid unit along incidence
and scattering directions to the cells pd, pu of E+, E−, respectively.

(3) Determine the mapping position of the current grid unit based
on the information of its synthetic aperture and Doppler history, which
corresponds to the cell m of the array S.

(4) Obtain or calculate the scattering matrix S0 and the
upward/downward attenuation matrix E±0 of the current grid unit.

(5) Refresh the elements of S as

S[m] := S[m] + E+[pu] · S0 ·E−[pd] (31)

Refresh the elements of E+, E− as

E−[pd] := E−
0 ·E−[pd], E+[pu] := E+[pu] ·E+

0 (32)

(6) Return to Step (2), and continue to visit the next grid at
the same coordinate of y or, if all grids at this coordinate have been
visited, step forward to a larger coordinate of y till the whole scene is
exhausted.
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Figure 7. Bistatic MPA.

Figure 8. Composition of a tree and a house in BISAR image.

Figures 7 and 8 explain the bistatic imaging process of a tree and
a building. One of the differences between bistatic and monostatic
cases is the shadowing area projected in both incidence and scattering
directions. Additionally, due to the split incidence and scattering
directions, double scattering terms of object-ground and ground-object
are different. One reflects at the ground and diffusely scatters from
the object, the other scatters at the object and then reflects from the
ground. These two scattering terms have different paths which give
rise to separated double-scattering images.
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(a) Ground truth (b) AT span/dB (c) TI span/dB

Figure 9. Simulated BISAR images of AT and TI.

A comprehensive virtual scene as shown in Fig. 9(a) is designed
for simulation and analysis. Simulated BISAR images of the
configurations, AT (across track) and TI (translational invariant) are
shown in Figs. 9(b) and (c), respectively.

2.5. Unified Bistatic Polar Bases and Polarimetric Analysis

It is found in the BISAR simulation that in AT BISAR image, bistatic
scattering of terrain objects preserves polarimetric characteristics
analogous to monostatic case. while the major disparity is on total
scattering power.

However, the polarimetric parameters behavior is different in the
image of general TI mode. First, H is generally higher, probably due to
the fact that large bistatic angle is more likely to reveal the randomness
and complexity of the object, and makes the scattering energy more
uniformly distributed on different polarizations. Second, almost all
terrain surfaces show α > 45◦. It is found that scattering energy is
concentrated on the 4-th component of Pauli scattering vector kP all
over the image.

It seems that α might lose its capability to represent the
polarimetric characteristics under certain bistatic configuration.
Generally speaking, all parameters α, β, γ in monostatic SAR image
cannot reflect polarimetric characteristics in the general TI case.

Conventional polarimetric parameters such as α, β, γ may
largely depend on angular settings of the sensors rather than instinct
properties of the target. It becomes inconvenient to interpret the
physical meaning of polarimetric parameters when they are severely
involved with the bistatic configuration.

As proposed in many studies, inverse problems of bistatic
scattering are usually discussed in a coordinates system determined
by the bisectrix. We believe it is important to first transform the
conventional bistatic polar bases to a new one defined by the bisectrix.
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The unified bistatic polar bases are defined as

ĥ′i =
b̂× k̂i

|b̂× k̂i|
, v̂′i = ĥ′i × k̂i, b̂ =

k̂s − k̂i

|k̂s − k̂i|
(33)

where b̂ denotes the bisectrix, which is defined as the bisector of the
incident and scattered wave vectors in the plane, as shown in Fig. 10(a).

The relationship between the unified bistatic polar bases and the
conventional polar bases can be described by polar basis rotation, i.e.,
E, S defined in (v̂i, ĥi, k̂i) are re-defined as E′,S′ in (v̂′i, ĥ

′
i, k̂i). It is

written as

E′i = Ui ·Ei, S′ = Us · S ·UT
i , Ui =

[
v̂i · v̂′i ĥi · v̂′i
v̂i · ĥ′i ĥi · ĥ′i

]
(34)

where Ui is the rotation matrix. Fig. 10(b) gives the bistatic TI image
after transfom of Eq. (34). The normalized Pauli components (NPC)
are defined as Pi = |kP,i|/|kP |, i = 1, . . . , 4. The appearance of the
NPC color-coded image after transform agrees with the convention of
human vision.

We modify the definition of Cloude’s parameters as

kP = ‖kP ‖ ·




cosα cos γ exp(jφ1)
sinα cosβ exp(jφ2)
sinα sinβ exp(jφ3)
cosα sin γ exp(jφ4)


 (35)
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Figure 10. Unified bistatic polar bases and bistatic (TI) pseudo color
images coded by NPC after unified bistatic polar bases transform.
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 (a)  redefined α (b) redefined β (c) redefined γ

Figure 11. Redefined α, β, γ after bistatic polar bases transform.

The redefined α, β, γ are calculated and plotted in Fig. 11
for bistatic image of Fig. 10(b). It can be seen that the redefined
α, β, γ are more capable to represent or classify the polarimetric
characteristics of different scattering types.

Redefinition of Cloude’s parameters is only a preliminary attempt
of bistatic polarimetric interpretation. It remains open for further
study in a systematic way and for verification using both simulation
and experiments.

The MPA is also applied to simulation of SAR image of undulated
lunar surface [12]. Based on the statistics of the lunar cratered terrain,
e.g., population, dimension and shape of craters, the terrain feature
of cratered lunar surface is numerically generated. According to
inhomogeneous distribution of the lunar surface slope, the triangulated
irregular network is employed to make the digital elevation of lunar
surface model. The Kirchhoff approximation of surface scattering is
then applied to simulation of lunar surface scattering. The SAR image
for cratered lunar surface is numerically generated. Making use of the
digital elevation and Clementine UVVIS data at Apollo 15 landing
site as the ground truth, an SAR image at Apollo 15 landing site is
simulated.

3. TERRAIN SURFACE CLASSIFICATION USING
DE-ORIENTATION THEORY

Classification of complex terrain surfaces using polarimetric SAR
imagery is one of most important SAR applications [62, 63].
An unsupervised method based on the entropy H and target
decomposition parameters has been well developed by [51–53], which
extracts the target decomposition parameter α and entropy H from
eigen-analysis of coherence matrix and construct an unsupervised
classification spectrum on the α-H plane.
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Scattering of the terrain targets functionally depends on
the scatter orientation, shape, dielectric property, and scattering
mechanism etc. Scatter targets of complex terrain surfaces are often
randomly oriented and cause randomly fluctuating echoes. It is difficult
to make classification of randomly oriented and randomly distributed
scatter targets. Different scatters with different orientations can
make the similar scattering, and vice versa, the same scatters with
random orientation can make different scattering to make confused
classification.

