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PLICATIONS
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Abstract—This paper presents an improved approach for the
propagation of electromagnetic (EM) fields in the case of the flexible
hollow waveguide that consists of two bendings in the same direction.
In this case, the objective is to develop a mode model for infrared
(IR) wave propagation along the flexible hollow waveguide, in order to
provide a numerical tool for the calculation of the output fields, output
power density and output power transmission. The main steps of the
method for the two bendings will introduced in the derivation, in detail,
for small values of step angles. The derivation for the first section and
the second section of the waveguide with the two bendings is based on
Maxwell’s equations. The separation of variables is obtained by using
the orthogonal-relations. The longitudinal components of the fields are
developed into the Fourier-Bessel series. The transverse components
of the fields are expressed as functions of the longitudinal components
in the Laplace plane and are obtained by using the inverse Laplace
transform by the residue method. This model can be a useful tool in
all the cases of the hollow toroidal waveguides, e.g., in medical and
industrial regimes.

1. INTRODUCTION

Various methods of cylindrical hollow metallic or metallic with inner
dielectric coating waveguide have been proposed in the literature [1–
16]. A review of the hollow waveguide technology [1] and a
review of IR transmitting, hollow waveguides, fibers and integrated
optics [2] were published. The first theoretical analysis of the problem

Corresponding author: Z. Menachem (zionm@post.tau.ac.il).
† Also with Department of Electrical, Electronics, and Communication Engineering, Holon
Institute of Technology, 52 Golomb St. POB 305, Israel.



348 Menachem

of hollow cylindrical bent waveguides was published by Marcatili
and Schmeltzer [3], where the theory considers the bending as a
small disturbance and uses cylindrical coordinates to solve Maxwell
equations. They derive the mode equations of the disturbed waveguide
using the ratio of the inner radius r to the curvature radius R as a small
parameter (r/R ¿ 1). Their theory predicts that the bending has little
influence on the attenuation of a hollow metallic waveguide. However,
practical experiments have shown a large increase in the attenuation,
even for a rather large R.

Marhic [4] proposed a mode-coupling analysis of the bending
losses of circular metallic waveguide in the IR range for large bending
radii. In the circular guide it is found that the preferred TE01 mode
can couple very effectively to the lossier TM11 mode when the guide
undergoes a circular bend. The mode-coupling analysis [4] developed
to study bending losses in microwave guides has been applied to IR
metallic waveguides at λ = 10.6µm. For circular waveguides, the
microwave approximation has been used for the index of refraction and
the straight guide losses, and the results indicate very poor bending
properties due to the near degeneracy of the TE01 and TM11 modes,
thereby offering an explanation for the high losses observed in practice.

Miyagi et al. [5] suggested an improved solution, which provided
agreement with the experimental results, but only for r/R ¿ 1. A
different approach [4, 6] treats the bending as a perturbation that
couples the modes of a straight waveguide. That theory explains
qualitatively the large difference between the metallic and metallic-
dielectric bent waveguide attenuation. The reason for this difference
is that in metallic waveguides the coupling between the TE and TM
modes caused by the bending mixes modes with very low attenuation
and modes with very high attenuation, whereas in metallic-dielectric
waveguides, both the TE and TM modes have low attenuation. The
EH and HE modes have similar properties and can be related to modes
that have a large TM component.

Hollow waveguides with both metallic and dielectric internal
layers were proposed to reduce the transmission losses. Hollow-core
waveguides have two possibilities. The inner core materials have
refractive indices greater than one (namely, leaky waveguides) or the
inner wall material has a refractive index of less than one. A hollow
waveguide can be made, in principle, from any flexible or rigid tube
(plastic, glass, metal, etc.) if its inner hollow surface (the core) is
covered by a metallic layer and a dielectric overlayer. This layer
structure enables us to transmit both the TE and TM polarization
with low attenuation [4, 6].

A method for the EM analysis of bent waveguides [7] is based on
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the expansion of the bend mode in modes of the straight waveguides,
including the modes under the cutoff. A different approach to calculate
the bending losses in curved dielectric waveguides [8] is based on
the well-known conformal transformation of the index profile and
on vectorial eigenmode expansion combined with perfectly matched
layer boundary conditions to accurately model radiation losses. An
improved ray model for simulating the transmission of laser radiation
through a metallic or metallic dielectric multibent hollow cylindrical
waveguide was proposed in [9, 10]. It was shown theoretically and
proved experimentally that the transmission of CO2 radiation is
possible even through bent waveguide.

The propagation of EM waves in a loss-free inhomogeneous hollow
conducting waveguide with a circular cross section and uniform plane
curvature of the longitudinal axis was considered in [11]. For small
curvature the field equations can, however, be solved by means
of an analytical approximation method. In this approximation
the curvature of the axis of the waveguide was considered as a
disturbance of the straight circular cylinder, and the perturbed torus
field was expanded in eigenfunctions of the unperturbed problem.
Using the Rayleigh-Schrodinger perturbation theory, eigenvalues and
eigenfunctions containing first-order correction terms were derived. An
extensive survey of the related literature can be found especially in the
book on EM waves and curved structures [12]. The radiation from
curved open structures is mainly considered by using a perturbation
approach, that is by treating the curvature as a small perturbation of
the straight configuration. The perturbative approach is not entirely
suitable for the analysis of relatively sharp bends, such as those
required in integrated optics and especially short millimeter waves.

The models based on the perturbation theory consider the bending
as a perturbation (r/R ¿ 1), and solve problems only for a large radius
of curvature.

Several methods of propagation along the toroidal and helical
waveguides were developed in [13–16], where the derivation is based
on Maxwell’s equations. The method in [13] has been derived for
the analysis of EM wave propagation in dielectric waveguides with
arbitrary profiles, with rectangular metal tubes, and along a curved
dielectric waveguide. An improved approach has been derived for the
propagation of EM field along a toroidal dielectric waveguide with a
circular cross-section [14]. The method in [15] has been derived for
the propagation of EM field along a helical dielectric waveguide with
a circular cross section. The method in [16] has been derived for the
propagation of EM field along a helical dielectric waveguide with a
rectangular cross section. It is very interesting to compare between
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the mode model methods for wave propagation in the waveguide with
a rectangular cross section, as proposed in Refs. [13, 16] as regard
to the mode model methods for wave propagation in the waveguide
with a circular cross section, as proposed in Refs. [14, 15]. The
calculations in all the two above methods are based on using Laplace
and Fourier transforms, and the output fields are computed by the
inverse Laplace and Fourier transforms. Laplace transform on the
differential wave equations is needed to obtain the wave equations (and
thus also the output fields) that are expressed directly as functions of
the transmitted fields at the entrance of the waveguide at ζ = 0+.
Thus, the Laplace transform is necessary to obtain the comfortable
and simple input-output connections of the fields. The objective in
all these methods was to develop a mode model in order to provide a
numerical tool for the calculation of the output fields for a curved
waveguide. The technique of the methods is quite different. The
technique for a rectangular cross section is based on Fourier coefficients
of the transverse dielectric profile and those of the input wave profile.
On the other hand, the technique for a circular cross section is based
on the development of the longitudinal components of the fields into
Fourier-Bessel series. The transverse components of the fields are
expressed as functions of the longitudinal components in the Laplace
plane and are obtained by using the inverse Laplace transform.

The main objective of this paper is to generalize the method [14]
to provide a numerical tool for the calculation of the output transverse
fields and power density in the case of the flexible hollow waveguide
that consists of two bendings. Our method employs toroidal
coordinates (and not cylindrical coordinates, such as in the methods
that considered the bending as a perturbation (r/R ¿ 1)). The
objective is to presents an improved approach for the propagation of
EM fields in the case of the flexible hollow waveguide that consists of
two bendings in the same direction. The main steps of the method
for the two bendings will introduced in the derivation, in detail, for
small values of step angles. The derivation for the first section and
the second section of the waveguide with the two bendings is based on
Maxwell’s equations. The separation of variables is obtained by using
the orthogonal-relations. The longitudinal components of the fields are
developed into the Fourier-Bessel series. The transverse components
of the fields are expressed as functions of the longitudinal components
in the Laplace plane and are obtained by using the inverse Laplace
transform by the residue method. The results of this model are applied
to the study of flexible hollow waveguides with two bendings, that are
suitable for transmitting IR radiation, especially CO2 laser radiation.
In this paper, we supposed that the modes excited at the input of the
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waveguide by the conventional CO2 laser IR radiation (λ = 10.6µm)
are closer to the TEM polarization of the laser radiation. The TEM00

mode is the fundamental and the most important mode. This means
that a cross-section of the beam has a Gaussian intensity distribution.

2. FORMULATION OF THE PROBLEM

The method presented in [14] is generalized to provide a numerical
tool for the calculation of the output transverse fields and power
density in the case of the flexible hollow waveguide that consists of
two bendings. Let us assume in the derivation that the flexible hollow
waveguide consists of two bendings as shown in Fig. 1, in order to
simplify the mathematical expressions. The main steps for calculations
of the output fields and output power density in the case of the flexible
hollow waveguide with two bendings in the same direction (Fig. 1), are
introduced in the derivation, in detail.

The coordinates of an arbitrary point on the toroidal system (r,
θ, ζ) with a given bending (R) are shown in Fig. 2, where X = R cosφ
and Y = R sinφ.

