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Abstract—Up to now, the terahertz (THz) band is still an
unexplored region in the sense that no practical application exists.
New operating principles by traveling wave concept should be,
therefore, appreciated for the real applications. In this paper, the
generalized three-dimensional (3D) transverse magnetic (TM) mode
analysis to analyze the characteristics of two-dimensional electron gas
(2DEG) drifting plasma at the ITI-V high-electron-mobility-transistor
(HEMT) hetero-interface such as AlGaAs/GaAs hetero-interface and
its interaction with propagating electromagnetic space harmonic wave
is presented. It includes, (1) the determination of electromagnetic
fields in semiconductor drifting plasma using the combination of
well-known Maxwell’s equations and carrier kinetic equation based
on semiconductor fluid model and the derivation of the effective
permittivity of drifting plasma in 2DEG on semi-insulating substrate,
and (2) the analysis to describe the presence of interactions using a
so-called interdigital-gated HEMT plasma wave devices. To describe
the interaction, the admittance of the interdigital gate is evaluated.
The numerical procedures to solve the integral equations which
are used in determining the admittance is explained. A negative
conductance is obtained when drifting carrier velocity is slightly exceed
the fundamental wave velocity indicates the significant condition of the
interaction. A brief analysis and discussion on the Dyakonov-Shur THz
surface wave in 2DEG is also presented.
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1. INTRODUCTION

Being motivated by the tremendous success of traveling wave tubes
(TWTs), the possibilities of obtaining an extremely large amplification
of electromagnetic (EM) waves by utilizing a coupling between drifting
carriers in semiconductor and EM waves propagating in slow-wave
circuits were theoretically explored [1-4]. The idea is to replace the
electron beam in a traveling wave tube with drifting carriers in a
semiconductor. These drifting charge carriers in the semiconductor
would interact with the slow electromagnetic waves resulting in a
convective instability. Hence, there would be the possibility of
constructing a new type electromagnetic wave amplifier by injecting
a signal at one end of the semiconductor and taking out an augmented
signal at the other end. All of this work was done in the 1960s and
1970s when semiconductor technology was still poor. These activities
faded out without remarkable success mainly due to the strong collision
dominant (CD) nature of semiconductor plasma as compared with
electrons travelling in vacuum.

Due to significant progress in semiconductor material and
device fabrication technologies, frequencies handled by conventional
semiconductor devices have been remarkably enhanced, approaching
terahertz (THz) frequencies where transit time limitation of those
devices now imposes very severe limitations on the frequency and power
capabilities of devices. In fact, the maximum cut-off frequency, fr,
obtained thus far in conventional devices still remains slightly above
500 GHz, even with the use of short gate lengths of a few nanometer [5].
In addition, it is also known that such transit time devices with reduced
gate lengths show severe short-channel effects and large gate leakage
currents [6,7]. Thus, it is unlikely that such conventional devices will
achieve operation in the THz region with acceptable performance.

Recently, the use of plasma waves for wave detection in THz
region at low temperature supported by a non-drifting 2DEG with an
AlGaAs/GaAs heterostructure under a metal gate which was proposed
by Dyakonov and Shur [8] have been successfully demonstrated. There
is also a stimulating work by Otsuji’s group to apply this plasma wave
concept into smart photonic network system [9]. Recently, we also
demonstrated the THz wave detection at room temperature applying
this non-drifting plasma theory [10].

In our previous publications on drifting plasma concept, we
presented both the theoretical and experimental results of interdigital-
gated plasma wave device fabricated on III-V bulk structure such as
GaAs and InP [11]. It is noted here that the effective permittivity of
those material systems are different from the III-V material systems
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with 2DEG layer. The effects of quasi-lamellar electromagnetic field
also need to be taken into account for bulk structure. We also presented
some motivated results both theoretically and experimentally for the
ITI-V material systems with 2DEG layer, specifically on AlGaAs/GaAs
HEMT structure [12-15]. Since, the III-V HEMT structure is better
than bulk structure for drifting plasma interaction and the comparison
with the experimental results and reliable explanation and discussion
have been established, the generalized transverse magnetic (TM) mode
approach need to be presented and explained in detail for the readers
to understand this drifting plasma concept compared to non-drifting
concept presented by Dyakonov and Shur’s group. In our previous
reports, we just stated briefly and mentioned the derived results of
effective permittivity and the calculated results.