In this section, a transformation of the target scattering vector
to rotate the target along the sight line is derived. Deorientation is
introduced to transform the target orientation into such fixed state
with minimization of cross-polarization (min-x-pol). And meanwhile,
the angle is extracted to indicate the angle deviation of the target
orientation from this min-x-pol state.

A set of new parameters u, v, w from the target scattering vector
is defined to indicate the ratio and phase difference of the two co-
polarized (co-pol) backscattering terms, and the significance of cross
polarized (x-pol) term. All these parameters as well as the entropy H
are applied to classification of random surface targets.

Numerical simulations of polarimetric scattering of a single small
non-spherical particle, and a layer of random non-spherical particles
above a rough surface are studied to show the effectiveness of the
parameters u, v, ψ, H and the capability of u, v, H for classification
of complex terrain surfaces [40].

As examples, the terrain surface classifications for a SIR-C and an
AirSAR images are presented.

3.1. De-orientation and Parameterization

From Eq. (1), the scattering vector is usually defined as
kP = [Shh+Svv, Shh−Svv, 2Sx]T /

√
2, or kL = [Shh,

√
2Sx, Svv]T (36)

where Sx ≡ Shv = Svh. Cloude et al. [2, 51–53] defined the
parameterization of kP in terms of the parameters α, β etc. as

kP = |kP |
[
cosαejφ1 , sinα cosβejφ2 , sinα sinβejφ3

]T
(37a)

similar parameterization of kL is defined as

kL = |kL|
[
sin c cos aejφ0 , cos cβejφx , sin c sin aej(φ0+2b)

]T
(37b)

It yields

a = tan−1(|Svv|/|Shh|), b =
1
2

arg(Svv/Shh), c = cos−1(
√

2|Sx|/|kL|)
(38)
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Rotating the angle ψ of the polarization base along with the sight
line, the electrical field vector E becomes E′ as

E′ = [R] ·E, [R] =
[

cosψ − sinψ
sinψ cosψ

]
(39)

In backscattering direction, this rotation makes the scattering
vector kP to be k′P , which can be expressed as

k′P = [U ] · kP , [U ] =

[ 1 0 0
0 cos 2ψ sin 2ψ
0 − sin 2ψ cos 2ψ

]
(40)

Applying minimization of cross polarization (min-x-pol) to k′P ,
i.e., let

∂|k′P,3|2
∂ψ

= 0,
∂2|k′P,3|2

∂ψ2
> 0

it yields the deorientation angle ψm is obtained as

ψm =
[
sgn {cos(φ2 − φ3)} · β

2

]
π
2

(41)

It means that such rotation of the angle ψm along the sight line makes
kP to the min-x-pol status as deoriented kd

P .
New parameters u, v, w are then defined from the deoriented

scattering vector of Eqs. (38) and (40) as:

u = sin c cos 2a, v = sin c sin 2a cos 2b, w = cos c. (42)

In the case of non-deterministic targets, we obtain the
uncorrelated scattering vectors, i.e., eigenvectors, through eigen-
analysis of coherency matrix. Here the most significant eigenvector
i.e., principal eigenvector is considered as the representative scattering
vector of non-deterministic targets. Thus, the deorientation of non-
deterministic targets is merely conducted on the principal eigenvector.

3.2. Numerical Simulation

Based on the model of Fig. 1, polarimetric scattering is calculated,
and the scattering vector and Mueller matrix are obtained. A model
of a layer of random non-spherical particles above a rough surface
for scattering from terrain surfaces, as shown in Fig. 1, is applied to
numerical simulation of u, v, H at L band in various cases.

Figures 12(a) and (b) show numerical relationship between the
parameters u, v and the particle parameters: Eular angle orientation
and particle shape (oblate or prolate spheroids). It can be seen that
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|u| indicates the non-symmetry of particle’s projection along with the
sight line, and the dielectric property of the particle, |εs|, affects |u|,
and ε′′s/ε′s affects v.

Figure 12(a) presents the distributions of some typical terrain
surfaces on the |u|-H plane, which are obtained from the scattering
model of Fig. 1. It can be seen that H indicates the complexity of
layer structures of terrain surfaces. Different dielectric property of the
soil land and oceanic surface also makes u identifiable on the |u| axis.

Figure 12(b) presents the distribution of scattering terms on the
plane |u|-v, where Mi denotes the i-th order scattering. Concluded
from these figures, H indicates the canopy randomness, u is useful for
distinguishing different terrain targets and v is helpful to take account
of scattering mechanisms of different-orders.
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3.3. Surface Classification

The flow-chart of the classification method of PolSAR Data based
on deorientation and new parameters u, v, ψ is shown in Fig. 13.
The classification decision tree of parameters u, v, H is displayed on
Fig. 14.

An AirSAR data at L band of the Boreal area in Canada with
rich resources of vegetation is chosen for classification and orientation-
analysis, as shown in Fig. 15(a). Fig. 15(b) is the deorientation
classification over this area. Terrain surfaces are divided into 8 classes
following the decision-tree: Timber, Urban 2, Urban 1, Canopy 2,
Canopy 1, Surface 3, Surface 2 and Surface 1.

H < 0.8 AND
(v< -0 .2  OR  v>0.2)

Timber v<0

H <0 .5 |u |> 0.7

Urban 1|u |< 0.7 |u |< 0.7 Urban 2

N

Y

N

Y

N Y

N

Y

Canopy 1Canopy 2

N Y

|u|< 0.3

Y

Surface 1

N

Surface 3Surface 2

N Y

Figure 14. Classification decision tree of parameters u, v, H.

(a) (b)

Figure 15. A SIR-C SAR image and surface classification. (a) A SIR-
C SAR polarimetric image. (b) Classification using the parameters u,
v, H.
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Figure 16 shows the data distributions on the planes |u|-H for
parameter v > 0.2 and v < −0.2, and corresponding classification.

The orientation distribution of several classes are selected to be
displayed in Figs. 17(a), and (b). It can be seen that

(a) While in the Urban 1 (sparse forest of vertical trunks, instead
of artificial constructions), there are uniformly vertical orientations
indicating orderly trunks.

(b) Random orientation in the Canopy 1 means that the vegetation
canopy in this area might be the disordered bush. Note that the region
with the roads inside the forest might show randomness confused by
the bush vegetation on the roadsides.