Further we assume that the first bending (Fig. 1) is R1, the length
ζ1 = R1φ1, and the metric coefficient is hζ1 = 1+(r/R1) sin θ. Likewise,
the radius of curvature of the second bending (Fig. 1) is R2, the length
ζ2 = R2φ2, and the metric coefficient is hζ2 = 1 + (r/R2) sin θ. The
total length in this case is given by ζ = ζ1+ζ2. The cases for a straight
waveguide are obtained by letting R1 →∞ and R2 →∞.
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Figure 1. A general scheme in
the case that the two bendings are
in the same direction.
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Figure 2. A general scheme of
the toroidal system (r, θ, ζ) and
the curved waveguide.
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Figure 3. A general scheme of the flexible hollow waveguide with two
bendings: (a) In the same direction; (b) in the opposite directions.

A general scheme of the flexible hollow waveguide with two
bendings in the same direction is shown in Fig. 3(a). The flexible
hollow waveguide with two bendings in the opposite directions is shown
in Fig. 3(b).

For the first bending X = R1 cosφ, Y = R1 sinφ, dX =
−R1 sinφdφ and dY = R1 cosφdφ. Thus, the second derivative for
the first bending at the point A (Figs. 3(a) and 3(b)) is given by

Y ′′
(A,R1)=

[
d2Y

dX2

]

A

=

[
d

dφ

(
dY

dX

)
dφ

dX

]

A

=

[
d

dφ

(
−cotφ

)(
− 1

R1 sinφ

)]

A

=− 1
R1sin3φA

.

For the second bending at the point A (Figs. 3(a) and 3(b)) the
values of X, Y , dX and dY are X = R2 cosφ + c1, Y = R2 sinφ + c2,
dX = −R2 sinφdφ and dY = R2 cosφdφ, where c1 and c2 are denoted
in Figs. 3(a) and 3(b). Thus, the second derivative where the two
bendings are in the same direction is Y ′′

(A,R2) = −1/(R2sin3φA). The
second derivative at point A, where the two bendings are in the
opposite directions is given by Y ′′

(A,R2) = +1/(R2sin3(φA + π)).
The second derivative for the first bending at the point A is

Y ′′
A,R1

= −1/R1, where φA = π/2. The second derivative for the second
bending at the point A is y′′A,R2

= −1/R2, where the two bendings are
in the same direction. The difference between the second derivatives
at φA = π/2, in the case of the opposite bendings, is 1/R1 + 1/R2

and in the case of the bendings in the same direction, is 1/R2 − 1/R1.
Note that for the same bending (R1 = R2 = R), the jump of the
second derivative at the interface between the two bendings in the
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case of the opposite bendings is 2/R, and in the other case there is
no jump. Hence, we introduce the main steps of our method for two
different bendings (R1 6= R2) for the example as shown in Fig. 1. For
the small difference between the bendings (R1 ' R2), the losses in
the interface between the two bendings are small. By increasing the
difference between the bendings (R1 6= R2) the jump of the second
derivative at the interface between the two bendings is increased, and
therefore the losses are increased.

Let us assume in the derivation that the flexible hollow waveguide
consists of two bendings as shown in Fig. 1, in order to simplify the
mathematical expressions. The main steps for calculations of the
output fields and output power density in the case of the flexible
hollow waveguide with two bendings in the same direction (Fig. 1),
are introduced in the derivation, in detail.

We start by finding the metric coefficients from the toroidal
transformation of the coordinates. The latter will be used in the wave
equations as will be outlined in the next section.

The toroidal transformation of the coordinates is achieved by two
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Figure 4. Rotations and translation of the orthogonal system
(X̄, ζ̄, Z̄) from point A to the orthogonal system (X,Y, Z) at point
K.
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Figure 5. Deployment of the
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Figure 6. A cross-section of the
waveguide (r, θ).

rotations and one translation, and is given in the form:(
X
Y
Z

)
=

(cos(φc) − sin(φc) 0
sin(φc) cos(φc) 0

0 0 1

)(1 0 0
0 cos(δp) − sin(δp)
0 sin(δp) cos(δp)

)(
r sin θ

0
r cos θ

)

+

(
R cos(φc)
R sin(φc)
ζ sin(δp)

)
, (1)

where ζ is the coordinate along the helix axis, R is the radius of
the cylinder, δp is the step’s angle of the helix (see Figs. 4–5), and
φc = (ζ cos(δp))/R. Likewise, 0 ≤ r ≤ a + δm, where 2a is the
internal diameter of the cross-section of the helical waveguide, δm is the
thickness of the metallic layer, and d is the thickness of the dielectric
layer (see Fig. 6).

Figure 4 shows the rotations and translation of the orthogonal
system (X, ζ, Z) from point A to the orthogonal system (X, Y, Z) at
point K . In the first rotation, the ζ and Z axes rotate around the X
axis of the orthogonal system (X, ζ, Z) at the point A until the Z axis
becomes parallel to the Z axis (Z ‖ Z), and the ζ axis becomes parallel
to the X, Y plane (ζ ‖ (X, Y )) of the orthogonal system (X, Y, Z) at
the point K. In the second rotation, the X and ζ axes rotate around
the Z axis (Z ‖ Z) of the orthogonal system (X, ζ, Z) until X ‖ X and
ζ ‖ Y . After the two above rotations, we have one translation from
the orthogonal system (X, ζ, Z) at point A to the orthogonal system
(X, Y, Z) at the point K.

Figure 5 shows the deployment of the helix depicted in Fig. 4. The
condition for the step’s angle δp is given according to

tan(δp) ≥ 2(a + δm)
2πR

, (2)
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where the internal diameter is denoted as 2a, the thickness of the
metallic layer is denoted as δm, and the radius of the cylinder is denoted
as R.

According to Equation (1), the helical transformation of the
coordinates becomes

X = (R + r sin θ) cos(φc) + r sin(δp) cos θ sin(φc), (3a)
Y = (R + r sin θ) sin(φc)− r sin(δp) cos θ cos(φc), (3b)
Z = r cos θ cos(δp) + ζ sin(δp). (3c)

where φc = (ζ/R) cos(δp), R is the radius of the cylinder, and (r, θ) are
the parameters of the cross-section. Note that ζ sin(δp) = Rφc tan(δp).

The metric coefficients in the case of the helical waveguide
according to Equations (3a)–(3c) are:
hr = 1, (4a)
hθ = r, (4b)

hζ =

√(
1 +

r

R
sin θ

)2
cos2 (δp) + sin2(δp)

(
1 +

r2

R2
cos2θcos2(δp)

)

=

√
1+

2r

R
sin θcos2(δp)+

r2

R2
sin2θcos2(δp)+

r2

R2
cos2θcos2(δp)sin2(δp)

'1 +
r

R
sin θcos2(δp). (4c)

Furthermore, the third and the fourth terms in the root of the
metric coefficient hζ are negligible in comparison to the first and the
second terms when (r/R)2 ¿ 1. Nonetheless, the metric coefficient
hζ still depends on δp, the step’s angle of the helix (Fig. 5). Note
that the metric coefficient hζ is a function of r and θ, which causes a
difficulty in the separation of variables. Thus, the analytical methods
are not suitable for the helical or the curved waveguide. In this method,
the separation of variables is performed by employing the orthogonal-
relations. The cross-section of the helical waveguide in the region
0 ≤ r ≤ a + δm is shown in Fig. 6, where δm is the thickness of
the metallic layer, and d is the thickness of the dielectric layer.

Further we assume that the derivation based for small values of the
step’s angle. For small values of the step’s angle δp (sin(δp) ' tan(δp) '
δp, cos(δp) ' 1) and according to condition (2), δp ≥ 2(a + δm)/(2πR).
For small values of the step’s angle, the helical waveguide becomes a
toroidal waveguide, where the radius of the curvature of the helix can
then be approximately by the radius of the cylinder (R). In this case,
the toroidal system (r, θ, ζ) in conjunction with the curved waveguide
is shown in Fig. 2, and the transformation of the coordinates ((3a)–
(3c)) is given as a special case of the toroidal transformation of the
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coordinates, as follows

X = (R + r sin θ) cos

(
ζ

R

)
, (5a)

Y = (R + r sin θ) sin

(
ζ

R

)
, (5b)

Z = r cos θ, (5c)

and the metric coefficients are given by

hr = 1, (6a)
hθ = r, (6b)

hζ = 1 +
r

R
sin θ. (6c)

By using the Serret-Frenet relations for a spatial curve, we can
find the curvature (κ) and the torsion (τ) for each spatial curve that
is characterized by θ = const and r = const for each pair (r, θ) in the
range. This is achieved by using the helical transformation introduced
in Equations (3a), (3b), and (3c). The curvature and the torsion (see
Appendix A) are constants for constant values of the radius of the
cylinder (R), the step’s angle (δp) and the parameters (r, θ) of the
cross-section. The curvature and the torsion are given by

κ =
1 + Ct

R (1 + tan2(δp) + Ct)
, (7a)

τ =
tan(δp)

R (1 + tan2(δp) + Ct)
, (7b)

where

Ct =
r2

R2
sin2θ + 2

r

R
sin θ +

r2

R2
sin2(δp)cos2θ.

The radius of curvature and the radius of torsion are given by ρ = 1/ κ,
and σ = 1/ τ , respectively. For small values of the step’s angle (δp ¿
1), the helical waveguide becomes a toroidal waveguide (Fig. 2), where
the radius of the curvature of the helix can then be approximately by
the radius of the cylinder (ρ ' R).