In this paper, a generalized three dimensional (3D) TM mode
analysis to analyze the characteristics of 2DEG drifting plasma at
the AlGaAs/GaAs hetero-interface is presented in detail. It is noted
here that the approach is also applicable to other III-V HEMT
material systems. In Section 2, the determination of electromagnetic
fields in semiconductor drifting plasma using the combination of
well-known Maxwell’s equations and carrier kinetic equation based
on semiconductor fluid model is described. In this section, the
derivation of the effective permittivity of drifting plasma in 2DEG
on semi-insulating substrate is also presented. Next, the analysis
to describe the presence of interactions using a so-called interdigital-
gated high-electron-mobility-transistor (HEMT) plasma wave device
is demonstrated in Section 3. Here, the admittance of the interdigital
gate structure is calculated. In Section 4, a brief analysis and discussion
on the Dyakonov-Shur THz surface wave in 2DEG is also presented.
Finally, the conclusion is summarized in Section 5.

2. ELECTROMAGNETIC FIELDS IN 2DEG
SEMICONDUCTOR DRIFTING PLASMA

In order to determine the electromagnetic fields in 2DEG semiconduc-
tor drifting plasma, the TM mode analysis of the plasma wave inter-
actions for the device structure shown in Fig. 1 is performed basically
following the procedures similar to those used in the semiconductor-
insulator structure [10]. Here, we consider that a TM wave is prop-
agating with a uniform electron flow in the z direction, with a drift
velocity, vg4, along the 2DEG layer, embedded in semi-infinite GaAs
and AlGaAs layers. A basic dispersion equation for TM waves can be
derived by combining well-known Maxwell’s equations with the equa-
tion of electron motion in the effective mass approximation based on
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the fluid model of semiconductors indicated as follow;

l:l+u-vuz—i<E+va>—mVn—I/U
dt ot m* n (1)
dv v _ _. - Lo 2 v
or W_9 b yp=_ 4 <E+M0U><H>—MVTL—B
dt ot m* n T

The Eq. (1) is obtained by applying the charge-current
conservation principle derived from zeroth momentum term of
Boltzman transport equation into the first momentum term of
Boltzman transport equation. The left-hand side of Eq. (1) represents
an acceleration term caused by external force applied to electrons.
The first term, second term and third term of the right-hand side of
Eq. (1) represents acceleration term caused by Lorentz force, diffusion
term and the collision term, respectively. The acceleration term caused
by Lorentz force was not considered in the Sumi’s analysis [3]. The
acceleration term caused by Lorentz force shows the inertia effect
experienced by electrons when there is an introduction of external
electromagnetic fields. The collision term shows the effect due to the
collisions among the electrons or the collisions between the electrons
and ionized impurities. The diffusion term show the diffusion effect due
to the movement of electrons caused by electron temperature ambience.

To derive the electromagnetic fields in semiconductor drifting
plasma, the following assumptions are applied. (a) Only one sort
of carriers exists in the semiconductor layer, (b) the semiconductor
layer is isotropic and (c¢) mobility is not changed with electric field.
Basically, we generalized the TM mode analysis by Sumi [3] in such a
way that the inertia effect of the electron in the nearly collision free

v A
electromagneticspace harmonic wave AlGaAs
y NN NS S-wave
semiconductor:AlGaAs
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e~ Vd2DEG plasma wave
S-wave
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Figure 1. 2DEG AlGaAs/GaAs Figure 2. S-wave in Al-
heterointerface and its coordi- GaAs/GaAs structure.
nate.
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(NCF) situation is included. Since the collision frequency, v, in the
semiconductor plasma falls typically in the THz or sub-THz region
at room temperature, and even in a lower frequency range at lower
temperature, the NCF case is a realistic possibility.

Similarly to the case of semiconductor-insulator structure [10],
it can be shown that only quasi-solenoidal surface wave (s-wave)
components, which represent the solenoidal electromagnetic field
distribution penetrating into the semiconductor region as well as that
penetrating into the upper dielectric region, exist in the space, and
the charge modulation in the 2DEG layer can be incorporated as
a boundary condition connecting these two s-wave components, i.e.,
one in the lower semiconductor half-space and the other in the upper
dielectric half-space. These two s-wave components are schematically
shown in Fig. 2. It is also described for the case of semiconductor-
insulator structure that if there is no diffusion of surface charge at
the interface, then the component of electromagnetic wave is assumed
to be only quasi-solenoidal component. In addition, the advantage of
2DEG structure is that the effect of lamellar component is very small
due to the confinement of carriers in 2DEG layer.