Following the above orientation analysis, the terrain surfaces are
further classified into the subclasses and are identified by their types.
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Figure 16. Classification by u, v, H for 19 classes.
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Figure 17. Classification of AirSAR data, Boreal area. (a)
Classificaction of AirSAR data. Angle ψ distribution: (b) Timber.
(c) Urban.
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3.4. Faraday Rotation and Surface Classification

To obtain the moisture profiles in subcanopy and subsurface, it needs
UHF/VHF bands (435 MHz, 135 MHz) to penetrate through the dense
subcanopy (∼20 kg/m2 and more) with little scattering and reach
subsurface. However, when the wave passes through the anisotropic
ionosphere and action of geomagnetic field, the polarization vectors
of electromagnetic wave are rotated, which is called the Faraday
rotation (FR). The FR depends on the wavelength, electronic density,
geomagnetic field, the angle between the direction of wave propagation
and geomagnetic field, and the wave incidence angle [64, 65].

Assuming that the propagation direction is not changed passing
through homogeneous ionosphere, ds = sec θidz (where ẑ is the normal
to the surface), and geomagnetic field keeps constant as one at 400 km
altitude, FR is simply written as

ΩF ≈ −2620ρeB(400)λ2 cosΘB sec θi (radians) (43)

where ΘB is the angle between the directions of electromagnetic wave
propagation and geomagnetic field, ρe is the total electron content
per unit area (1016 electron/m2), and B(400) is the intensity of
geomagnetic field (T ) at 400 km altitude.

The FR may decrease the difference between co-pol backscatter-
ing, enhance cross-polarized echoes, and mix different polarized terms.
Thus, the satellite-borne SAR data at low frequency becomes distorted
due to FR effect. Since the FR is proportional to the square power of
the wavelength, it yields especially serious impact on the SAR obser-
vation operating at the frequency lower than L band. The FR angle
at P band can reach dozens of degrees.

As a polarized electromagnetic wave passes through the
ionosphere, the scattering matrix SF with FR (indicated by superscript
F ) is written by the scattering matrix S without FR as follows
[

SF
hh SF

hv
SF

vh SF
vv

]
=

[
cosΩ sin Ω
− sinΩ cos Ω

] [
Shh Shv

Shv Svv

] [
cosΩ sinΩ
− sinΩ cos Ω

]

(44a)
SF

hh =Shh cos2 Ω− Svv sin2 Ω, SF
vv = −Shh sin2 Ω + Svv cos2 Ω

SF
hv =Shv+(Shh+Svv) sin Ω cos Ω,

SF
vh = Shv−(Shh+Svv) sinΩ cos Ω

(44b)

The measured polarimetric data with FR, SF or MF , are distorted
and cannot be directly applied to terrain surface classification.
However, fully polarimetric 4×4-D M without FR can be inverted from
MF . And it shows that the remained ±π/2 ambiguity error does not
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affect the classification parameters: u, v, H, α, A. Based on intuitive
assumption of gradual change of FR degree with geographical position,
a method of 2D phase unwrapping method with random benchmark
can be employed to eliminate the ±π/2 ambiguity error is designed.
Some example shows the fully polarimetric SAR without FR at low
frequency, such as P band, can be fully inverted [38].

4. CHANGE DETECTION OF TERRAIN SURFACE
FROM MULTI-TEMPORAL SAR IMAGE

Multi-temporal observations of SAR remote sensing imagery provide
fast and practical technical means for surveying and assessing such
vast changes. One direct application is to detect and classify the
information on changes in the terrain surfaces. It would be laborious
to make an intuitive assessment for a huge amount of multi-temporal
image data over a vast area. Such assessment based on qualitative
gray-level analysis is not accurate and might lose some important
information. How to detect and automatically analyze information on
change in the terrain surfaces is a key issue in remote sensing [66–71].

In this section, two-thresholds EM and MRF algorithm (2EM-
MRF) is developed to detect the change direction of backscattering
enhanced, reduced and unchanged regimes from the SAR difference
image [31, 36].

On May 12, 2008, a major earthquake, measuring 8.0 on the
Richter scale, jolted southwestern China’s Sichuan Province, Wenchuan
area. To evaluate the damages and terrain surface changes caused
by the earthquake, multi-temporal ALOS PALSAR image data before
and after the earthquake are applied to detection and classification
of the terrain surface changes. Using the tools of Google Earth for
surface mapping, the surface change situation after the earthquake
overlapped the DEM topography can be demonstrated in multi-
azimuth views as animated cartoon. The detection and classification
are also compared with the optical photographs. It is proposed that
multi-thresholds EM and MRF analysis may become traceable when
multi-polarization, multi-channels, multi-sensors multi-temporal image
data become available.

4.1. Two Thresholds Expectation Maximum Algorithm

Consider two co-registered images X1 and X2 with size I × J at two
different times (t1, t2). Their difference image is X = (X2 − X1),
and denote XD = {X(i, j), 1 ≤ i ≤ I, 1 ≤ j ≤ J} (in some cases,
X = X2/X1 also can be used).
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As usually, one-threshold expectation maximum (EM) algorithm
has been employed to classify two opposite changes: The unchanged
class ωn and the changed class ωc [72, 73]. The probability density
function P (X), X ∈ XD was modeled as a mixture distribution of two
density components associated with ωn and ωc, i.e.,

p(X) = p(X|ωn)P (ωn) + p(X|ωc)P (ωc) (45)

Assume that both the conditional probabilities p(X|ωn) and
p(X|ωc) are modeled by Gaussian distributions. The iterative
equations for estimating the statistical parameters and the a priori
probability for the class ωn are the following

P t+1(ωn) =

∑
X(i,j)∈XD

P t(ωn)pt(X(i,j)|ωn)
pt(X(i,j))

IJ
(46a)

mean

µt+1
n =

∑
X(i,j)∈XD

P t(ωn)pt(X(i,j)|ωn)
pt(X(i,j)) X(i, j)

∑
X(i,j)∈XD

P t(ωn)pt(X(i,j)|ωn)
pt(X(i,j))

(46b)

variance

(σ2
n)t+1 =

∑
X(i,j)∈XD

P t(ωn)pt(X(i,j)|ωn)
pt(X(i,j) [X(i, j)− µt

n]2

∑
X(i,j)∈XD

P t(ωn)pt(X(i,j)|ωn)
pt(X(i,j))

(46c)

where the superscripts t and t + 1 denote the current and next
iterations.