The generalization of the method from a toroidal dielectric
waveguide [14] with one bending to a toroidal dielectric waveguide with
two bendings is presented in the following derivation. The derivation is
based on Maxwell’s equations for the computation of the EM field and
the radiation power density at each point during propagation along
a helical waveguide, with a radial dielectric profile. The longitudinal
components of the fields are developed into the Fourier-Bessel series.
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The transverse components of the fields are expressed as a function of
the longitudinal components in the Laplace transform domain. Finally,
the transverse components of the fields are obtained by using the
inverse Laplace transform by the residue method, for small values of
the step’s angles. The main steps of the method for the two bendings in
the same direction (Fig. 1) will introduced in the following derivation,
in detail.

3. SOLUTION OF THE WAVE EQUATIONS

The wave equations for the electric and magnetic field components in
the inhomogeneous dielectric medium ε(r) are derived in this section
for a lossy dielectric media in metallic boundaries of the waveguide.
The cross-section of the toroidal waveguide is shown in Fig. 6 for the
application of the hollow waveguide, in the region 0 ≤ r ≤ a + δm,
where δm is the thickness of the metallic layer, and d is the thickness
of the dielectric layer.

The derivation is given for the lossless case to simplify the
mathematical expressions. In a linear lossy medium, the solution
is obtained by replacing the permittivity ε by εc = ε − j(σ/ω) in
the solutions for the lossless case, where εc is the complex dielectric
constant, and σ is the conductivity of the medium. The boundary
conditions for a lossy medium are given after the derivation. For most
materials, the permeability µ is equal to that of free space (µ = µ0).
The wave equations for the electric and magnetic field components in
the inhomogeneous dielectric medium ε(r) are given by

∇2E + ω2µεE +∇
(
E · ∇ε

ε

)
= 0, (8a)

and
∇2H + ω2µεH +

∇ε

ε
× (∇×H) = 0, (8b)

respectively. The transverse dielectric profile (ε(r)) is defined as
ε0(1 + g(r)), where ε0 represents the vacuum dielectric constant, and
g(r) is its profile function in the waveguide. The normalized transverse
derivative of the dielectric profile (gr) is defined as (1/ε(r))(∂ε(r)/∂r).

From the transformation of Equations (3a)–(3c) we can derive the
Laplacian of the vector E (i.e., ∇2E), and obtain the wave equations
for the electric and magnetic fields in the inhomogeneous dielectric
medium. It is necessary to find the values of ∇ · E, ∇(∇ · E),
∇× E, and ∇× (∇× E) in order to obtain the value of ∇2E, where
∇2E = ∇(∇·E)−∇× (∇×E). All these values are dependent on the
metric coefficients (4a), (4b) and (4c).
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The ζ component of ∇2E is given by

(∇2E
)
ζ

= ∇2Eζ +
2

Rh2
ζ

[
sin θ

∂

∂ζ
Er + cos θ

∂

∂ζ
Eθ

]
− 1

R2h2
ζ

Eζ , (9)

where

∇2Eζ =
∂2

∂r2
Eζ +

1
r2

∂2

∂θ2
Eζ +

1
r

∂

∂r
Eζ

+
1
hζ

[
sin θ

R

∂

∂r
Eζ +

cos θ

rR

∂

∂θ
Eζ +

1
hζ

∂2

∂ζ2
Eζ

]
. (10)

The longitudinal components of the wave Equations (8a) and (8b) are
obtained by deriving the following terms[

∇
(
E · ∇ε

ε

)]

ζ

=
1
hζ

∂

∂ζ

[
Ergr

]
, (11)

and [
∇ε

ε
× (∇×H)

]

ζ

= jωε

[
∇ε

ε
×E

]

ζ

= jωεgrEθ. (12)

The longitudinal components of the wave Equations (8a) and (8b) are
then written in the form(

∇2E

)

ζ

+ k2Eζ +
1
hζ

∂

∂ζ

(
Ergr

)
= 0, (13)

(
∇2H

)

ζ

+ k2Hζ + jωεgrEθ = 0, (14)

where (∇2E)ζ , for instance, is given in Equation (9). The local wave
number parameter is k = ω

√
µε(r) = k0

√
1 + g(r), where the free-

space wave number is k0 = ω
√

µ0ε0.
The transverse Laplacian operator is defined as

∇2
⊥ ≡ ∇2 − 1

h2
ζ

∂2

∂ζ2
. (15)

The Laplace transform

ã(s) = L{a(ζ)} =
∫ ∞

ζ=0
a(ζ)e−sζdζ (16)

is applied on the ζ-dimension, where a(ζ) represents any ζ-dependent
variables, where ζ = (Rφc)/ cos(δp).
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The next steps are given in detail in Ref. [14], as a part of
our derivation. Let us repeat these main steps, in brief. By
substituting Equation (9) into Equation (13) and by using the Laplace
transform (16), the longitudinal components of the wave equations
(Equations (13)–(14)) are described in the Laplace transform domain,
as coupled wave equations. The transverse fields for the first section
of the flexible hollow waveguide with two bendings at ζ = ζ1 are
obtained directly from the Maxwell equations, and by using the Laplace
transform (16), and are given by

Ẽr1(s) =
1

s2 + k2h2
ζ1

{
− jωµ0

r

[
r

R1
cos θH̃ζ1 + hζ1

∂

∂θ
H̃ζ1

]
hζ1

+s

[
sin θ

R1
Ẽζ1 + hζ1

∂

∂r
Ẽζ1

]
+ sEr0 − jωµ0Hθ0hζ1

}
. (17a)

Ẽθ1(s) =
1

s2 + k2h2
ζ1

{
s

r

[
r

R1
cos θẼζ1 + hζ1

∂

∂θ
Ẽζ1

]

+jωµ0hζ1

[
sin θ

R1
H̃ζ1+hζ1

∂

∂r
H̃ζ1

]
+sEθ0 +jωµ0Hr0hζ1

}
,(17b)

H̃r1(s) =
1

s2 + k2h2
ζ1

{
jωε

r

[
r

R1
cos θẼζ1 + hζ1

∂

∂θ
Ẽζ1

]
hζ1

+s

[
sin θ

R1
H̃ζ1 + hζ1

∂

∂r
H̃ζ1

]
+ sHr0 + jωεEθ0hζ1

}
, (17c)

H̃θ1(s) =
1

s2 + k2h2
ζ1

{
s

r

[
r

R1
cos θH̃ζ1 + hζ1

∂

∂θ
H̃ζ1

]

−jωεhζ1

[
sin θ

R1
Ẽζ1 +hζ1

∂

∂r
Ẽζ1

]
+sHθ0−jωεEr0hζ1

}
, (17d)

where ζ1 is the coordinate along the first section toroidal axis, R1 is
the radius of curvature of the first section of the toroidal axis, where
the metric coefficient is hζ1 = 1 + (r/R1) sin θ.

The transverse fields are substituted into the coupled wave
equations. The longitudinal components of the fields are developed
into Fourier-Bessel series, in order to satisfy the metallic boundary
conditions of the circular cross-section. The condition is that we
have only ideal boundary conditions for r = a. Thus, the electric
and magnetic fields will be zero in the metal. Two sets of equations
are obtained by substitution the longitudinal components of the fields
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into the wave equations. The first set of the equations is multiplied
by cos(nθ)Jn(Pnmr/a), and after that by sin(nθ)Jn(Pnmr/a), for
n 6= 0. Similarly, the second set of the equations is multiplied
by cos(nθ)Jn(P ′

nmr/a), and after that by sin(nθ)Jn(P ′
nmr/a), for

n 6= 0. In order to find an algebraic system of four equations with
four unknowns, it is necessary to integrate over the area (r, θ), where
r = [0, a], and θ = [0, 2π], by using the orthogonal-relations of the
trigonometric functions. The propagation constants βnm and β′nm
of the TM and TE modes of the hollow waveguide [17] are given,

respectively, by βnm =
√

k2
o − (Pnm/a)2 and β′nm =

√
k2

o − (P ′
nm/a)2,

where the transverse Laplacian operator (∇2
⊥) is given by −(Pnm/a)2

and −(P ′
nm/a)2 for the TM and TE modes of the hollow waveguide,

respectively.

3.1. The Elements of the Boundary Conditions’s Vectors in
the Entrance of the First Section of the Toroidal Waveguide

The separation of variables is obtained by using the orthogonal-
relations. Thus the algebraic equations (n 6= 0) are given by

αn
(1)An + βn

(1)Dn =
1
π

(̂BC1)n, (18a)

αn
(2)Bn + βn

(2)Cn =
1
π

(̂BC2)n, (18b)

βn
(3)Bn + αn

(3)Cn =
1
π

(̂BC3)n, (18c)

βn
(4)An + αn

(4)Dn =
1
π

(̂BC4)n. (18d)

Further we assume n′ = n = 1. The elements (αn
(1), βn

(1), etc),
on the left side of (18a) for n = 1 are given for the first section of the
toroidal waveguide by:

α1
(1)mm′

=π

(
s2 + β

2
1m′

)[(
s2 + k0

2

)
G

(1)mm′
00 + k0

2G
(1)mm′
01

]

+πk0
2

{
s2G

(1)mm′
01 + G

(1)mm′
05 +

1
R2

1

(
G

(1)mm′
00 + G

(1)mm′
01

)

+
3

2R2
1

β2
1m′

(
G

(1)mm′
02 + G

(1)mm′
03

)
+ πs2

[
G

(1)mm′
08 +

1
2R2

1

G
(1)mm′
00
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+
1

4R2
1

(
β2

1m′G
(1)mm′
02 +G

(1)mm′
09

)
+

1
2R2

1

P1m′

a

(
G

(1)mm′
10 +

1
2
G

(1)mm′
11

)]

+πk0
4

[
3

2R2
1

(
G

(1)mm′
03 + G

(1)mm′
04

)]
, (19a)

β1
(1)mm′

=−jωµ0πs

{
G

(1)mm′
13 +

(
5
4

)
1

R2
1

G
(1)mm′
14 +

(
3
2

)
1

R2
1

G
(1)mm′
15

− 1
2R2

1

G
(1)mm′
00 − 1

R2
1

P ′
1m′

a
G

(1)mm′
16

}
, (19b)

where the elements of the matrices (G(1)mm′
00 , etc.) are given in

Appendix B. Similarly, the rest of the elements on the left side in
Equations (18a)–(18d) are obtained. We establish an algebraic system
of four equations with four unknowns. All the elements of the matrices
in the Laplace transform domain are dependent on the step’s angle
of the helix (δp), the Bessel functions; the dielectric profile g(r); the
transverse derivative gr(r); and (r, θ).