As mentioned earlier, we assume that surface plasma waves
propagate along the 2DEG layer with the phase factor of exp(j(wt —
kz)) in the z direction as shown in Fig. 1. Based on a standard
field analysis, an expression for the w- and k-dependent effective
permittivity, e.g(w,k), of the 2DEG plasma wave was derived as
follow.

Eeff = €AlGaAs

1‘( s > : ! @)
M*e A1Gaas) (W—kvg) (w—k‘vd—jy)l_ (kvgn)?

(w—kvg)(w—kvg—jv)

This effective permittivity will be applied for admittance calculation
explained in Section 3, in order to describe the response of the
semiconductor plasma to the TM surface wave excitation.

3. ADMITTANCE OF INTERDIGITAL-GATED SLOW
WAVE STRUCTURE

3.1. Device Structure and Theoretical Formulation

The schematic physical device structure is shown in Fig. 3. In this
section, the effective permittivity derived in Section 2, is utilized in the
calculation of the two-terminal admittance of the interdigital structure
shown in Fig. 3. For the calculation, we used a Green’s function
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method [16]. Namely, with reference to Fig. 4, a periodic Green’s
function, Gp(z,2’), for the multiconductor strip lines was defined as
the potential at point z on a metal finger in response to an array of
the unit positive and negative charge lines placed at positions of 2/ +mp
with m = 0,£1,43,£5,.... Then, G,(z,2’) was calculated as follows.

Z |kn |p€o‘|'8 (kan))’

n=—oo

odd

kn="n (n==%1,+3,45,...),
p

(3)
where g¢ is the permitivity of vacuum and 6;‘;]7 is the effective
permitivity of the 2DEG plasma. A Fredholm’s integral equation of
the first kind for the charge density function p (2’) at the point 2z’ on
the strip is obtained as follows.

b= | Gr(s)p()d (4)
finger

Then, the interdigital admittance was evaluated by solving that
Fredholm’s integral equation on a computer using matrix algebra [16]
in order to obtain the charge distribution, p (z’) on the finger. Here,
¢ is the potential of the finger and Gr(z,2’) is a Green function for a
strip line which is defined by the potential at point z in response to a

point 2’ with a unit charge.
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Finally, the interdigital two-terminal admittance was evaluated by
the following equation,

1
Y =G+ jwC=—

5 inger p(z)dz ()

where G and C' are the conductance and capacitance of the interdigital
structure loaded with 2DEG plasma, respectively.

3.2. Space Harmonics in Interdigital Slow-wave Structure

In this section, the basic characteristics of the interdigital slow-wave
structure will be theoretically considered in terms of the existence of
space harmonics in this structure. The cross-sectional structure for
consideration is shown in Fig. 5. This structure is divided into three
regions as follows:

Region I (b < y < +o0): dielectric layer with dielectric
permittivity constant, &g.

Region IT (0 < y < b): dielectric layer with dielectric permittivity
constant, 1.

Region IIT (—oo < y < 0): semiconductor layer with dielectric
permittivity constant, es.

The channel of carrier flow is assumed to be at the plane of y =0
and the interdigital slow-wave structure is assumed to be located at the
plane of y = b where its thickness is ignored (infinitely thin) and has a
unit length in x direction. As shown in Fig. 5, these interdigital fingers
are arranged in z direction. The difference of phase angle between two

Ya interdigital finger

2p (1| period)

Figure 5. Schematic for space harmonic analysis of interdigital gates.
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adjacent fingers is assumed to be equal to w. The electrons are also
assumed to propagate as a space charge waves in a very thin layer of
about 10 nm.

For simplicity, in this analysis of the space harmonics propagating
through a slow-wave structure, it is assumed that there is no carrier
flow in the channel. With respect to the existence of carrier flow, the
mixing between the electromagnetic fields produced by carrier flow and
the electromagnetic fields produced by slow-wave structure will result
in the asymmetric of both field distribution and the center of field
distribution will also be shifted according to the carrier drift velocity.
Thus, this situation is hard to be considered in this analysis.