Analogously, these equations can also be used to estimate p(ωc)
with µc and σ2

c .
The estimates are computed starting from the initial values by

iterating the above equations until convergence. The initial value of the
estimated parameters can be obtained by the analysis of the histogram
of the difference image. A pixel subset Sn likely to belong to ωn and a
pixel subset Sc likely to belong to ωc can be obtained by preliminarily
selecting two-threshold Tn and Tc on the histogram. This is equivalent
to solving the ML boundary To for the two classes ωn and ωc on the
difference image. The optional threshold To requires

P (ωc)
P (ωn)

=
p(X|ωn)
p(X|ωc)

(47)
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Under the assumption of Gaussian distribution, Eq. (3) yields
(
σ2

n − σ2
c

)
T 2

o + 2
(
µnσ2

c − µcσ
2
n

)
To + µ2

cσ
2
n − µ2

nσ2
c

+2σ2
nσ2

c ln
[
σcP (ωn)
σnP (ωc)

]
= 0 (48)

to obtain optimal To.
Figures 18 (a) and (b) are the ALOS PALSAR images (L band,

HH polarization) in February 17 and May 19, 2008 before and after
earthquake in Beichuan County, Wenchuan area, respectively. Spatial
resolution is 4.7m × 4.5m. Fig. 18(c) is the difference image of
Figs. 18(a) and (b), which seems very difficult to evaluate the terrain
surface changes only using man’s vision, especially to accurately
classify the change classes in large scale.

The pixels of the difference image (i.e., XD = σ0
D = σ0

2 − σ0
1)

are classified into three classes: ωc1 of σ0
D-enhanced, ωn of σ0

D-
unchanged and ωc2 of σ0

D-reduced. Thus, the probability density
function P (X) is modeled as a mixture density distribution consisting
of three components:

p(X) = p(X|ωc1)P (ωc1) + p(X|ωn)P (ωn) + p(X|ωc2)P (ωc2) (49)

The parameter To1 is first obtained by application of the EM
algorithm to the enhanced class ωc1 and no-enhanced class ωn1 (ωn

and ωc2). Then, we obtain To2 by applying the EM to the reduced
class ωc2 and no-reduced class ωn2 (ωn and ωc1), where ωn1 = ωn∪ωc2,

(a)

N

(b) (c)

Figure 18. ALOS PALSAR image in in Beichuan. (a) 17 Feb. 2008
before earthquake. (b) 19 May after earthquake. (c) Difference image.
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ωn2 = ωn ∪ωc1. Finally, the two results are superposed to get the final
classification.

As an example, Fig. 19(a) shows the grayscale histogram of a small
part chosen from the difference image, Fig. 18(c). Three classes of the
probability distributions are outlined in this figure. The histogram is
normalized in accordance with the probability density distributions.

The initial statistical parameters of the subsets of

Sn1 = {X(i, j)|0 < X(i, j) < Tn1}, Sc1 = {X(i, j)|X(i, j) > Tc1

(50a)
are first derived, and then derive the parameters of

Sn2 = {X(i, j)|Tn2 < X(i, j) < 0}, Sc2 = {X(i, j)|X(i, j) < Tc2}
(50b)

The initial statistical parameters are related to the classes ωn1,
ωc1 and the classes ωn2, ωc2, respectively. Then, Eqs. 46(a)–(c) are
sequentially used to perform the iterations on the four classes, i.e., the
a priori probability and other statistical parameters [P (ωn1), µn1, σ2

n1],
[P (ωc1), µc1, σ2

c1], [P (ωn2), µn2, σ2
n2] and [P (ωc2), µc2, σ2

c2]. Solving
Eq. (48), the thresholds To1 = 3.1643 dB and To2 = −2.8381 dB are
obtained.

Figure 19(b) is the change detection using EM algorithm, where
red color indicates the area with scattering enhanced, blue color
indicates the area with scattering reduced, and green color denotes
no-changed. It makes three classes change of the difference image.
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Figure 19. The histogram of the difference image and change
detection using 2EM method. (a) The histogram of the difference
image from Fig. 18(c). (b) Change detection by 2EM.
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4.2. The Change Detection Using 2EM-MRF

Actually, the pixels of the image are spatially correlated, i.e., a pixel
belonging to the class ωk is likely to be surrounded by pixels belonging
to the same class. To take account of spatial texture may yield more
reliable and accurate change detection.

Let the set C = {C`, 1 ≤ ` ≤ L} represent the possible sets of the
labels in the difference image:

C` = {C`(i, j), 1 ≤ i ≤ I, 1 ≤ j ≤ J} , C`(i, j) ∈ {ωc1, ωc2, ωn} (51)

where L = 3IJ . According to Bayes rule for minimum error,
the classification result should maximize the posterior conditional
probability,

Ck = arg max
C`∈C

{P (C`|XD)} = arg max
C`∈C

{P (C`)p(XD|C`)} (52)

where P (C`) is the prior model for the class labels, and p (XD|C`) is
the joint density function of the pixel values in the difference image
XD given the set of labels C`.

The MRF algorithm is employed with a spatial neighborhood 5×5
pixels system to take account of spatial texuture. The generation of
the final change-detection map involves the labeling of all the pixels
in the difference image so that the posterior probability of Eq. (52) is
maximized.

The MRF algorithm is equivalent to the minimization of the Gibbs
energy function. The MRF algorithm is iteratively carried out.

Figure 20(a) presents the final result of 2EM-MRF for detection
and classification of the terrain surface changes from the difference
image, Fig. 18(c). The numbers 1 ∼ 8 indicate some areas with typical
changes.

It can be seen that, for example, in the area 1 the river was largely
blocked up with landslide; in the area 2, there were landslides causing
large scale blocks; the area 3 is Beichuan town, where the terrain
surface was significantly undulated or roughed due to landslide and
building collapse; in the areas 4 and 5 the river was blocked up due to
landslides along river lines; in the area 6 the highway was significantly
blocked up with landslide; in the area 7 there was collective landslides
almost towards one azimuth direction, and the flat area with reduced
scattering along the river might be due to seasonal risen water in May
than February; in the area 8 collapse of mountain blocks caused the
terrain surface undulating to enhance stronger scattering.

Figure 20(b) gives the topography and contour lines of the same
area from the google website. It is useful to locate where and which
kind of the changes are happening. It might be seen that the landslides,
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Figure 20. Automatic detection and classification of terrain surface
changes using 2EM-MRF. (a) Change detection of 2EM-MRF. (b) The
topography. (c) Comparison with photograph.

e.g., in the areas 1 and 7, are correlated with direction and magnitude
of slopes. A quantitative analysis to assess the landslides and surface
damage can be further developed.