The elements of the boundary conditions’s vectors on the right side
in Equations (18a)–(18d) are changed at the entrance of every section
of the flexible hollow waveguide with two bendings. These elements are
given in conjunction with the excitation of every section, as follows:

(̂BC1)1 =
∫ 2π

0

∫ a

0
(BC1) cos(θ)J1(P1mr/a)rdrdθ, (20a)

(̂BC2)1 =
∫ 2π

0

∫ a

0
(BC2) sin(θ)J1(P1mr/a)rdrdθ, (20b)

(̂BC3)1 =
∫ 2π

0

∫ a

0
(BC3) cos(θ)J1(P ′

1mr/a)rdrdθ, (20c)

(̂BC4)1 =
∫ 2π

0

∫ a

0
(BC4) sin(θ)J1(P ′

1mr/a)rdrdθ. (20d)

The elements of the boundary conditions’s vectors (20a)–(20d) in the
case of the TEM00 mode in excitation for the first section of the
toroidal waveguide with two bendings (Fig. 1) are obtained, where:

BC1 = BC2 = jωµ0H
+
θ0

sgrh
2
ζ1 +

2
R1

hζ1 sin θ

(
jωµ0H

+
θ0

s + k2E+
r0

hζ1

)

+
2

R1
hζ1 cos θ

(
− jωµ0H

+
r0

s + k2E+
θ0

hζ1

)
+ k2h3

ζ1E
+
r0

gr, (21a)
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BC3 = BC4 = −jωεE+
θ0

sgrh
2
ζ1 +

2
R1

hζ1 sin θ

(
k2hζ1H

+
r0
− jωεsE+

θ0

)

+
2

R1
hζ1 cos θ

(
k2hζ1H

+
θ0

+ jωεsE+
r0

)
+ k2h3

ζ1H
+
r0

gr. (21b)

The elements of the boundary conditions (e.g., (̂BC2)1) at ζ = 0+

on the right side in (18b) are given, where

(BC2)1 =

[(
s2 + k2h2

ζ1

)(
sEζ0 + E′

ζ0

)]
+ jωµ0Hθ0sgrh

2
ζ1

+
2

R1
hζ1 sin θ

(
jωµ0Hθ0s + k2Er0hζ1

)

+
2

R1
hζ1 cos θ

(
− jωµ0Hr0s + k2Eθ0hζ1

)
+ k2h3

ζ1Er0gr.

The boundary conditions at ζ1 = 0+ for TEM00 mode in
excitation become to:

(̂BC2)1 = 2π

{ ∫ a

0
Q(r)(k(r) + js)J1m(P1mr/a)rdr

}
δ1n

+
4jsπ

R2
1

{ ∫ a

0
Q(r)k(r)J1m(P1mr/a)r2dr

}
δ1n

+
9π

2R2
1

{ ∫ a

0
Q(r)k2(r)J1m(P1mr/a)r3dr

}
δ1n

+
3jsπ

2R2
1

{ ∫ a

0
Q(r)k(r)J1m(P1mr/a)r3dr

}
δ1n

+
8π

R2
1

{∫ a

0
Q(r)k2(r)J1m(P1mr/a)r2dr

}
δ1n (22)

where :
Q(r) =

E0

nc(r) + 1
gr exp (−(r/wo)

2).

Similarly, the remaining elements of the boundary conditions at ζ = 0+

are obtained. The matrix system of Equations (18a)–(18d) is solved
to obtain the coefficients (A1, B1, etc).
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Figure 7. Propagating Gaussian beam.

According to the Gaussian beams [18] the parameter w0 is the
minimum spot-size at the plane z = 0 (see Fig. 7), and the electric
field at the plane z = 0 is given by E = E0 exp[−(r/wo)

2]. The modes
excited at ζ = 0 in the waveguide by the conventional CO2 laser IR
radiation (λ = 10.6µm) are closer to the TEM polarization of the laser
radiation. The TEM00 mode is the fundamental and most important
mode. This means that a cross-section of the beam has a Gaussian
intensity distribution. The relation between the electric and magnetic
fields [18] is given by E/H =

√
µ0/ε0 ≡ η0, where η0 is the intrinsic

wave impedance. Suppose that the electric field is parallel to the y-
axis. Thus the components of Ey and Hx are written by the fields
Ey = E0 exp[−(r/wo)

2] and Hx = −(E0/η0) exp[−(r/wo)
2].

After a Gaussian beam passes through a lens and before it enters
to the waveguide, the waist cross-sectional diameter (2w0) can then
be approximately calculated for a parallel incident beam by means
of w0 = λ/(πθ) ' (fλ)/(πw). This approximation is justified if the
parameter w0 is much larger than the wavelength λ. The parameter
of the waist cross-sectional diameter (2w0) is taken into account in
our method, instead of the focal length of the lens (f). The initial
fields at ζ = 0+ are formulated by using the Fresnel coefficients of the
transmitted fields [19] as follows

E+
r0

(
r, θ, ζ = 0+

)
= TE(r)

(
E0e

−(r/wo)2 sin θ
)

, (23a)

E+
θ0

(
r, θ, ζ = 0+

)
= TE(r)

(
E0e

−(r/wo)2 cos θ
)

, (23b)

H+
r0

(
r, θ, ζ = 0+

)
= −TH(r)

(
(E0/η0) e−(r/wo)2 cos θ

)
, (23c)

H+
θ0

(
r, θ, ζ = 0+

)
= TH(r)

(
(E0/η0) e−(r/wo)2 sin θ

)
, (23d)

where E+
ζ0

(r) = H+
ζ0

= 0, TE(r) = 2/[n(r)+1], TH(r) = 2n(r)/[n(r)+
1], and n(r) = (εr(r))1/2. The index of refraction is denoted by n(r).



364 Menachem

3.2. The Transverse Components of the Fields of the First
Section of the Toroidal Waveguide, at ζ = ζ1

The transverse components of the fields are finally expressed in a form
of transfer matrix functions for the first bending of the flexible hollow
waveguide as follows:

Er1(r, θ, ζ1) = E+
r0(r)e

−jkhζ1
ζ − jωµ0

R1
hζ1 cos2 θ

∑

m′
Cm′

S1 (ζ1)J1(ψ)

−jωµ0

R1
hζ1 sin θcos θ

∑

m′
Dm′

S1(ζ1)J1(ψ)+
jωµ0

r
h2

ζ1 sin θ
∑

m′
Cm′

S1 (ζ1)J1(ψ)

−jωµ0

r
h2

ζ1 cos θ
∑

m′
Dm′

S1(ζ1)J1(ψ)+
1

R1
sin θ cos θ

∑

m′
Am′

S2(ζ1)J1(ξ)

+
1

R1
sin2 θ

∑

m′
Bm′

S2 (ζ1)J1(ξ) + hζ1 cos θ
∑

m′
Am′

S2(ζ1)
dJ1

dr
(ξ)

+hζ sin θ
∑

m′
Bm′

S2 (ζ1)
dJ1

dr
(ξ), (24)

where hζ1 = 1 + (r/R1) sin θ, R is the radius of the cylinder, δp is the
the step’s angle, ψ = [P ′

1m′(r/a)] and ξ = [P1m′(r/a)]. The coefficients
are given in the above equation, for instance

Am′
S1(ζ1) = L−1

{
A1m′(s)

s2 + k2(r)h2
ζ1

}
, (25a)

Am′
S2(ζ1) = L−1

{
sA1m′(s)

s2 + k2(r)h2
ζ1

}
, (25b)

where
m′ = 1, . . . N, 3 ≤ N ≤ 50. (25c)

Similarly, the other transverse components of the output fields are
obtained. The first fifty roots (zeros) of the equations J1(x) = 0 and
dJ1(x)/dx = 0 may be found in tables [20, 21].