The field distribution is considered using the Poisson equation.
Here, the dielectric layer is assumed to be isotropic and the field is
also assumed to be distributed uniformly in the x direction. Hence,
the operator, 9/0z, can be ignored (9/0x = 0). The expression of
field distribution using two-dimensional Poisson equation is written as

follows. 2 (4. 2) o (0. 2)
Y,z y,z) 1
ayg + 822 - 5/) (yv Z) (6)

Here, ¢ (x, z) is the potential, € is the dielectric permittivity and p (z, 2)
is the charge density.

The boundary conditions for the potential can be expressed as the
following.

7

i) 6 (y = +00,2) = 0
i 8

(

(i) ¢ (y = —00,2) =0

(iii) ¢ (y = +0,2) = ¢ (y = -0, 2) 9

(iv)¢(y:b+07z):¢(y:b_072) (O)
Assuming that the charges only exist on the finger strips and no
charges in the other parts when the electromagnetic waves is introduced

into the interdigital slow-wave structure, the boundary conditions for
electric flux, D are expressed as follows.

~— — —

09
E1 =

(V) D1, (y=0,z) = Doy, (y=0,2). = g9— (11)
Y Y y y=0 0 y=0
(Vi) Doy (y = b,2) — D1y (y =b,2) = p(y = b,2).
¢ ¢
En— = £1— = — = b’Z 12
an v lé?y bt p(y ) (12)

Then, the charge distribution is expressed as follows.
p(y,z) =P(2)é(y —b) (13)
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where P (z) is the distribution charge density on the finger strip and
0 (y — b) is the Dirac ¢ function.
By assuming that the charge distribution is represented by
Eq. (13), then Eq. (6) is converted to the form as expressed in the
following Eq. (14) by the Laplace equation.
2 2

R (14)

oy? 022
Generally, for periodic structure, the field distribution is expressed
in terms of the superposition of space harmonic waves. Thus, the
potential, ¢* and the charge density distribution, P (z) can be written
in the complex form as follows.

¢ (y,2) = D Ph(y)e (15)
> Pt (16)

Here, i represents the Regions I, IT and III, ® (y) represents the
potential amplitude of the nth order of space harmonics in the region
1 and P, represents the charge density amplitude of the nth order
of space harmonics. k,, is the propagation constant of the nth order
of space harmonics. We assume that the phase angle difference of
potential between two adjacent strip conductors or a half-pitch is equal
to 7, then the period of fundamental wave, T is expressed as T' = 2p.
k. is obtained as

2 nw
fp = =17 17
nar = (17)
Then, Egs. (15) and (16) can be converted to
@), () = / 8 (y, ez (18)
P, = P( YedknZdzy (19)

2p

Introduce ®¢ (y) into the Laplace equation of Eq. (14), then the
following Eq. (20) is obtained.

02!,
Oy?
The amplitude of potential is expressed as follows.

0! (y) = AledlFnlv 4 pleilknly (; = 111,111 (21)

— k2@ =0 (i = 1,11, 1I) (20)
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Applying the boundary conditions of (i) ~ (v) into Egs. (15) and (21),
then the potentials of each region are obtained as follows.
Region I,

o0
1 .
¢I(y’ Z) — Z 5 ((1+:> 62|kn|b—|— (1_2)) ATILH€—|kn|ye—]knz (22)
n=—o00
Region II,
= 1 € 5 ,
R e e
n=—oo
Region III,
s .
¢ (y,2) = Z Al glknly g=gknz (24)
n—-—o00

Applying the boundary condition of (vi) into Egs. (22) and (23), then
AHI is obtained as follows.

I _ 2e1 P,

" |k’n|((50+€1)(€1—|—€2)€|k”|b—|—(50—61)(€1—52)€7|k”|b)

The potential amplitude of space harmonics on the strip conductors at
y = b is expressed as follows.

