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Abstract—Intelligent compression is important to image transmission
in real time over bandlimited channels for synthetic aperture radar
(SAR) payloads deployed on unmanned aerial vehicles (UAV), where
target areas are encoded with high fidelity, while background
data are encoded with lesser fidelity. A target-aided SAR image
intelligent compression (TAIC) system is presented in this paper,
which utilizes robust fixed-rate trellis-coded quantization (FRTCQ) to
encode target sequences and FRTCQ to encode background sequences.
Multiresolution constant false alarm rate (CFAR) detector in wavelet
domain using db4 based on the multiscale model of target is embedded.
Generic region of interest (ROI) mask is created. In order to achieve
better quality of target areas decoded, ROI mask is modified. The
improved performance using TAIC system by compressing target chips
from training set and testing set in Moving and Stationary Target
Acquisition and Recognition (MSTAR) database is demonstrated.

1. INTRODUCTION

Synthetic aperture radar (SAR) payloads deployed on UAV will play
an important role in future warfare, because these systems can operate
in all weather conditions at any time of day or night and generate
images of ground in real time [1]. The military is interested in
automatic detecting and recognizing targets from imagery [2-7] to help
image analysts perform interpretation. UAV can direct imagery data
streams to ground station and image analyst through the use of satellite
communications. As sensor resolution increased, more than 1 million
pixels/s will be produced by SAR system, but satellite communication
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channels to transmit image data from UAV are bandlimited. For
example, the commercially available T} is only about 1.54 x 10 bit /s.
Image data must be compressed on-board, then transmitted to the
ground stations analysis by automatic target recognition (ATR) system
or by image interpreters to provide critical and timely information
to field commanders. Conventional image compression algorithms
introduce distortion by coding the entire image uniformly which
severely degrades the ATR system’s performance, not to mention the
perceptual quality of image from analyst [8]. Recent works have
been devoted to devising content-based compression algorithm, where
target areas are extracted by an external on-board ATR algorithm and
encoded at a higher bit rate than background with vector quantization
or variable length entropy coding [9, 10]. However, due to the physical
limitations of on-board SAR, an efficient automatic target detection
algorithm incorporated into encoder is required. Furthermore, both
vector quantization and entropy coding are susceptible to channel
errors. Bonneau has proposed an intelligent compression algorithm
using an embedded automatic target detector in [11], but it works
only on simulated SAR image.

To realize extreme compression while maintaining high quality
of target area for further analysis, we investigate target-aided SAR
image intelligent compression (TAIC) system based on Bonneau’s.
The research presented in this paper is different from others in three-
fold. First, we use all-pass filtering to “lift up” the fixed rate trellis
quantization (FRTCQ) performance curve of a broad class of sources
to the level of memoryless Gaussian FRTCQ. This method is referred
to as robust FRTCQ. Second, unlike the method in [11] where all-
pass filtering is implemented on whole-image, we only use robust
FRTCQ to encode target sequences, which leads to a much less complex
implementation since targets only occupy small parts of SAR image.
Third, we determine to use db4 wavelet for the TAIC system. Generic
ROI mask is generated according to the lifting steps of inverse wavelet
transform. In order to achieve better quality of target areas decoded,
we modify the ROI mask.

It is common in practice to take logarithm of image intensity value
reducing the high dynamic range compatible with the human visual
system and transforming multiplicative noise into additive noise. Log-
detected SAR image is concerned in this paper.
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2. TARGET-AIDED SAR IMAGE INTELLIGENT
COMPRESSION

2.1. System Description

The overall Target-aided SAR image intelligent compression system
is shown in Fig. 1. High resolution SAR image is first decomposed
into 22 subbands using a 2-D discrete wavelet transform (DWT).
A standard 4-level dyadic decomposition is performed, with one
additional level of decomposition being performed on the highest
frequency component following the first decomposition level. ROI
is determined by multiresolution detection algorithm. ROI mask
is used to classify the wavelet coefficients in each subband into
either a target class or a background class. For each subband, the
DWT coefficients corresponding to the same class are grouped into
sequences; they are normalized by subtracting their mean and divided
by their respective standard deviation. Then target sequences are all-
pass filtered being nearly Gaussian distribution to be encoded using
FRTCQ, and codebooks are designed in one bit increments from 4 to
8 bits/sample optimized for Gaussian distribution. The background
sequences are encoded with FRTCQ directly, and codebooks are
designed in one bit increments from 1 to 4 bits/sample optimized for
the Laplacian distribution, which we have found reasonable [12]. The
side information required to encode consists of the mean of sequences
in lowest frequency, standard deviations of all sequences, ROI location,
size, and codebook indices. The total side information consists of 408
bits. This corresponds to 0.0249 bpp for a 128 x 128 image.
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Figure 1. Target-aided SAR image intelligent compression system.
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2.2. Robust FRTCQ