3.3. The Elements of the Boundary Conditions’s Vectors in
the Entrance of the Second Section at ζ = ζ1

The elements of the boundary conditions’s vectors (20a)–(20d) in the
case of the TEM00 mode in excitation for the second section of the
toroidal waveguide with two bendings are obtained from the algebraic
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system of Equations (18a)–(18d) for n = 1, as follows:

BC1 = BC2 = jωµ0Hθ(ζ = ζ1)sgrh
2
ζ2

+
2

R2
sin θhζ2

(
jωµ0Hθ(ζ = ζ1)s + k2Er(ζ = ζ1)hζ2

)

+
2

R2
cos θhζ2

(
− jωµ0Hr(ζ = ζ1)s + k2Eθ(ζ = ζ1)hζ2

)

+k2h3
ζ2Er(ζ = ζ1)gr, (26a)

BC3 = BC4 = −jωεEθ(ζ = ζ1)sgrh
2
ζ2

+
2

R2
sin θhζ2

(
k2hζ2Hr(ζ = ζ1)− jωεsEθ(ζ = ζ1)

)

+
2

R2
cos θhζ2

(
k2hζ2Hθ(ζ = ζ1) + jωεsEr(ζ = ζ1)

)

+k2h3
ζ2Hr(ζ = ζ1)gr. (26b)

Equations (26a)–(26b) are different from Equations (21a)–(21b)
by the initial fields. The initial field, for instance, at the entrance of
the first section at ζ = 0+ is denoted as E+

r0
according to (23a), but the

initial field of the second section in the entrance, at ζ = ζ1, is denoted
as Er(ζ = ζ1), according to (24). Similarly, the remaining initial fields
are obtained.

The elements of the boundary conditions’s vectors (Equa-
tions (26a)–(26b)) for the second section of the flexible hollow waveg-
uide with two bendings become

BC1=BC2=

[
k2h3

ζ2gr+
2

R2
sin θh2

ζ2k
2

][
− jωµ0

R1
hζ1 cos2 θ

∑

m′
Cm′

S1 (ζ1)J1(ψ)− jωµ0

R1
hζ1 sin θ cos θ

∑

m′
Dm′

S1(ζ1)J1(ψ)

−jωµ0

r
h2

ζ1 cos θ
∑

m′
Dm′

S1(ζ1)J1(ψ)

+
1

R1
sin θ cos θ

∑

m′
Am′

S2(ζ1)J1(ξ) + hζ1 cos θ
∑

m′
Am′

S2(ζ1)
dJ1

dr
(ξ)

]
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+

[
2

R2
cos θh2

ζ2k
2

][
jωµ0

R1
hζ1 sin θ cos θ

∑

m′
Cm′

S1 (ζ1)J1(ψ)

+
jωµ0

R1
hζ1 sin2 θ

∑

m′
Dm′

S1(ζ1)J1(ψ) + jωµ0h
2
ζ1 sin θ

∑

m′
Dm′

S1(ζ1)
dJ1

dr
(ψ)

+
cos2θ
R1

∑

m′
Am′

S2(ζ1)J1(ξ)− 1
r
hζ1 sin θ

∑

m′
Am′

S2(ζ1)J1(ξ)

]

−
[

2
R2

cos θhζ2jωµ0s

][
jωε

R1
hζ1 cos2 θ

∑

m′
AS1

m′
(ζ1)J1(ξ)

−jωε

r
h2

ζ1 sin θ
∑

m′
AS1

m′
(ζ1)J1(ξ) +

1
R1

sin2 θ
∑

m′
Dm′

S2(ζ1)J1(ψ)

+hζ1 sin θ
∑

m′
Dm′

S2(ζ1)
dJ1

dr
(ψ)

]
+

[
jωµ0sgrh

2
ζ2 +

2
R2

sin θhζ2jωµ0s

]

[
−jωε

R1
hζ1sin θcosθ

∑

m′
AS1

m′
(ζ1)J1(ξ)−jωεh2

ζ1cos θ
∑

m′
Am′

S1(ζ1)
dJ1

dr
(ξ)

+
sin θ cos θ

R1

∑

m′
Dm′

S2(ζ1)J1(ψ) +
1
r
hζ1 cos θ

∑

m′
Dm′

S2(ζ1)J1(ψ)

]
, (27a)

BC3=BC4=

[
2

R2
cos θhζ2jωεs

][
−jωµ0

R1
hζ1 sin θ cos θ

∑

m′
Dm′

S1(ζ1)J1(ψ)

−jωµ0

r
h2

ζ1 cos θ
∑

m′
Dm′

S1(ζ1)J1(ψ) +
1

R1
sin θ cos θ

∑

m′
Am′

S2(ζ1)J1(ξ)

+hζ1 cos θ
∑

m′
Am′

S2(ζ1)
dJ1

dr
(ξ)

]
−

[
jωεsgrh

2
ζ2 +

2
R2

sin θhζ2jωεs

]

[
jωµ0

R1
hζ1 sin2 θ

∑

m′
Dm′

S1(ζ1)J1(ψ) + jωµ0h
2
ζ1 sin θ

∑

m′
Dm′

S1(ζ1)
dJ1

dr
(ξ)

+
cos2θ
R1

∑

m′
Am′

S2(ζ1)J1(ξ)− 1
r
hζ1 sin θ

∑

m′
Am′

S2(ζ1)J1(ξ)

]
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+

[
k2h3

ζ2gr +
2

R2
sin θh2

ζ2k
2

][
jωε

R1
hζ1 cos2 θ

∑

m′
AS1

m′
(ζ1)J1(ξ)

−jωε

r
h2

ζ1 sin θ
∑

m′
AS1

m′
(ζ1)J1(ξ) +

1
R1

sin2 θ
∑

m′
Dm′

S2(ζ1)J1(ψ)

+hζ1 sin θ
∑

m′
Dm′

S2(ζ1)
dJ1

dr
(ψ)

]
+

[
2

R2
cos θh2

ζ2k
2

][
− jωε

R1
hζ1 sin θ cos θ

∑

m′
AS1

m′
(ζ1)J1(ξ)− jωεh2

ζ1 cos θ
∑

m′
Am′

S1(ζ1)
dJ1

dr
(ξ)

+
sin θ cos θ

R1

∑

m′
Dm′

S2(ζ1)J1(ψ) +
1
r
hζ1 cos θ

∑

m′
Dm′

S2(ζ1)J1(ψ)

]
. (27b)

These expressions (27a), (27b) are dependent on the radius of
curvature of the first section (R1) and the second section (R2) of the
flexible hollow waveguide with two bendings (R1 6= R2). Actually, the
expressions (27a), (27b) of the elements of the boundary conditions’s
vectors of the second section of the flexible waveguide with two
bendings consist of all the information at the output fields of the first
section (the Bessel-equations, the dielectric profile g(r), the transverse
derivative gr(r), the parameters of the cross-section (r, θ), and the
propagation constants βnm and β′nm of the TM and TE modes of the
hollow waveguide, respectively).

3.4. The Transverse Fields at ζ = ζ1 + ζ2

The expression [1/(s2 + k2h2
ζ1

)](sE+
r0
− jωµ0H

+
θ0

hζ1) in Equation (17a)
for the first section of the flexible hollow waveguide with two bendings
depends on the initial fields E+

r0
and H+

θ0
(23a)–(23d). In the same

principle we have the expression [1/(s2 + k2h2
ζ2

)](sEr(ζ = ζ1) −
jωµ0Hθ(ζ = ζ1)hζ2) for the second section of the flexible hollow
waveguide with two bendings, that depends on the output fields
Er(ζ = ζ1) and Hθ(ζ = ζ1) (e.g., (24)) at ζ = ζ1 of the first section.
The inverse Laplace transform of this expression for the second section
of the flexible hollow waveguide with two bendings is calculated by

L−1

[
1

s2 + k2h2
ζ2

(
sEr(ζ = ζ1)− jωµ0Hθ(ζ = ζ1)hζ2

)]
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= L−1

[
s

s2 + k2h2
ζ2

(
E+

r0
e−jkhζ1

ζ1 − jωµ0

R1
hζ1 cos2 θ

∑

m′
Cm′

S1 (ζ1)J1(ψ)

−jωµ0

R1
hζ1 sin θ cos θ

∑

m′
Dm′

S1(ζ1)J1(ψ)+
jωµ0

r
h2

ζ1 sin θ
∑

m′
Cm′

S1 (ζ1)J1(ψ)

−jωµ0

r
h2

ζ1 cos θ
∑

m′
Dm′

S1(ζ1)J1(ψ) +
1

R1
sin θ cos θ

∑

m′
Am′

S2(ζ1)J1(ξ)

+
1

R1
sin2 θ

∑

m′
Bm′

S2 (ζ1)J1(ξ) + hζ1 cos θ
∑

m′
Am′

S2(ζ1)
dJ1

dr
(ξ)

+hζ1 sin θ
∑

m′
Bm′

S2 (ζ1)
dJ1

dr
(ξ)

)]
− L−1

[
1

s2 + k2h2
ζ2

(jωµ0hζ2)

(
H+

θ0
e−jkhζ1

ζ1 − jωε

R1
hζ1 sin θ cos θ

∑

m′
Am′

S1(ζ1)J1(ξ)

−jωε

R1
hζ1 sin2 θ

∑

m′
Bm′

S1 (ζ1)J1(ξ)− jωεh2
ζ1 cos θ

∑

m′
Am′

S1(ζ1)
dJ1

dr
(ξ)

−jωεh2
ζ1 sin θ

∑

m′
Bm′

S1 (ζ1)
dJ1

dr
(ξ) +

1
R1

cos2 θ
∑

m′
Cm′

S2 (ζ1)J1(ψ)

+
1

R1
sin θ cos θ

∑

m′
Dm′

S2(ζ1)J1(ψ)− 1
r
hζ1 sin θ

∑

m′
Cm′

S2 (ζ1)J1(ψ)

+
1
r
hζ1 cos θ

∑

m′
Dm′

S2(ζ1)J1(ψ)

)]
. (28)

Note that

L−1

[
s

s2+k2h2
ζ2

(
E+

r0
e−jkhζ1

ζ1

)]
−L−1

[
1

s2+k2h2
ζ2

(jωµ0hζ2)

(
H+

θ0
e−jkhζ1

ζ1

)]

= L−1

[
s

s2 + k2h2
ζ2

(
2E0

n(r) + 1
e−(r/wo)2 sin θe−jkhζ1

ζ1

)]

−L−1

[
1

s2 + k2h2
ζ2

(jωµ0hζ1)

(
2E0

n(r) + 1
η

η0
e−(r/wo)2 sin θe−jkhζ1

ζ1

)]

= cos(khζ2ζ2)

(
E+

r0
e−jkhζ1

)
− sin(khζ2ζ2)

khζ2

(
jhζ2kE+

r0
e−jkhζ1

)

= E+
r0

e−jk(r)(hζ1
ζ1+hζ2

ζ2), (29)
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where Er(ζ = ζ1) and Hθ(ζ = ζ1) are the output fields of the first
section at ζ = ζ1 and the beginning of the second section of the flexible
hollow waveguide with two bendings (Fig. 1). Similarly, the other
expressions for the second section of the flexible hollow waveguide with
two bendings are given, by using the inverse Laplace transform.