As an example, Fig. 20(c) gives a comparison of the change at
the region 3 with a photograph distributed to public from the website
of the Ministry of the State Resources of China. It can be clarified in
both figures that A shows lanslides and makes the surface smooth, and
B shows the highway blocked. It can be seen that optical shadowing
actually does not confuse these classifications.

Using the tool of Google Earth mapping with the 2EM-MRF
results, the terrain surface change situation classified by three types
overlapped the DEM topography can be showed in multi-azimuth
views as a animated cartoons. Since all process of 2EM-MRF are
automatic and carried out on real time, it should be helpful, especially
for commanding the rescue works in disaster scene. Fig. 21 shows four
views.

It can be seen that information retrieval from a single amplitude
image (scattered power) with one-frequency, mono-polarization at one
time is very limited. In fully polarimetric technology, for example,
using target decomposition theory, deorientation transform etc., the
physical status of the terrain surfaces such as vegetation canopy, road,
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Figure 21. Multi-azimuth views in animated cartoon showing terrain
surface changes on Google Earth mapping.

building, river etc. can be well classified and would be of greatly
helpful to change detection. Four Stokes parameters of polarimetric
measurement can be feasible to show the surface slope variation and
anisotropy, and INSAR has been well applied to retrieval of surface
digital elevation. All of these progress show superiority over a single
amplitude image analysis and manual vision estimation. It is also
helpful to fuse CFAR (constant false alarm rate) for detection of the
object, e.g., edge and block, from a SAR image.

As multi-polarized, multi-channels and multi-temporal image data
become available, 2EM-MRF can be further extended to utilization of
principal characteristic parameters of the difference image, such as
VV+HH, VV-HH, entropy, angular α, β, γ, ψ for change detection
and classification. More information about terrain surface changes can
be retrieved [74].

5. DEM INVERSION FROM A SINGLE POL-SAR
IMAGE

Co-polarised or cross-polarised backscattering signature is the function
of the incidence wave with the ellipticity angle χ and orientation angle
ψ. Recently, polarimetric INSAR image data has been utilized to
generate digital surface elevation and to invert terrain topography.
When the terrain surface is flat, polarimetric scattering signature has
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the maximum largely at the orientation angle ψ = 0. However, it
has been shown that as the surface is tilted, the orienattion angle ψ
at the maximum of co-polarized (co-pol) or cross-polarized (cross-pol)
signature can shift from ψ = 0. This shift can be applied to convert the
surface slopes. Making use of the assumption of real co-pol and zero
cross-pol scattering amplitude functions, the ψ shift is expressed by the
real scattering amplitude functions. Since both the range and azimuth
angles are coupled, two- or multi-pass SAR image data are required for
solving two unknowns of the surface slopes. This approach has been
well demonstrated for inversion of digital elevation mapping (DEM)
and terrain topography by using airborne SAR data [75, 76].

However, scattering signature is an ensemble average of echo power
from random scatter media. Measurable Stokes parameters as the
polarized scattering intensity should be directly related to the ψ shift.
In this section, using the Mueller matrix solution, the ψ shift is newly
derived as a function of three Stokes parameters, Ivs, Ihs, Us, which
are measurable by the polarimetric SAR imagery.

Using the Euler angles transformation between the principal and
local coordinates, the orientation angle ψ is related with both the range
and azimuth angles, β and γ, of the tilted surface pixel and radar
viewing geometry. These results are consistent with [63, 75], but are
more general.

It is proposed that the linear texture of tilted surface alignment is
used to specify the azimuth angle γ. The adaptive threshold method
and image morphological thinning algorithm are applied to determine
the azimuth angle γ from image linear textures. Thus, the range
angle β is then solved, and both β and γ are utilized to obtain the
azimuth slope and range slope. Then, the full multi-grid algorithm
is employed to solve the Poisson equation of DEM and produce the
terrain topography from a single pass Polarimetric SAR image [13, 31].

5.1. The ψ Shift as a Function of the Stokes Parameters

Consider a polarized electromagnetic wave incident upon the terrain
surface at (π − θi, ϕi). Incidence polarization is defined by the
ellipticity angle χ and orientation angle ψ [15]. The 2 × 2-D
complex scattering amplitude functions are obtained from polarimetric
measurement as

Ii(χ, ψ) = [Ivi, Ihi, Ui, Vi]T =
[
1
2
(1−cos 2χ cos 2ψ),

1
2
(1+cos 2χ cos 2ψ),

− cos 2χ sin 2ψ, sin 2χ]T (53)
σc = 4π cos θiPn (54)
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where
Pn = 0.5 [Ivs(1− cos 2χ cos 2ψ) + Ihs(1 + cos 2χ cos 2ψ)

+Us cos 2χ sin 2ψ + Vs sin 2χ] (55)
When the terrain surface is flat, co-pol backscattering σc versus

the incidence polarization (χ, ψ) has the maximum at ψ = 0. However,
it has been shown that as the surface is tilted, the orientation angle ψ
for the σc maximum is shifted from ψ = 0.

Let ∂Pn/∂ψ = 0 at the maximum σc and χ = 0 of symmetric case,
it yields
0 = −(Ihs − Ivs) sin 2ψ + Us cos 2ψ + 0.5(Ihs + Ivs)′ + 0.5U ′

s sin 2ψ

+0.5(Ihs − Ivs)′ cos 2ψ (56)
where the superscript of prime denote ∂/∂ψ. It can be shown that

0.5(Ihs + Ivs)′ ∼ (M13 + M23) cos 2ψ
∼ (Re 〈SvvS

∗
vh〉+ Re 〈ShvS

∗
hh〉) cos 2ψ (57a)

0.5U ′
s ∼ M33 cos 2ψ ∼ Re 〈SvvS

∗
hh + SvhS∗hv〉 cos 2ψ (57b)

(Ihs − Ivs) ∼ 0.5(M11 + M22) cos 2ψ

∼ 0.5
(〈
|Svv|2

〉
+

〈
|Shh|2

〉)
cos 2ψ (57c)

0.5(Ihs − Ivs)′ ∼ 0.5(M13 −M23) cos 2ψ
∼ 0.5 (Re 〈SvvS

∗
vh〉 − Re 〈ShvS

∗
hh〉) cos 2ψ (58a)

Us ∼ 0.5(M31 + M32) ∼ Re 〈SvvS
∗
hv〉+ Re 〈SvhS∗hh〉 (58b)

It can be seen that (57a) and (57b) are much less than (57c), and (58a)
is much less than (58b), so the last three terms on RHS of Eq. (56)
are now neglected. Thus, it yields the ψ shift at the σc maximum
expressed by the Stokes parameters as follows

tan 2ψ =
Us

Ihs − Ivs
(59)

It can be seen that the third Stokes parameter Us 6= 0 does cause the
ψ shift.