1 € €
® (y=b) =1 ((1 + 2) el 4 (1 — 2)) e lhnlb ATIT
€1 €1

g9 + €1 coth |k, | b
= P,=F(|k,|) P, (26
|kn|(22(c0+e1coth |k, |b) +e1(e1+eocoth |k, |b) " (Fenl) P (26)
The potential amplitude of space harmonics on the strip conductor,
®! (y = b) and the harmonic amplitude of charge density distribution,
P, is related by

(25)

g9 + &1 coth |k, | b
F (lkn]) = 27
(| |) |kn|(52 (60—|—€1 COth|k’n|b)—|—€1 (€1+50C0th|k‘n|b))n ( )
Considering Egs. (25) and (27), the potentials of each region are
rewritten as follows.
Region I,

(e 9]

gbl (y,Z) — Z F(’knD Pne‘knl(y_b)e_jk'nz (28)
Region 1II,

o

g1 cosh |k |y + o sinh |k, |y
O (g 2) = 3 F([ky)) P, 2 CO R ]y e sinh |

—jknz )
nslcosh|kn\b+52sinh|knlbe (29)

n=—oo
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Region III,

o0

0" (y.2) = D F(kal) Pu

n=—oo

516|kn|y

7jknz
"1 cosh |ky,| b+ o sinh |k, \b (30)

If P, value is known, then the field distribution of the periodic structure
can be obtained. Assuming that the charge density distribution in the
x direction is uniform, the potential at point z, ¢ (b, z) by referring to
the unit charge at point 2’ as schematically shown in Fig. 4, is given
by Green’s function as follows.

o (b,z) = /_OO Gr(z,2)p (b, 2') d2’ (31)

According to the Floke’s theorem, the charge density at (b, 2z’ + mp)
point is obtained as follows. Assuming that the charge density at point
(b, 2') on the strip is P(z’), then the charge density at point (b, 2’ +mp)
(m=0,+1,+2,43,...) is given by P(z' + mp).

p (b2 +mp) =P (2 +mp) = e Jhmkp (¢) = e~ ImTp (=) (32)

Eq. (31) can be transformed to the following equation.

o (b,2) / Z Gr (2,2 +mp) p (b, 2 +mp)d2’

:/_ -

Here, -5 <2/ < L.
On the other hand, the distribution P(z) in the range of —§ <
z < § is given by

[NlaS] N\"@

[ Z Gr (2,2 +mp)e /™| P (') dz'  (33)

m=—00

SIS

_Jo (/4 < |2| <p/2)
Pe={be B 3

Considering an Eq. (34), the integral range of Eq. (33) becomes
—p/4 <z <p/4. Then, Eq. (33) is obtained as follows.

P
— —Jjmm / /
qb(b,z)—/plz Gr(z,2 +mp)e P (%) dz (35)
4 m=—0o0
The above equation represents the potential at point (b, z) of a single
strip conductor.
Here, the following definition is made.
(o ¢]
Gp(z,2) = Z Gr (2,2 + mp) e ™" (36)

m=—0o0
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As shown in Fig. 5, G) (2, ') represents the potential at point z with
respect to the point 2z’ + mp for the array of positive unit charge line
and negative unit charge line.

The charge distribution for the array of line charge is given by

P'(2) = Z 5 (z— (¢ +mp)) e ™™ (37)

m=—00

Here, P’ (z) is transformed as follows:

P (2) = i P! e Ihnz (38)

n=—00
Then, P}, is obtained as below.

i
P = 1 P (z) e?*n*dz = lejk%“z/ (39)
2p J_, P

In this analysis, we found that only odd space harmonics propagates
in the interdigital slow-wave structure.

From the Fourier transformation equation the charge distribution
of the periodic structure is given by the following equation.

o

g 3 g (0

n=—0oo

Gp (z,7') is obtained by the following equation.

[e.o]

1 . /
Gy (2.7) = D S F (hansa]) om0 (41)

n=—oo

The integral equation that need to be solved in order to determine the
potential of single strip conductor, Vj is shown in the Eq. (42).

Vo :/ [ Z 1F(|/€2n+1|)6jk2"“(2l72) P (z/) d' (42)
_p P
4

n=—0oo

]

With respect to the above Fredholm integral equation, then we can
determine the charge density distribution on the conductor strip, P (2)
and its n-th order of the space harmonic amplitude, P,.

Finally, the potential distribution of periodic structure can be
obtained.
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3.3. Numerical Procedure to Solve Integral Equation

Solution of the integral Eq. (42) can be accomplished by applying
matrix approximation method [16]. Let the conductor surfaces be
thought to be subdivided into M longitudinal strips of finite width
AZ; in the range of —p/4 < z < p/4. Here, other parameters and their
definitions are summarized as follows.