The values of the input fields of the second section of the
flexible hollow waveguide with two bendings are functions of the
parameters of the first section (R1, ζ1, and hζ1) and the second
section (R2, ζ2, and hζ2) as shown in Fig. 1. The expressions
are functions of the parameters of the cross-section (r, θ) of the
curved hollow waveguide, and the sum of the modes and the old
coefficients of the first section of the curved waveguide with two
bendings (

∑
m′ Am′

S1(ζ1)J1(ψ)J1(ξ) sin θ cos θ), where ψ = [P ′
1m′(r/a)],

ξ = [P1m′(r/a)], Am′
S1(ζ1) = L−1[A1m′(s)/(s2 + k2(r)h2

ζ1
)], Am′

S2(ζ1) =
L−1[sA1m′(s)/(s2 +k2(r)h2

ζ1
)], and m′ = 1, . . . N , where 3 ≤ N ≤ 50 .

The output transverse components of the fields are finally
expressed in a form of transfer matrix functions as follows

Er(r, θ, ζ = ζ1 + ζ2) = E+
r0

e−jk(r)(hζ1
ζ1+hζ2

ζ2) + cos(khζ2ζ2)(
− jωµ0

R1
hζ1cos2 θ

∑

m′
Cm′

S1 (ζ1)J1(ψ)− jωµ0

R1
hζ1sin θcos θ

∑

m′
Dm′

S1(ζ1)J1(ψ)

+
jωµ0

r
h2

ζ1 sin θ
∑

m′
Cm′

S1 (ζ1)J1(ψ)− jωµ0

r
h2

ζ1 cos θ
∑

m′
Dm′

S1(ζ1)J1(ψ)

+
1

R1
sin θ cos θ

∑

m′
Am′

S2(ζ1)J1(ξ) +
1

R1
sin2 θ

∑

m′
Bm′

S2 (ζ1)J1(ξ)

+hζ1 cos θ
∑

m′
Am′

S2

dJ1

dr
(ξ) + hζ1 sin θ

∑

m′
Bm′

S2

dJ1

dr
(ξ)

)

−sin(khζ2ζ2)
khζ2

(jωµ0hζ2)

(
− jωε

R1
hζ1 sin θ cos θ

∑

m′
Am′

S1(ζ1)J1(ξ)

−jωε

R1
hζ1 sin2 θ

∑

m′
Bm′

S1 (ζ1)J1(ξ)− jωεh2
ζ1 cos θ

∑

m′
Am′

S1

dJ1

dr
(ξ)

−jωεh2
ζ1 sin θ

∑

m′
Bm′

S1

dJ1

dr
(ξ) +

cos2 θ

R1

∑

m′
Cm′

S2 (ζ1)J1(ψ)
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+
1

R1
sin θ cos θ

∑

m′
Dm′

S2(ζ1)J1(ψ)− 1
r
hζ1 sin θ

∑

m′
Cm′

S2 (ζ1)J1(ψ)

+
1
r
hζ1 cos θ

∑

m′
Dm′

S2(ζ1)J1(ψ)

)
− jωµ0

R2
hζ2 cos2 θ

∑

m′
C(2)m

′

S1(ζ2)J1(ψ)

−jωµ0

R2
hζ2 sin θ cos θ

∑

m′
D(2)m

′

S1(ζ2)J1(ψ)

+
jωµ0

r
h2

ζ2 sin θ
∑

m′
C(2)m

′

S1(ζ2)J1(ψ)− jωµ0

r
h2

ζ2 cos θ
∑

m′
D(2)m

′

S1(ζ2)J1(ψ)

+
1

R2
sin θ cos θ

∑

m′
A(2)m

′

S2(ζ2)J1(ξ) +
1

R2
sin2 θ

∑

m′
B(2)m

′

S2(ζ2)J1(ξ)

+hζ2 cos θ
∑

m′
A(2)m

′

S2(ζ2)
dJ1

dr
(ξ) + hζ2 sin θ

∑

m′
B(2)m

′

S2(ζ2)
dJ1

dr
(ξ), (30)

where ψ = [P ′
1m′(r/a)] and ξ = [P1m′(r/a)].

The new coefficients are given in the above equation, for instance

A(2)m
′

S1(ζ2) = L−1

[
A(2)

1m′(s)
s2 + k2(r)h2

ζ2

]
, (31a)

A(2)m
′

S2(ζ2) = L−1

[
sA(2)

1m′(s)
s2 + k2(r)h2

ζ2

]
, (31b)

where
m′ = 1, . . . N, 3 ≤ N ≤ 50. (31c)

Similarly, the other output transverse components of the fields are
obtained, in a form of transfer matrix functions (e.g., Equation (30)).
The above general solutions of the output transverse components of the
fields (e.g., Equation (30)) at ζ = ζ1 + ζ2 are dependent on the initial
fields at ζ = ζ1 along the total length ζ = ζ1 +ζ2, where ζ1 = R1φ1 and
ζ2 = R2φ2. Note that the main expression of the solution of the output
transverse components of the fields (e.g., Equation (24)) is proportional
to E+

r0
exp[−jk(r)hζ1ζ1]. In the same principle, the main expression for

the second section of the flexible hollow waveguide with two bendings
(e.g., Equation (30)) is proportional to E+

r0
exp[−jk(r)(hζ1ζ1 +hζ2ζ2)].

These above solutions (e.g., (30)) consist of the sum of the
principle expression and other expressions. The principle expression
is multiplication of the initial field at ζ = 0+ (23a) with the exponent
[exp[−jk(r)(hζ1ζ1 + hζ2ζ2)]]. All the above derivation is introduced in
the case of the flexible hollow waveguide with two bendings in the same
direction.
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The inverse Laplace transform is performed in this study by a
direct numerical integration in the Laplace transform domain by the
residue method, as follows

f(ζ)=L−1
[
f̃(s)

]
=

1
2πj

∫ σ+j∞

σ−j∞
f̃(s)esζds=

∑
n

Res
[
esζ f̃(s);Sn

]
. (32)

By using the inverse Laplace transform (32) we can compute
the output transverse components in the real plane and the output
power density at each point at ζ. The integration path in the right
side of the Laplace transform domain includes all the singularities
according to Equation (32). All the points Sn are the poles of f̃(s)
and Res[esζ f̃(s);Sn] represent the residue of the function in a specific
pole. According to the residue method, two dominant poles for the
toroidal waveguide are given by

s = ±j k(r)hζ = ±j k(r)

(
1 +

r

R
sin θ

)
.

Finally, knowing all the transverse components, the ζ component
of the average-power density Poynting vector is given by

Sav =
1
2
Re

{
ErHθ

∗ −EθHr
∗
}

. (33)

where the asterisk indicates the complex conjugate.
The total average-power transmitted along the guide in the ζ

direction can now be obtained by the integral of Equation (33) over
the waveguide cross section. Thus, the output power transmission is
given by

T =
1
2

∫ 2π

0

∫ a

0
Re

{
ErHθ

∗ − EθHr
∗
}

rdrdθ. (34)

Lossy Medium Case
In a linear lossy medium, the solution is obtained by replacing

the permittivity ε by εc = ε − j(σ/ω) in the preceding mathematical
expressions, where εc is the complex dielectric constant and σ is the
conductivity of the medium. The coefficients are obtained directly from
the algebraic Equations (18a)–(18d) and are expressed as functions
in the Laplace transform domain. To satisfy the metallic boundary
conditions of a circular cross-section we find the new roots P

(new)
1m and

P
′(new)
1m of the equations J1(z) = 0 and dJ1(z)/dz = 0, respectively,

where z is complex. Thus, from the requirement that the coefficients
vanish, the new roots P

(new)
1m and P

′(new)
1m are calculated by developing
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into the Taylor series, in the first order at 1/σ. The new roots in the
case of a lossy medium are complex. The complex Bessel functions are
computed by using NAG subroutine [22]. The explanation is given in
detail in Ref. [14].

Several examples computed on a Unix system are presented in
the next sections, in order to demonstrate the results of this proposed
method for a toroidal waveguide and for small values of step angles.
We suppose that the transmitted fields of the initial fields (TEM00

mode in excitation) are formulated by using the Fresnel coefficients
(23a)–(23d).