By the way, if both Us and Ihs−Ivs approach zero, e.g., scattering
from uniformly oriented scatterers or isotropic scatter media such as
thick vegetation canopy, ψ cannot be well defined by Eq. (59).

5.2. The Range and Azimuth Slopes and DEM Inversion

The polarization vectors ĥi, v̂i of the incident wave at (π − θi, φi) in
the principal coordinate (x̂, ŷ, ẑ) are defined as [15]

ĥi =
ẑ × k̂i

|ẑ × k̂i|
= − sinφix̂ + cosφiŷ and v̂i = ĥi × k̂i (60a)
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where the incident wave vector

k̂i = sin θi cosφix̂ + sin θi sinφiŷ − cos θiẑ (60b)

As the pixel surface is tilted with local slope, the polarization
vectors should be re-defined following the local normal vector ẑb as
follows

ĥb =
ẑb × k̂ib

|ẑb × k̂ib|
and v̂b = ĥb × k̂ib (61)

By using the transformation of the Euler angles (β, γ) between two
coordinates (x̂, ŷ, ẑ) and (x̂b, ŷb, ẑb) [15], it has

x̂ = cos γ cosβx̂b + sin γŷb − cos γ sinβẑb (62a)
ŷ = − sin γ cosβx̂b + cos γŷb + sin γ sinβẑb (62b)
ẑ = sinβx̂b + cos βẑb (62c)

Substituting above relations into Eqs. (60) and (61), it yields

ĥi = − cosβ sin(γ + φi)x̂b + cos(γ + φi)ŷb + sinβ sin(γ + φ)ẑb (63)

k̂ib = (cosβ sin θi cos(γ + φi)− sinβ cos θi)x̂b + sin θi sin(γ + φi)ŷb

−[sinβ sin θi cos(γ + φi) + cosβ cos θi]ẑb (64)

Using Eqs. (64) to (61), the polarization vector ĥb for local surface
pixel is written as

ĥb =
ax̂b + bŷb√

a2 + b2
(65)

where a = − sin θi sin(γ + φi), b = sin θi cosβ cos(γ + φi)− sinβ cos θi.
Thus, Eqs. (63) and (65) yield the orientation angle as

cosψ = ĥb · ĥi =
cosβ sin θi − cos(γ + φi) sin β cos θi√

a2 + b2
(66a)

tan ψ =
tanβ sin(γ + φi)

sin θi − cos θi tanβ cos(γ + φi)
(66b)

Thus, the range and azimuth slopes of the pixel surface can be obtained
as

SR = tanβ cos γ, SA = tanβ sin γ (67)

Since a single ψ shift cannot simultaneously determine two
unknowns of β and γ in Eq. (64), two- or multi-pass SAR image
data are usually needed.

If only the single-pass SAR image data are available, one of two
unknown angles, β or γ, should be first determined. The azimuth
alignment of tilted surface pixels can be visualized as a good indicator
of the azimuth direction. We apply the adaptive threshold method and
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(a) (b) (c) (d) 

Figure 22. Morphological thinning algorithm to determine the
azimuth angle.

image morphological thinning algorithm to specify the azimuth angle
in all SAR image pixels. The algorithm contains the following steps:

(1) Make speckle filtering over the entire image.
(2) Apply the adaptive threshold method to produce a binary

image. The global threshold value is not adopted because of the
heterogeneity of the image pixels.

(3) Apply the image morphological processing for the binary
image, remove those isolated pixels and fill small holes. Referring to
the part of binary’s “1” as the foreground and the part of binary’s “0”
as the background, the edges from the foreground are extracted.

(4) Each pixel on the edge is set as the center of a square 21× 21
window, and a curve segment through the centered pixel is then
obtained. Then, applying the polynomial algorithm for fitting curve
segment in the least-squares sense, the tangential slope of the centered
pixel is obtained. It yields the azimuth angle of the centered pixel.
Make a mark on that pixel so that it won’t be calculated in the next
turn.

(5) Removing the edge in Step (4) from the foreground, a new
foreground is formed. Repeat Step (4) until the azimuth angle of every
pixel in the initial foreground is determined.

(6) Make the complementary binary image, i.e., the initial
background now becomes the foreground. Then, the Steps (4) and
(5) are repeated to this complementary image until the azimuth angle
of every pixel in the initial background is determined.

This approach provides a supplementary information to firstly
determine the angle γ over whole image area if there is no other
information available.

As an example for DEM inversion, the L-band polarimetric SAR
data is shown in Fig. 23(a). As the azimuth angle γ of each pixel is
obtained by the adaptive threshold method and thinning algorithm
as described in the above steps, the β angle of each pixel can be
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(a)  (b) (c)

Figure 23. SAR image and azimuth/range slopes. (a) SAR image of
total power. (b) Azimuth slope. (c) Range slope.

(a) (b)

Figure 24. A DEM inversion. (a) Inverted DEM. (b) Inverted contour
map.

determined by Eq. (66b). Taking φi = 0, it yields

tanβ =
tanψ sin θi

sin γ + tanψ cos θi cos γ
(68)

where the orientation angle ψ is calculated using Eq. (59), while the
incident angle θi is determined by the SAR view geometry.

Substituting β and γ into Eq. (67), the azimuth slope SA and
range slope SR are obtained. We utilize the two slopes to invert the
terrain topography and DEM. The slopes SA and SR of all pixels in
the SAR image are calculated as shown in Figs. 23(b) and (c).

The DEM can be generated by solving the Poisson equation for a
M ×N rectangular grid area. The Poisson equation can be written as

∇2φ(x, y) = ρ(x, y) (69)

where ∇2 is the Laplace operator. The source function ρ(x, y)
consists of the surface curvature calculated by the slopes S(x, y), where
the x̂, ŷ-directions are used as the range and azimuth directions,
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respectively. In this section, the full multi-grid (FMG) algorithm is
employed to solve the Poisson equation. The benefits of FMG are due
to its rapid-convergence, robustness and low computation load. The
inverted DEM of SAR image in Fig. 23(a) is given in Figs. 24(a) and
(b), and its contour map, Fig. 24(b) has been validated in comparison
to the map of China Integrative Atlas (1990).