Z;: middle point of subdivided strip width.

P;: average charge density (i =1,2,3,..., M).

Vi: the average potential of all potential values on the strip at
z = zp, point where (k =1,2,3,..., M).

In accordance with the above statements, Eq. (42) is then can be
expressed as follows.

M N 1
Vo=, ( > SF (lkgnmej’“?"“(ziZ”))PZAZi

i=1 \n=—N
M N

= Z ( Z ApZiF (|k2n+1’ ejkz"“(zizk)))ﬂ‘ (43)
i=1 \n=—N

It is noted here that the harmonic components of Green’s function
in Eq. (42) are considered infinite while in Eq. (43), the harmonic

components are considered in the large enough range of n = —N to
n = N.
Here, the following assumption is made.
N
AZ; <
Gri= ) —F (Jkzap1]) e Pens1lZim2e) (44)
n=—N p
Then, Eq. (43) may be written in the matrix equation form as follows.
Vil = [Gri] [P] (45)
Vi G11G12---Gim Py
Vo G21G22 P,
= . . (46)
| Vi | | G Guum | | Pu |
The average charge density, [P;] is obtained as follows.
[Pi] = [Gri] ™" [Vi] (47)

In accordance to [Gp;], it is necessary to apply a determination
of geometric-mean distance, R to find the distance between the
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subdivided partitions of conductor strip. Here, two kinds of geometric-
mean distance are determined:

(1) The geometric-mean distance between the two subdivided
partitions where z; # z; or in the condition of the so-called off-
diagonal term.

(2) The geometric-mean distance in the subdivided partition itself
where z; = zj, or in the condition of the so-called diagonal term.

In the condition of off-diagonal term, the geometric-mean distance
between two subdivided partitions can be approximated to the distance
between the middle points of those two subdivided partitions if the
number of the subdivided partitions, M is large enough.

In the condition of diagonal term, the geometric-mean distance,
R is obtained as follows.

P 3
R =exp (log Wi 2) (48)
As mentioned before, the strip conductor with a width of p/2
is divided into M partitions where these widths are named as
S1,89,...,8,...,8,...,5u. Z; is a middle point of S; and Zj is
a middle point of S;. The geometric-mean distance, R is a distance
between the point of Z; and Z;. Therefore, this R value reflects to
parameter (Z; — Zy).
In addition, Gy; can also be assumed as follows.

Gri = Gig (49)

In this analysis of the space harmonics propagating through the
interdigital-gate structure, it is assumed that there is no carrier flow in
the channel. Then, we can just consider the electromagnetic fields
is only produced by the interdigital-gate structure and the center
of field distribution will not be shifted. Therefore the matrix [Gy]
can be assumed symmetric. By considering that the potential on
the conductor strip is constant where Vj, = V = constant (k =
1,2,..., M), then we determine the charge density, P; of Eq. (47).

3.4. Appearance of Negative Conductance

Using the procedure mentioned in previous section, we have calculated
the interdigital admittance of the present device numerically on a
computer. Calculation was carried out for wide range of parameters
and negative conductance was obtained in various cases.

It was found that large negative conductance values can be
obtained under a condition when the drift velocity is close to the phase
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Figure 6. Calculated conductance as a function of drift velocity for
10 GHz, 100 GHz and 1 THz.

velocity, vpns = f(frequency) x 2p, of the fundamental space harmonic
component of electromagnetic wave.

Examples of calculated conductance are plotted as a function of
drift velocity for 10 GHz, 100 GHz and 1THz at 300K in Fig. 6 for
the case of vy = 1 ¥ 10" cm/s, ng = 1 x 101 cm™2 and the AlGaAs
thickness, b = 60 nm. Occurrence of negative conductance peak is seen
when the electron drift velocity slightly exceeds phase velocity, vpps.
Since the value of pitch, p, reduces with frequency for the same value
of phase velocity, vy, the available value of negative conductance per
area is predicted to be very large, being of the order of 300S/cm at
1THz for vppr =1 X 107 cm/s, ng, = 1 X 10" em™2 and b = 60 nm.