4. NUMERICAL RESULTS

This section presents several examples that demonstrate features of
the proposed mode model derived in the previous section. The cross-
section (Fig. 6) of the curved waveguide is made of a tube of various
types of material, a metallic layer, and a dielectric layer upon it.
The next examples represent the case of the hollow waveguide with
a metallic layer (Ag) coated by a thin dielectric layer (AgI). For silver
having a conductivity of 6.14× 107 (ohm ·m)−1 and the skin depth at
10.6µm is 1.207× 10−8 m.

Three test-cases are demonstrated for small values of the step’s
angle (δp). In these cases, δp ≥ 2(a + δm)/(2πR), according to the
condition (2). Note that for small values of the step’s angle, the
helical waveguide becomes approximately a toroidal waveguide (see
Fig. 2), where the radius of the curvature of the helix (ρ) can then be
approximately by the radius of the cylinder (R).
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Figure 8. The output power density (a = 1 mm, d(AgI) = 0.75µm,
λ = 10.6µm, w0 = 0.3mm, n(0) = 1, n(AgI) = 2.2, n(Ag) = 13.5−j75.3,
and the length of the straight waveguide is 1m), for R → ∞ : (a)
Theoretical result; (b) experimental result.



Progress In Electromagnetics Research B, Vol. 21, 2010 373

-0.6
-0.4

-0.2
 0

 0.2
 0.4

x [mm] 
-0.4

-0.2
 0

 0.2
 0.4

 0.6

y [mm] 

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

|S av | [W/m 2]

(a) (b)

Figure 9. Solution of the output power density (a = 0.5mm,
d(AgI) = 0.75µm, λ = 10.6µm, w0 = 0.2mm, n(0) = 1, n(AgI) = 2.2,
n(Ag) = 13.5−j75.3, R = 0.7 m, φ = π/2, and ζ = 1 m): (a) Theoretical
result; (b) experimental result.

The first test-case is demonstrated for the straight waveguide
(R → ∞). The results of the output transverse components of the
fields and the output power density (|Sav|) (e.g., Fig. 8(a)) show the
same behavior of the solutions as shown in the results of Ref. [14] for the
TEM00 mode in excitation. The result of the output power density
(Fig. 8(a)) is compared also to the result of published experimental
data [23] (see also in Fig. 8(b)). This comparison shows good
agreement (a Gaussian shape) as expected, except for the secondary
small propagation mode. The experimental result (Fig. 8(b)) is
influenced by the additional parameters (e.g., the roughness of the
internal wall of the waveguide) which are not taken into account
theoretically. In this example, the length of the straight waveguide
is 1 m, the diameter (2a) of the waveguide is 2 mm, the thickness of
the dielectric layer [d(AgI)] is 0.75µm, and the minimum spot-size (w0)
is 0.3 mm. The refractive indices of the air, dielectric layer (AgI) and
metallic layer (Ag) are n(0) = 1, n(AgI) = 2.2, and n(Ag) = 13.5−j75.3,
respectively. The value of the refractive index of the material at a
wavelength of λ = 10.6µm is taken from the table compiled by Miyagi,
et al. in Ref. [5].

The second test-case is demonstrated in Fig. 9(a) for the toroidal
dielectric waveguide. Fig. 9(b) shows the experimental result that
was received in the laboratory of Croitoru at Tel-Aviv University.
This experimental result was obtained from the measurements of the
transmitted CO2 laser radiation (λ = 10.6µm) propagation through
a hollow tube covered on the bore wall with silver and silver-iodide
layers (Fig. 6), where the initial diameter (ID) is 1 mm (namely, small
bore size).
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The output modal profile is greatly affected by the bending, and
the theoretical and experimental results (Figs. 9(a)–9(b)) show that
in addition to the main propagation mode, several other secondary
modes and asymmetric output shape appear. The amplitude of the
output power density (|Sav|) is small as the bending radius (R) is
small, and the shape is far from a Gaussian shape. This result agrees
with the experimental results, but not for all propagation modes.
The experimental result (Fig. 9(b)) is influenced by the bending and
additional parameters (e.g., the roughness of the internal wall of the
waveguide) which are not taken into account theoretically. In this
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Figure 10. The theoretical mode-model’s result and the experimental
result [10] where the hollow metallic waveguide (Ag) is covered inside
the walls with a AgI film. The output power transmission as a
function of 1/R for δp = 0, where ζ = 0.55m, where a = 1.2mm,
d(AgI) = 0.75µm, w0 = 0.1mm, λ = 10.6µm, n(0) = 1, n(AgI) = 2.2,
and n(Ag) = 10.
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Figure 11. The output power transmission as a function of the
radius of curvature for ζ1 = 1 m in two cases of the spot size: (a)
w0 = 0.06 mm, (b) w0 = 0.15mm. The optimum result is obtained by
the first solution of the first section of the flexible hollow waveguide.
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example, a = 0.5mm, R = 0.7m, φ=π/2, and ζ = 1 m. The thickness
of the dielectric layer [d(AgI)] is 0.75µm (Fig. 6), and the minimum
spot size (w0) is 0.2 mm. The values of the refractive indices of
the air, dielectric layer (AgI) and metallic layer (Ag) are n(0) = 1,
n(AgI) = 2.2, and n(Ag) = 13.5−j75.3, respectively. In both theoretical
and experimental results (Figs. 9(a)–9(b)) the shapes of the output
power density for the curved waveguide are not symmetric.

The third test-case is demonstrated in Fig. 10 for the toroidal
dielectric waveguide. The theoretical mode-model’s result and the
experimental result [10] are demonstrated in normalized units where
the length of the curved waveguide (ζ) is 0.55 m, the diameter (2a) of
the waveguide is 2.4mm, and the minimum spot size (w0) is 0.1mm.

This comparison (Fig. 10) between the theoretical mode-model
and the experimental data [10] indicates a good agreement. For all
the examples, our theoretical mode-model takes into account only
the dielectric losses and the bending losses, in conjunction with
the problem of the propagation through a curved waveguide. The
experimental result [10] takes into account additional parameters (e.g.,
the roughness of the internal wall of the waveguide) which are not taken
into account theoretically. In spite of the differences, the comparison
shows a good agreement. For small values of the bending (1/R) in the
case of small step’s angle, the output power transmission is large and
decreases with increasing the bending.

The next example represents the effect of the radius of the bending
on the output power transmission for the first section of the toroidal
waveguide. The output power transmission as a function of the radius
of curvature is shown in Fig. 11 where the length of the first section
of the flexible curved waveguide is 1 m, and where the values of the
spot-size (w0) are 0.06 mm and 0.15 mm. The diameter (2a) of the
waveguide is 2 mm, and the value of the refractive index of the material
at a wavelength of λ = 10.6µm. The output power transmission
(T ) is shown in Fig. 11 as an example for practical cases, where
75% ≤ T ≤ 100%. The optimum result is obtain where the spot-size
(w0) is 0.06mm.

Figures 12(a)–12(e) show the results of the output transverse
components and the output power density of the field for R1 = 1m
and for R2 = 0.9m, where a = 1 mm, d(AgI) = 0.75 µm, λ = 10.6µm,
w0 = 0.06mm, n(0) = 1, n(AgI) = 2.2, and n(Ag) = 13.5 − j75.3. By
decreasing only the parameters of the radius of curvature to R1 = 0.7 m
and for R2 = 0.6m, the results of the output transverse components
and the output power density of the field are changed, as shown in
Figs. 13(a)–13(e). The amplitude of the output power density in
Fig. 13(e) is smaller than the amplitude of the output power density
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in Fig. 12(e). The amplitude is small as the bending radius is small,
and the shape is far from a Gaussian. The amplitude in Fig. 13(e) is
smaller as regart to the case of straight waveguide, but the amplitude in
Fig. 12(e) is closer to the result in the case of the straight waveguide.
The output results are greatly affected by the bending, and by the
spot size (w0). This mode model will be a useful tool in order to
determine the optimal conditions for practical applications (output
fields, output power density and output power transmission as function
of the bending).
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Figure 12. (a)–(d) The solution of the output transverse components,
and (e) the output power density, in the case of the flexible toroidal
waveguide with the two bendings, where R1 = 1m and R2 = 0.9 m,
a = 1mm, d(AgI) = 0.75µm, λ = 10.6µm, w0 = 0.06mm, n(0) = 1,
n(AgI) = 2.2, and n(Ag) = 13.5− j75.3.



Progress In Electromagnetics Research B, Vol. 21, 2010 377

-1
-0.5

 0
 0.5

x [mm] 

-1
-0.5

 0
 0.5

 1

y [mm] 

 
0

 100
 200
 300
 400
 500
 600
 700
 800

|E r | [V/m] 

-1

-0.5
 0

 0.5
x [mm] 

-1
-0.5

 0
 0.5

 1

y [mm] 

 0
 100
 200
 300
 400
 500
 600
 700

|E θ | [V/m] 

(a) (b)

-1
-0.5

 0

 0.5
x [mm] 

-1
-0.5

 0
 0.5

 1

y [mm] 

 
0

 0.2
 0.4
 0.6
 0.8

1
 1.2
 1.4
 1.6
 1.8

|H r | [A/m] 

-1
-0.5

 0
 0.5

x [mm] 

-1
-0.5

 0
 0.5

 1

y [mm] 

 
0

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

2
|Hθ | [A/m] 

(c) (d)

-1
-0.5

 0
 0.5

x [mm] 

-1
-0.5

 0
 0.5

 1

y [mm] 

 
0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

|S av | [W/m 2 ]

(e)

Figure 13. (a)–(d) The solution of the output transverse components,
and (e) the output power density, in the case of the flexible toroidal
waveguide with the two bendings, where R1 = 0.7m and R2 = 0.6 m,
a = 1mm, d(AgI) = 0.75µm, λ = 10.6µm, w0 = 0.06mm, n(0) = 1,
n(AgI) = 2.2, and n(Ag) = 13.5− j75.3.