Compared with many other quantization schemes, TCQ is moderately
robust to channel errors. Fig. 2 shows the obtained signal-to-noise ratio
(SNR) of FRTCQ when encoding the memoryless Gaussian, Laplacian,
and generalized Gaussian (with shape parameter v = 0.5) sources at bit
rates of 1-4 bits/sample. Also shown are the respective rate-distortion
functions (R(D)). From the graph, it is evident that the encoded
performance of FRTCQ is opposite to that theoretically possible as
seen from the rate distortion functions. To address this issue, a robust
quantization method is utilized where the signal to be quantized is all-
pass filtered to produce a signal with Gaussian statistics. The all-pass
filter is implemented by using a phase scrambling operation. In this
way, the performance curves of a Gaussian-optimized quantizer can
be achieved with a broad range of source distributions. Thus, a fixed
(Gaussian) rate-distortion performance is guaranteed, independent of
the source distribution.

To demonstrate the effect of all-pass filtering, Fig. 3 shows
the normalized histograms of the Generalized Gaussian (v = 0.5)
65,535 samples data and phase-scrambling sequence. For comparison,
the histogram of same size sample data derived from a Gaussian
pseudo-random number generator is also shown. The graph justifies
the resulting sequence of phase descrambled generalized Gaussian
distribution (GGD) as nearly Gaussian distribution. Note that
the variance of the phase-scrambled GGD sequence is identical to
the variance of the original GGD sequence due to energy preserve
transform [13].
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Table 1. SNR’s (dB) of the robust FRTCQ and FRTCQ for
memoryless Generalized Gaussian Distribution sources.
GGD (v =0.5) Gaussian
Rate (bits/sample) | FRTCQ | Robust FRTCQ | FRTCQ
1 3.55 5.02 5.02
2 8.43 10.58 10.54
3 13.98 16.22 16.16
4 19.33 21.94 21.85

The comparison between the resulting SNR, performance and those
from the non-robust quantizer of GGD source is shown in Table 1. The
results of robust quantizer for memeoryless generalized Gaussian source
at encoding rates of 1-4 bits/sample are identical to those non-robust
quantizer for the memoryless Gaussian source. The same is observed
at even higher encoding rates.

Implementing the all-pass filtering using the phase scrambling
method can be efficiently done by using fast Fourier transforms
(FFT’s). An efficient M-point one-dimensional (1-D) FFT requires
about M logy M complex multiplications and additions. The size of
the FFT’s (and inverse FFT) is selected to be the same as that of
target sequences. As the target only occupies a small part of image,
robust quantization only to target sequences can lead to a much less
complex implementation since a relatively few of coefficients need be
all-pass filtered.

2.3. Multiresolution CFAR Detection in Wavelet Domain

Conventional compression system contains three building blocks:
transform, quantization, and coding. ROI must be extracted before
quantization in proposed compression system.

Two-dimensional discrete wavelet transform is applied to a full
resolution SAR image, and low frequency subbands LL1, LLs, ..., LLy4
are created. Each of them is normalized by subtracting its mean
value forming a multiresolution wavelet coefficient image sequence of
Iy, 1>, ..., 1I4. From coarser to finer scales, the wavelet coefficient image
values can be predicted by using its coarser-scale ancestor, and scale
AR (auto-regressive) models can be written in the form [11].

I(5) = arm(s) L(7) +ag,m(s) [(57%) +- . .+ AR m(s) () (s77) +w(s) (1)

where s has four offspring denoted sanw, sang, sasg, sagwy and
one parent denoted s¥. m denotes scale, and R is the order of the
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regression. m(s) is the scale of s, and aj y(s), @2, m(s), - - - » AR,m(s) aTE
the real, scalar-valued regression coefficients. w(s) is white driving
noise.