6. RECONSTRUCTION OF BUILDINGS OBJECTS
FROM MULTI-ASPECT SAR IMAGES

Reconstruction of 3D-objects from SAR images has become a key issue
for information retrieval for SAR monitoring. 3D reconstruction of
man-made object is usually based on interferometeric technique or
fusion with other data resources, e.g., optical and GIS data. It has been
noted that scattering from man-made objects produces bright spots
in sub-metric resolution, but present strips/blocks image in metric
resolution. This difference is largely attributed to the different imaging
ways employed for different resolutions, for example, spotlight for sub-
metric resolution, stripmap for metric resolution [69, 77–80].

An automatic method for detection and reconstruction of
3D objects from multi-aspect metric-resolution SAR images are
developed [43]. The steps are as follows:

The linear profile of the building objects is regarded as the
most prominent characteristics. The POL-CFAR detector, Hough
transform, and corresponding image processing techniques are applied
to detection of parallelogram-like façade-images of building objects.
Results of simulated SAR images as well as real 4-aspect Pi-SAR
images are given subsequently after each step.

A probabilistic description of the detected façade- images is
presented. Maximum-likelihood estimation (ML) of building objects
from multi-aspect observed façade-images is given. Eventually, in
association with a hybrid priority rule of inversion reliability, an
automatic algorithm is designed to match multi-aspect façade- images
and reconstruct the building objects. Moreover, taking advantage
of the multi-aspect coherence of building-images, a new iterative co-
registration method is presented.

Finally, reconstruction results are presented, and good perfor-
mance is evaluated comparing with ground truth data. It is also con-
cluded that the reconstruction accuracy closely depends on the number
of available aspects. In the end, a practicable scheme of the 3D-object
reconstruction from satellite-borne SAR image is proposed.
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6.1. Object Image Detection

As shown in Fig. 25, the scattering image of a simple building is
produced by direct scattering from the wall/façade, roof and edges,
double scattering from wall-ground and shadows projected etc. In
metric resolution, the scattering produces bright strips/blocks from
respective parts of the object. A key step of reconstruction is to identify
and extract these strips/blocks.

For the case of a smooth wall/façade, the only double scattering
term to be considered must follow a specific propagation path, i.e.,
wall (reflect) to ground (diffuse). Simple building object is taken
into account and is modeled as a cuboid, and the spatial distribution
of the building objects is assumed not crowded, i.e., without serious
shadowing and superposition. The cuboid object is described by seven
geometric parameters: 3D position, 3D size and orientation. Besides,
the flat roof is assumed with much less scattering compared with the
edges and façades.

Figure 26 shows (a) a model of the cuboid object, (b) its simulated
SAR image, (b) using the mapping and projection algorithm, (c)
a photo of real rectangular building, and (d) its image of Pi-SAR
observation, respectively.

It can be seen from Fig. 26 that the longer wall of the cuboid-like
building, called as major wall henceforth, plays the dominant role in
a SAR image. In this section, main attention is focused on the major
wall image. At the first step, the edge detectors of constant false alarm
rate (CFAR) such as ratio gradient are used for edge detection.
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Figure 25. SAR imaging of a simple building model and its image
composition.
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(a) (b)  (c) (d)

Figure 26. A cuboid object in m-resolution SAR images. (a) Model.
(b) Simulated SAR image. (c) A photo. (d) PI-SAR image.

To our experience, the POL-CFAR detector derived from complex
Wishart distribution can fulfill the segmentation requirements of
medium- and small-scale building-images. Besides, the ridge filter
applied after this step can accommodate segmentation error to some
extent.

In order to improve the segmentation precision, the detected edge
by window-operator needs to be further thinned. Using the edge
intensity produced in the POL-CFAR detection, an edge thinning
method of ‘ridge filtering’ is presented. Taking an 8-neighbor 3 × 3
window as an example, the center pixel is regarded as on the ridge if
its intensity is higher than the pixels along two sides.

4-aspect Pi-SAR images acquired over Sendai, Japan by a square-
loop flying path (Flight No. 8708, 8709, 8710, 8711, X-band, pixel
resolution 1.25m) are taken as an example of real SAR image study.
The region of interest (ROI) is the Aobayama campus of Tohoku
University.

Figure 27(a) shows an aspect Pi-SAR images as an example.
Figures 27(b)–(d) show the results processed by the edge detection

of Pi-SAR images.
The most distinct feature of a building object in SAR image is

parallel lines. The Hough transform is employed to detect straight
segments from the thinned edges, and parallelogram outlines of the
façade-images can then be extracted. It is carried out in tiling manner
in this paper, i.e., the original picture is partitioned into blocks, each
of which is detected independently via Hough transform.

The detection steps of parallel line segments are: i) Find bright
spots in transform domain with a minimum distance between every two
of them so as to avoid re-detection; ii) search the segments consisted
of successive points along the corresponding parallel lines in spatial
domain, which is longer than a minimum length, and the distance
between two successive points is shorter than a maximum gap; iii)
only the pairs of points lying on two lines and facing directly are taken
into account for segment searching.
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Figures 28(a)–(d) show the detection from 4 aspects Pi-SAR
images. Few building-images are not detected and some false images
are wrongly produced. In fact, there is a compromise between over-
detection and incomplete-detection. We prefer to preserve more
detected building-images, so as to control the non-detected rate, while
the false images are expected to be eliminated through the subsequent
auto-selection of effective images for reconstruction. However, there
always remain some undetectable images, attributable to shadowing of
tree canopy, overlapping of nearby buildings or with too complicated
wall structures.

The detected parallelogram of a homogenous scattering area could
be direct scattering from façade, double scattering of wall-ground,
combination of direct and double scatterings, projected shadow of
building, or even strong scattering of strip-like objects (e.g., metal
fence or metal awning), which is not considered in classification.

Shadowing is identified if scattering power of that area is much
lower than the vicinity. Specifically, first set up two parallel equal-
length strip windows on its two sides and then calculate the median
scattering powers of the three regions. If the middle one is weaker than
two sides, it is classified as shadow instead of building image.

(a) (b) (c) (d)

Figure 27. A Pi-SAR image and edge detection. (a) An aspect Pi-
SAR image. (b) Edge detection. (c) Level 4 ridge. (d) Level 2 ridge.

(a) (c) (d)(b) 

Figure 28. Extraction of strip-like building-images. (a) Hough
transform. (b) Post-processing. (c) End adjusting. (d) Offset-removed.
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Figure 29. Geometry of a wall/façade imaging.

Figure 30. 3D reconstructed objects and comparisons with optical
picture.

The wall-ground double scattering can be differentiated from
direct scattering based on polarimetric information. The de-orientation
parameter vindicating the scattering mechanism is used to identify
double scattering.