5. CONCLUSION

The main objective was to generalize the method [14] to provide a
numerical tool for the calculation of the output transverse fields and
power density in the case of the flexible hollow waveguide that consists
of two bendings in the same direction, as shown in Fig. 1. The main
steps of the method for the two bendings are given in the derivation, in
detail, for small values of step angles. Note that for small values of the
step’s angle, the helical waveguide becomes approximately a toroidal
waveguide (see Fig. 2), where the radius of the curvature of the helix
(ρ) can then be approximately by the radius of the cylinder (R).
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Three test-cases were demonstrated for small values of the step’s
angle. The first test-case was demonstrated for the straight waveguide
(R → ∞). The results of the output transverse components of
the fields and the output power density (|Sav|) (e.g., Fig. 8(a))
show the same behavior of the solutions as shown in the results
of Ref. [14] for the TEM00 mode in excitation. The result of the
output power density (Fig. 8(a)) was compared also to the result
of published experimental data [23] (see also in Fig. 8(b)). This
comparison shows good agreement (a Gaussian shape) as expected,
except for the secondary small propagation mode. The experimental
result (Fig. 8(b)) is influenced by the additional parameters (e.g., the
roughness of the internal wall of the waveguide) which are not taken
into account theoretically.

The second test-case was demonstrated in Fig. 9(a) for the toroidal
dielectric waveguide, and Fig. 9(b) shows the experimental result.
The output modal profile is greatly affected by the bending, and
the theoretical and experimental results (Figs. 9(a)–9(b)) show that
in addition to the main propagation mode, several other secondary
modes and asymmetric output shape appear. The amplitude of the
output power density (|Sav|) is small as the bending radius (R) is
small, and the shape is far from a Gaussian shape. This result agrees
with the experimental results, but not for all propagation modes.
The experimental result (Fig. 9(b)) is influenced by the bending and
additional parameters (e.g., the roughness of the internal wall of the
waveguide) which are not taken into account theoretically. In both
theoretical and experimental results (Figs. 9(a)–9(b)) the shapes of
the output power density for the curved waveguide are not symmetric.

The third test-case was demonstrated in Fig. 10 for the toroidal
dielectric waveguide. This comparison (Fig. 10) between the
theoretical mode-model and the experimental data [10] indicates a
good agreement. For all the examples, our theoretical mode-model
takes into account only the dielectric losses and the bending losses,
in conjunction with the problem of the propagation through a curved
waveguide. The experimental result [10] takes into account additional
parameters (e.g., the roughness of the internal wall of the waveguide)
which are not taken into account theoretically. In spite of the
differences, the comparison shows a good agreement. For small values
of the bending (1/R) in the case of small step’s angle, the output power
transmission is large and decreases with increasing the bending.

The output power transmission as a function of the radius of
curvature is shown in Fig. 11 where the length of the first section
of the flexible curved waveguide is 1 m, and where the values of the
spot-size (w0) are 0.06 mm and 0.15 mm. The optimum result is obtain
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where the spot-size (w0) is 0.06 mm. Figs. 12(a)–12(e) show the results
of the output transverse components and the output power density
of the field where R1 = 1 m and for R2 = 0.9m, where a = 1 mm,
d(AgI) = 0.75 µm, λ = 10.6µm, w0 = 0.06mm, n(0) = 1, n(AgI) = 2.2,
and n(Ag) = 13.5 − j75.3. By decreasing only the parameters of the
radius of curvature to R1 = 0.7m and for R2 = 0.6m, the results of
the output transverse components and the output power density of the
field are changed, as shown in Figs. 13(a)–13(e).

The amplitude of the output power density in Fig. 13(e) is smaller
as regart to the amplitude of the output power density in Fig. 12(e).
The amplitude is small as the bending radius is small, and the shape
is far from a Gaussian. The amplitude in Fig. 13(e) is smaller
than that in the case of straight waveguide, but the amplitude in
Fig. 12(e) is closer to the result in the case of the straight waveguide.
The output results are greatly affected by the bending, and by the
spot size (w0). This mode model will be a useful tool in order to
determine the optimal conditions for practical applications (output
fields, output power density and output power transmission as function
of the bending), in all the cases of the hollow toroidal waveguides, e.g.,
in medical and industrial regimes.

APPENDIX A.

By using the Serret-Frenet relations for a spatial curve, we can find
the curvature (κ) and the torsion (τ) for each spatial curve that is
characterized by θ = const and r = const for each pair (r, θ) in the
range. This is achieved by using the helical transformation introduced
in Equations (3a)–(3c).

The location vector for the helical transformation of the
coordinates (1) is given by

r =

(
(R + r sin θ) cos(φc) + r sin(δp) cos θ sin(φc)

)
î

+

(
(R + r sin θ) sin(φc)− r sin(δp) cos θ cos(φc)

)
ĵ

+

(
r cos θ cos(δp) + Rφc tan(δp)

)
k̂, (A1)

where φc = (ζ/R) cos(δp), R is the radius of the cylinder, and (r, θ)
are the parameters of the cross-section.

The tangent vector is given by T = (dr/dζ) = (dr/dφc)/(dζ/dφc),
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The normal vector is given by N = (1/κ)(dT/dζ), and the binormal
vector is given by B = T×N.

The rate of the change of the tangent vector related to the
parameter ζ measures the curvature, and is given by dT/dζ =
(dT/dφc)/(dζ/dφc).

The curvature of the helix is constant for constant values of the
radius of the cylinder (R), the step’s angle (δp) and the parameters (r,
θ) of the cross-section. The curvature is given by the first Serret-Frenet
equation of a curve r(ζ) in the space according to dT/dζ = κN. Thus,
the curvature is

κ =
∣∣∣∣
dT
dζ

∣∣∣∣ =
1 + Ct

R(1 + tan2(δp) + Ct)
, (A2)

where

Ct =
r2

R2
sin2θ + 2

r

R
sin θ +

r2

R2
sin2(δp)cos2θ,

and the radius of curvature is given by ρ = 1/ κ.
The rate of the change of the binormal vector related to

the parameter ζ measures the torsion, and is given by dB/dζ =
(dB/dφc)/(dζ/dφc).

The torsion of the helix is constant for constant values of the radius
of the cylinder (R), the step’s angle (δp) and the parameters (r, θ) of
the cross-section. The torsion is given by the second Serret-Frenet
equation of a curve r(ζ) in the space according to dB/dζ = −τN.
Thus, the torsion is

τ =
∣∣∣∣
dB
dζ

∣∣∣∣ =
tan δp

R(1 + tan2(δp) + Ct)
, (A3)

where Ct is given above, and the radius of torsion is given by σ = 1/τ .

APPENDIX B.

The elements of the matrices (G(1)mm′
00 , etc.) are given by:

G
(1)mm′
00 =

∫ a

0
J1

(
P1m′

r

a

)
J1

(
P1m

r

a

)
rdrδ1n,

G
(1)mm′
01 =

∫ a

0
g(r)J1

(
P1m′

r

a

)
J1

(
P1m

r

a

)
rdrδ1n,

G
(1)mm′
02 =

∫ a

0
J1

(
P1m′

r

a

)
J1

(
P1m

r

a

)
r3drδ1n,
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G
(1)mm′
03 =

∫ a

0
g(r)J1

(
P1m′

r

a

)
J1

(
P1m

r

a

)
r3drδ1n,

G
(1)mm′
04 =

∫ a

0
g2(r)J1

(
P1m′

r

a

)
J1

(
P1m

r

a

)
r3drδ1n,

G
(1)mm′
05 =

∫ a

0
k2g(r)J1

(
P1m′

r

a

)
J1

(
P1m

r

a

)
rdrδ1n,

G
(1)mm′
08 =

∫ a

0
gr

(
P1m′

a

)
J1
′
(

P1m′
r

a

)
J1

(
P1m

r

a

)
rdr,

G
(1)mm′
09 =

∫ a

0
grJ1

(
P1m′

r

a

)
J1

(
P1m

r

a

)
r2drδ1n,

G
(1)mm′
10 =

∫ a

0
J1
′
(

P1m′r

a

)
J1

(
P1m

r

a

)
r2drδ1n,

G
(1)mm′
11 =

∫ a

0
grJ1

′
(

P1m′r

a

)
J1

(
P1m

r

a

)
r3drδ1n,

G
(1)mm′
13 =

∫ a

0
grJ1

′
(

p′1m′r

a

)
J1

(
P1m

r

a

)
drδ1n,

G
(1)mm′
14 =

∫ a

0
grJ1

(
p′1m′r

a

)
J1

(
P1m

r

a

)
r2drδ1n,

G
(1)mm′
15 =

∫ a

0
J1

(
P ′

1m′
r

a

)
J1

(
P1m

r

a

)
rdrδ1n,

G
(1)mm′
16 =

∫ a

0
J1
′
(

P ′
1m′r

a

)
J1

(
P1m

r

a

)
r2drδ1n,

Similarly, the remaining elements are obtained. The coefficients
are obtained directly from the algebraic system of Equations (18a)–
(18d) and are expressed as functions in s-plane. Similarly, the other
coefficients are obtained.
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