The value of negative conductance increases with increase of
frequency and reduction of the AlGaAs thickness. The former is
obviously related to the fact that the number of collision events per
cycle is reduced as the frequency is increased. The calculation for
other III-V HEMT material systems such as AlGaN/GaN material
systems should also produce a similar tendency of results since the
basic structure of both materials are same due to the basic equation
of effective permittivity of both materials is same. The advantage
of using AlGaN/GaN is that the breakdown voltage of this material is
very high and may good for experiment since high drain-source voltage
can be applied to drift the carriers along the channel. However, it is
well known that this material produce large leakage for Schottky type
contact which may affect the experimental results

As mentioned, we generalized the TM mode analysis by Sumi [3]
in such a way that the inertia effect of the electron in the nearly
collision free (NCF) situation is included. Since the collision frequency,
v, in the semiconductor plasma falls typically in the THz or sub-THz
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region at room temperature, and even in a lower frequency range at
lower temperatures, the NCF case is a realistic possibility. At high
frequencies, a quantum mechanical treatment may become necessary.
However, this is beyond the scope of our analysis. The existence of
negative conductance for both of the collision-dominant (CD) case for
microwave region and the nearly collision free (NCF) case for THz
region are predicted which became remarkably large in the NCF case.
Besides of III-V HEMT structure, small negative conductance are also
obtainable in some other material systems such GaAs and InP bulk
structure presented in reference [12]. However, the HEMT structure
can be considered more preferable for plasma wave devices due to large
negative conductance can be produced.

4. DYAKONOV-SHUR THz SURFACE WAVES IN 2DEG

Up to now, the terahertz band is still an unexplored region in the
sense that no practical application exists. New operating principles by
traveling wave concept should be, therefore, appreciated for the real
applications. Recently, a new type of terahertz electronic device that
utilizes the plasma resonance effect of highly dense two-dimensional
electrons in the AlGaAs/GaAs heterostructure FET channel under a
metal gate was proposed by Dyakonov and Shur [17].

The concept of devices proposed by Dyakonov and Shur utilizes
the interaction of propagated plasma waves which may be much faster
than electron drift velocities. Therefore, this principle should allow a
three terminal device operation into a much higher frequency range
than has been possible for conventional transit time limited regimes.
The plasma resonance phenomena of such plasma wave device in the
THz range were indirectly observed from the dc-modulation effect on
the drain-source potential [18, 19].

In this section, we are going to describe the principles of such
plasma resonance effect in FETs. Then, this theory is going to be
compared and discussed with our approach concept.

4.1. Principles of Non-drifting Plasma Resonance Effect

The device structure used in their analysis is similar to the conventional
high-electron-mobility transistors (HEMTs). The gate bias is applied
to induce the highly dense 2DEG electrons of the order of > 10'? cm ™2
in the channel, the average distance between electrons is close to the
Bohr radius and a large number of electron-electron collisions occur
during the electron transit time. When the HEMTs are biased only
by the gate-to-source voltage and subjected to an electromagnetic
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radiation which then will develop a constant drain-to-source voltage
which has a resonant dependence on the radiation frequency with
maxima at the plasma oscillation frequencies. Under such conditions,
the electrons behave as a fluid and the electron motion can be described
as plasma waves by hydrodynamic equations [8].

Due to the photon energy in the terahertz region is far smaller than
the semiconductor band-gap energy, the terahertz electromagnetic
wave can be absorbed via inter-and/or intra-subband transition
of the two dimensional conduction electrons. When a terahertz
electromagnetic wave having an E vector parallel to the channel axis
(source-drain direction) is absorbed, a plasma wave of electrons is
excited. If the subband-gap energy between the bound state and the
second excited state is larger than the phonon energy, the plasma being
excited via inter-subband transition can keep its coherency against the
incoherence of phonon energy.

The plasma wave is carried on a uniform electron drift flow from
the source to the drain electrode. This will cause the difference
between the forward-wave velocity (v, + vq) and the backward-wave
velocity (v, —vq) where v, is the plasma wave velocity and v, is
the electron drift velocity. Corresponding to this situation, the
plasma-wave instability will occur. The consequence of superimposing
the multiple reflection waves leads to the wave amplitude of
((vp +v4) / (vp — vd))t/T where T is the roundtrip time between the
source and the drain. In general case, this will lead to a wave
amplification when v, > v4. This is because v, is generally on the
order of 10® cm /s for typical FET devices while vy stays at most on the
order of 107 cm/s. That is the mechanism of plasma wave amplification.
The standing wave condition is given by A = (2n — 1) /4L (n: integer),
where A is the plasma wavelength and L is the gate length. For the
high plasma wave velocity, v, (10® cm/s) and small FET dimensions,
L (107" cm), the plasma wave frequencies, vp/A are in the terahertz
range.