To implement target reconstruction from multi-aspect SAR data,
calibrating multi-aspect data requires that at least one aspect is
calibrated beforehand, and other aspects are then calibrated with
respect to this calibrated aspect. A natural object, such as flat bare
ground, is usually chosen as a reference target, which is expected
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to preserve identical scattering for all aspects. Thereafter, the
channel imbalance factors are estimated from distribution of the phase
difference and amplitude ratio of co-polarized, hh and vv, echoes of
the reference target, and are then used to compensate the whole SAR
images [45].

6.2. Building Reconstruction

Complexity of objects-terrain surfaces and image speckles incorporate
certain uncertainty for detection of object images. To well describe
multi-aspect object image, the parameterized probability is introduced
for further proceeding of automatic reconstruction. For convenience,
the detected building-images are parameterized. Generally, the edge
pixels detected by CFAR are randomly situated around the real, or say,
theoretical boundary of the object. It is reasonable to presume that
the deviation distances of the edge points follow a normal distribution.

The original edge can be equivalently treated as a set of
independent edge points. The line detection approach is considered as
an equivalent linear regression, i.e., line fitting from random sample
points. According to linear regression from independent normal
samples, the slope of the fitted line follows the normal distribution.

All parameters have normal distributions and their variances are
determined by the variance of the edge points deviation. After counting
the deviation of the edge points in the vicinity of each lateral of all
detected building-images and making its histogram, the variance can
be determined through a minimum square error (MSE) fitting of the
histogram using normal probability density function (PDF). The 4-
aspect Pi-SAR images are counted.

Given a group of building-images detected from multi-aspect SAR
images, the corresponding maximum- likelihood probability can be
further used as an assessment of the coherence among this group of
multi-aspect images. A large maximum-likelihood probability indicates
a strong coherence among the group of multi-aspect building-images,
and vice versa.

Multi-aspect co-registration, as a critical pre- processing step, is
necessary when dealing with real SAR data.

Given the specification of a region of interest (ROI), e.g., the
longitudes and latitudes, the corresponding area in SAR image of each
aspect can be coarsely delimited according to its orbit parameters. It
can be regarded as a coarse co-registration step. Manual intervention
is necessary if the orbit parameters are not accurate enough.

Only parameters of the building-images are needed to be co-
registered to the global coordinates, but rather than the original SAR
images. It is regarded as a fine co-registration step. In this study,
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only linear co-registrations are considered. A simple and effective
method should be manually choosing ground control points. In
general, a featured terrain object or building is first selected as the
reference of zero-elevation, and then its locations of different aspects
are pinpointed. Coherence among multi-aspect building-images is the
basis of automatic reconstruction.

Finally, an automatic multi-aspect reconstruction algorithm is
designed. The building objects are reconstructed from the 4-aspect
simulated SAR images. The inversion accuracy is very good. shows
the 3D reconstructed objects on the true DEM. It seems the inverted
elevations also match well with the true DEM.

Due to the difficulty for authors to collect ground truth data,
a high-resolution satellite optical picture (0.6 m QuickBird data) is
used as a reference. Geometric parameters of each building manually
measured from the picture are taken as ground truth data to evaluate
the accuracy of reconstruction.

There is a trade-off between the false and correct reconstruction
rates. If we increase the false alarm rate of edge detector, relax
the requirements of building-image detection and/or increase the
false alarm rate of judging correctly matched group, it will raise
the reconstruction rate, but also boost the false reconstruction rate.
Efficiency will be deteriorated if the false reconstruction rate goes too
high. On the contrary, the false reconstruction rate can be reduced
and the accuracy of reconstructed buildings can be improved, but the
reconstruction rate will also decline.

A critical factor confining the reconstruction precision should be
the number of effective aspects, hereafter referred as effective aspect
number (EAN). The reconstruction result will become better if more
SAR images of different aspects are available.

Main error of reconstruction is caused by the boundary-deviation
of detected building-images, which is originated from complicated
scattering and interactions of spatially distributed objects and
backgrounds. In probabilistic description of detected building-image,
the presented boundary in SAR image is seen as the same as reality.
However, the real detected building-image might be biased or even
partly lost due to the obstacle and overlapping.

In addition, it is noticed that large-scale buildings might not be
well reconstructed. The reason is partly attributed to the premise
of Wishart distribution of POL-CFAR detector. Since the images
of large-scale buildings might reveal more detail information about
the texture feature and heterogeneity, it deteriorates the performance
of edge detector. To develop a new edge detector based on certain
specific speckle model for high-resolution images can improve the
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results. Another more feasible way is to employ a multi-scale analysis,
through which building-images of different scales can present Gaussian
properties in their own scale levels. Of course, the expense for multi-
scale analysis might be a loss in precision.

Another issue to be addressed is the exploitation of multi-aspect
polarimetric scattering information. In heterogeneous urban area, the
terrain objects appear distinctively in different aspects, which gives rise
to a very low coherence between their multi-aspect scatterings. Hence,
polarimetric scattering information may not be a good option for the
fusion of multi-aspect SAR images over urban area.

After the ROI is coarsely chosen in each aspect image, edge
detection and object-image extraction are carried out, subsequently.
Then the object-images are parameterized and finely co-registered.
As long as multi-aspect object-images are automatically matched, 3D
objects are reconstructed at the same time.

The merits of this approach are the process automation with few
manual interventions, the fully utilization of all-aspect information,
and the high efficiency for computer processing. Making a
reconstruction on a 4-aspect Pi-SAR dataset (500 × 500) takes less
than 10 min CPU time (CPU frequency 3GHz). Complexity of this
approach is about O(KN2), where K is the aspect number and N is
the size of SAR images (K = 4, N = 500 in this case).

It is tractable to extend this approach to reconstruction of other
kinds of objects. For other types of primary objects, given the a priori
knowledge, new image detection methods have to be developed. It
is possible to treat more complicated buildings as combinations of
different primary objects, which can be reconstructed separately and
then combine together.

Considering a space-borne SAR with the functions of left/right
side looking (e.g., Radarsat2 SAR) and forward/backward oblique
side looking (e.g., PRISM in ALOS), six different aspect settings are
available for ascending orbit. There is a 20◦ angle between ascending
and descending flights for sun-synchronous orbit. Therefore, it can
observe from 12 different aspects. Suppose the sensor use different
aspect in each visit and the repeat period is 15 days, a set of SAR
images acquired from 12 aspects can be obtained through a 3-month
observation. Then, application of SBT reconstruction with acceptable
precision.
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