Defining the vector a = (a1 yas - .. a RJg)' , we can characterize a
given object (target) in the image first by solving for the autoregressive

coefficients, aj, ag, ..., and a; by least-square approach:
. _ _p\12
ap=arg min Z [I(s) — a1 l(s7) — ... — aRykI(s'yR)] (2)
akERN
{slm(s)=k}

These regression coefficients are allowed to be scale varying, but
restricted to be shift-invariant. The regression length R may be
selected in a manner to that standard AR model in time series but
limited by the levels of wavelet decomposition.

We can predict the target signal by using these regression
coefficients, the residual between the target signal and input is w(s).

w(s) = I(S> - [al,m(s)l(sﬁ) + ..+ aR,m(s)I(SﬁR)] (3)

For log-detected SAR image, homogenous clutter is predominant
when targets occupy small parts, and wavelet coefficients in lowest
frequency subband can be modeled as Gaussian distribution [14], so is
the distribution of predict residual w(s).

In fact, target areas in predicted residual image are brighter than
remains. We now compute a test statistic based on the residual
between the predicted coefficient and any given image coefficient as
shown in equation

w(s) —
() = WLt (@
Oc
where p. is the average of the expected residual for the object model,
and o, is the standard deviation of those coeflicients.

For every scale of residual image, target areas appear much
brighter than remains. To make our search criteria for a given object
more robust, we build a complicated test statistic

c(s) = [C(s) +C(s7) + (7 + ...+ sV )]/ VN =1 (5)

where N is wavelet decomposition levels of 4.
When the Gaussian ¢(s) model is accurate, and the target occupies
a small part, threshold ¢(s) at value of T" leads to a per-pixel false alarm

probability of
1 T
Prg = —erfc | —
Fa = gerfe < \/5> (6)
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Assuming () independent pixels per square kilometer, the correspond-
ing false alarm rate (FA/km?) is

FAR = gerfc (\2) (7)

To evaluate the performance of c¢(s) with different wavelet
filters, we test it on the public domain MSTAR database. The
database contains target and clutter SAR imagery collected at X-
band wavelengths. The imagery has a resolution of 1ft in both the
range and azimuth directions. The target data from three different
target types BMP2, BTR70, and T72 are divided into a training
database of 1622 target chips and a testing database of 1365 chips.
The database consists of clutter scenes covering approximately 10
square kilometers of ground. Both the clutter and target data are
stored as magnitude detected imagery. FEach pixel in the target
chip files is stored as binary 4 bytes floating point value, and each
pixel in the clutter scene files is stored as binary unsigned short
integer. We transform the magnitude image into log-detected image
and compute multiresolution detection statistic in wavelet domain both
on target chips and clutter scenes, where target multiscale model is
built using 64 images imaged at a different aspect angle (extracting
32 x 32 pixels target chip) from confuser zsu-23-4 training set. Using
a broad range of thresholds, clutter scenes have been processed with
prescreening algorithm to extract the global FAR. Then, the target
testing chips have been processed to estimate the same range of
thresholds. We obtain receiver operating characteristic (ROC) curves,
which represent the number of detections plotted against the number of
false alarms at various threshold setting. Fig. 4 shows ROC curves for
different detectors over the public MSTAR database, where “CFAR”
is referred to two-parameter CFAR detector in image domain; others
are multiresolution CFAR detectors in wavelet domain with different
wavelet basis functions. It illustrates performance of ¢(s) using db4
wavelet outperforms others.

2.4. ROI Mask

Threshold is determined according to the required FAR. Compared
multiresolution CFAR value to the threshold, a binary image is formed,
and ROI is extracted after morphological processing.

In order to identify the wavelet coefficients belonging to the ROI or
to the background, ROI mask is generated. ROI mask will be expanded
at each level of decomposition due to filter expansion [15]; this can be
seen from the following inverse wavelet transform.
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Figure 5. Polyphase representation of wavelet transform.

2.4.1. Factoring dbj Wavelet Transforms into Lifting Steps

Factoring db4 wavelet transforms into lifting steps can be summarized
as follows:

1) Polyphase representing db4 synthesis filters h and g, we get
synthesis polyphase matrix P(z).