4.2. Basic Properties of Dyakonov-Shur THz Surface Waves
in 2DEG

The motion of plasma waves along with the z axis parallel to the source
to drain direction can be described by the following hydrodynamic

equations [8],
. [ Ov ov

oV(z)  0(V(z)v)
ot os

AV (2)

=0 (51)
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where ¢ is the electronic charge, V'(z) is the gate-channel potential at
z, m* is the electron effective mass, v is the local electron velocity,
7 is the plasma damping time. Eq. (50) is the Euler equation and
Eq. (51) is the continuity equation in which the induced electronic
charge is given by the product of the gate-channel potential, V' (z) and
the uniform channel capacitance. The wave dispersion law, w = Spk
corresponding to the well known shallow water waves can be obtained
from the linearized system of Eqs. (50) and (51) [17]. Then, the wave
velocity, Sp is obtained as follows.

qVa

m*

So =

(52)

Here, w is the frequency, k is the wave vector, and Vg is the gate bias
potential.

In our approach, the dispersion relation of the TM surface
waves can be obtained by matching the admittance at the interface
(transverse resonance) [20]. By considering the “shallow water wave”
— like plasma wave, then the dispersion can be obtained from the
resonance relation as follows.

JWEAlGaAs (wgb) B
. cot(kb)+ FgAlGaAs (1 & Fog) (o —Fog— jy)> =0(53)
(

S S

jWEAlGaAs “p )
——————cot(kb)+ aAs|1— - =0(54
k ot(kb)+ k gAlG A ( (w—kvg) (w—kvd—ju)> (54)

Here, b is the thickness of the AlGaAs layer. Assuming that w > kv,
then Eq. (54) can be expressed as follows.

2
€ AlGaAs wsb) k
M""gAlGaAs (1_ (]32)> =0 (55)

kb w

Assuming that 1 < ( )k: then we obtain

€AlGaAs _ €AlGaAs (wgz;b) k (56)
kb w?
From the wave dispersion law, w = Spk where Sy is the wave velocity,

we can obtain the following equation.

be arcians (2b
ot = DeaGeas (D) 1o ooy (57)
€AlGaAs

be aiGaas(w2b
Here, S3 = ——222r o (3 )
EAlGaAs
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By taking the limit kb — 0 and ignoring diffusion (v, = 0), a
linear dispersion equation with the velocity, Sy is obtained. Here, C
is the gate capacitance per unit area, wgb = eaeas and in the case
of a gated 2DEG (i.e., of a FET), the relation between the electron
concentration and electric potential is given by gng = C'Vg.

1 ¢°ns 1 (qns)q _ 4Va

0 C AlGaAs M€ AlGaAs C m* m* ( )

It can be seen that Eq. (58) is equal to the Eq. (52) although
our treatment is more rigorous that the one-dimensional analysis by

Dyakonov and Shur [17,18].

5. CONCLUSION

The generalized TM mode analysis method was applied to analyze the
interactions in two-dimensional electron gas (2DEG) structure. The
effective permittivity which is used to describe the dielectric response
of the semiconductor plasma to the TM surface wave excitation was
derived. The theoretical formulations and procedures to determine
the admittance of the interdigital structure was presented. It was
found that only the odd-mode space harmonics propagate through the
interdigital slow-wave structure. The major result of our theoretical
analysis is the appearance of negative conductance where its magnitude
increases with the increase of frequency. This indicates that the
best use of the wave interaction can be made by using the 2DEG
structure in the THz region because of reduced collision, reduced
thermal motion due to confinement, absence of surface states due
to superb hetero-structure and increased number of fingers per unit
length. The surface plasma wave mode in 2DEG in conventional
HEMT structures, screened by a highly conducting plane, proposed by
Dyakonov and Shur was briefly described and discussed. The plasma
wave velocity proposed by Dyakonov and Shur can be obtained by
equating the admittance at the interface.
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