Db4 wavelet is an orthogonal base. Inverse transform uses two
synthesis filters h and ¢g. Under the perfect reconstruction condition
here we have [16]:

h(z) = ho+h1z71+h2272+h3273+h4z*4+h5z*5—|—h6z*6+h7z*7 ()
9(2) = h72® — hez® + hsz — hy2® + hg2® — hoz' + hy —hoz™' (9)
Polyphase representation of wavelet transforms can be illustrated

schematically in Fig. 5.
Polyphase representation of synthesis filters is given by

h(2) = he(2?) + 2 ho(2?) (10)
9(2) = ge(#*) + 27" go(2?) (11)

where h. contains the even coefficients, and h, contains the odd
coefficients.
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Corresponding synthesis polyphase matrix P(z) is
he(z)  ge(2)
P =
2) [ho<z) e
. h0+h22_1+h42’_2—|—h62_3 h7Z3+h522+h32+h1 (12)
o h1+h3z_1+h5z_2+h7z_3 —h623—h4z2—hgz—ho

2) Using Euclidean algorithm for Laurent polynomial, factor P(z)
into lifting steps.
P(z) can be factored into lifting steps

P(Z):<1a ?)(é _(ﬂz_11+5’))(_(7211+7/> (1)><(1) —(nz‘11+n’))
(06 6 e )

where coefficients are shown in Table 2.
3) Obtain analysis polyphase matrix P(z~1)7 lifting steps.
Polyphase matrix P(z) is para-unitary, and the analysis polyphase
matrix is factored as

Pz = P(z"")T

_ (k7" 0 1 oN/1 0\/1 1
L0 R\ sz B A 2 Az 4 N) 1) -1 1)\0 1

(—(7721+77’) (1))<(1) _(7§+7/)><—(ﬁ;+6’) (1)><(1) _1a> (14)

Table 2. Coefficients in lifting steps.

k1 | 1.362166720130752
Ao -1

Al | —0.469083478901698
A2 | 0.140039237726832
Az | —0.024791238156143
i 2.131816712755221
" | 0.117648086798478
v | —0.018808352726244
B | —0.300142258748545
8 | —1.117123605160594
a | —0.322275887997141

2
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This corresponds to the following implementation for the forward
transform:

5(1) = Tg —

l = T2] — AX2+1

= _/831+1 + ﬁ Sl + L2141

g
7 = o2+ 4 )
RONNCIS (15)

i = —s® 4 g

dM = -\ s§3>3 — s, = AP 4 5P 4 d?)

dy = kldl(4)
4) Derive the inverse transform from the forward by running the

scheme backward.
The inverse transform follows from reversing the operation above:

dY =kl

sl(g) = —kys;

¥ = d" + AgstVy + Aas Py + s — s

A = s 4 d?

NONRNCIRNE (16)
4 = P o2,

ey

Zol41 = d + Bs 1(4131 G's l(l)
(1)

Top = 8 " + axgr4

where s;, d; are smoothed values and details.
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2.4.2. Generic ROI Mask

Substituting corresponding equations in (16) into xg and xg41, we
have
Top = —0.0424402819013265s;_3+0.243472801647206s;_2
—0.826346497388014s;_1—1.334009475194556s;
+0.0718662848325645;,1—0.070309030395583 512

+0.0196634596543615;4+3—0.922612876108825d;
+0.081276337771496d; 11 —0.047834398217298d; 1 o
+0.010597401784553d; 1 3 (17)
Toi+1 = 0.0470774711372545;_3—0.3857613928060035; 2
+1.5787035951680675s;_1—1.842525444396078s;
—1.3863219553782615;11 + 0.3876381023214985;4 9
—0.0610143680824665;43 + 1.0234211249316584;
—2.605060547408171d;1+0.239762977284376d,2
—0.032883011665605d; 13 (18)

From the above expressions, we know that the coefficients
necessary to reconstruct x(2l) and x(2/+41) are low frequency subband
coefficients L(1—3), L(1-2), L(I-1), L(1), L(1+1), L(142), L(1+3) and
high frequency subband coefficients H (1), H(l+ 1), H(l+2), H(l+3),
as shown in Fig. 6.

To simplify ROI shape information and alleviate the computation
complexity of ROI mask, we specify a rectangular region associated
with the designated ROI. Thus, the identified ROI is bounded by
a rectangle. For the rectangle, only two positions need be studied,

namely the upper left and lower right corners. All samples in between
the two corners are considered to belong to the mask. Using the usual

L(1) H (1)

| |l*3|1*2ll*1| 1 ll+1 1+2 l+3| | | | 1 |l+1 I+3| ‘

1+2

Figure 6. The inverse db4 tansform:the coefficients necessary to
reconstruct z(20) and z(2l + 1) are L(l — 3) to L(l + 3) and H(l) to
H(l + 3), respectively.
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Table 3. ROI mask support.

Generic Modified
inSup |3 s T
s |3 L5 0
hnSup | 0 ZZZ?Z;; 8
S |3 e

convention that the origin of the subband coordinates occurs at the
top-left corner of the subband, the ROI in the parent subband covered
the coefficients between (z¢,y0) and (z1,¥1), then in the new subband
it will cover (x(,y() and (2},v}), where

z(, = floor(zo/2) — nSup, y, = floor(yo/2) — nSup
| = floor(x1/2) + pSup, y) = floor(yi/2) + pSup

The choice of nSup and pSup will depend on whether the (2}, ;) (i =
0,1) is in the low or the high frequency subband. Let constants InSup
(low, negative support), IpSup (low, positive support), hnSup (high,
negative support) and hpSup (high, positive support) denote support
under the four situations. They are shown in Table 3.

We assume that the ROI mask of subband HL{, LH{ and HH;
is the same as that of subband LL;.

(19)

2.4.8. Modified ROI Mask

Although higher bit rate is given to ROI, coding performance of target
area degrades dramatically if we mask significant wavelet coefficient as
formula (19). The reason is that the significant coefficients expand too
fast even throughout the whole image.

To mitigate the situation above, in analysis expression (17), (18)
we note that each item has different effect on the reconstruction.
Since the absolute maximum of the weight coefficient is about 2.0
(1.8425254443960), the absolute weighting coefficient value smaller
than 0.1 can be negligible compared to it. So we ignore the item
whose absolute weighting coefficient is smaller than 0.1, and expression
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L(l) H(l)

EREEE | K
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Figure 7. To approximately reconstruct z(2l), the coefficients
necessary are L(l —2) to L(l) and H(l); To approximately reconstruct
x(2l + 1), the coefficients necessary are L(l — 2) to L(I + 2) and H ()
to H(l + 2).

(17), (18) are reformulated:

o ~ 0.2434728016472065;_2—0.8263464973880145s;_1
—1.3340094751945565;—0.922612876108825d, (20)
Toi+1 ~ —0.3857613928060035;_24-1.5787035951680675;_1
—1.8425254443960785;—1.3863219553782615;4 1
+0.3876381023214985;42 + 1.0234211249316584;
—2.605060547408171d;4+1+0.239762977284376d; 2 (21)

We modify ROI mask formula (19) according to approximate
reconstruction expressions (20), (21). The choice of nSup, pSup will
depend on not only whether (x(,y(), (z},v]) is in the low or high
frequency subband but also whether the z;, y; (i = 0,1) value is odd
or even. Let constants lenSup (low, even, negative support) etc. denote
support under the eight situations. As shown in Table 3, mask support
lengths are shrunk after modification.

Now only low frequency subband coefficients from L(I — 2) to
L(l) and high subband coefficients H(l) are needed to approximately
reconstruct x(20), but low frequency subband coefficients from L(I —2)
to L(I + 2) and high subband coefficients from H(l) to H(l 4+ 2) are
needed to approximately reconstruct z(20 4+ 1), as show in Fig. 7.

2.5. Rate Allocation

The overall bit rates in bits per pixel for the targets and for the
background are either provided by the user or determined by some
automated means. Given Rj;bpp for the target and Rsbpp for
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background, rate allocation procedure can be used to allocate rate in
rate-distortion optimization sense for target and background sequences
separately.

For target sequences, the rate allocation procedure is summarized
as follows:

1) Initial A\; and A, set the bound of bisection research for \.

2) Computation \ = ALAn,

3) Chosen rate allocation vector T' = (t1,t2,...,tar), so that

M
min Y (;02E;(t;) + Aagt;), where o2 is the variance of sequence 4,
i=1

and Ez(tl) denotes the rate-distortion performance at t; bits/sample.
M is the number of data sequences (that is 22), and «; is a weighting
coeflicient to account for variability in sequence length.
M
4) Computation 7" = Y a;t;. If T > Ry, set N\ = X\; if T < Ry,
i=1
set Ay, = A; jump to (2).
Rate allocation for background sequences is similar to the target
sequence, only minor modification needed: Rj; in step (4) must be
modified as Rs.

3. RESULTS

To illustrate the performance of target-aided image intelligent
compression algorithm, we do experiments on HB03787.001 from
BMP2 training set and H B03397.015 from T72 testing set in MSTAR
data base. Fig. 8(a) and Fig. 9(a) show their log-detected images, both
of original magnitude images are 16 bpp. We use a multiresolution
CFAR threshold of 3.84 [17]. Fig. 8(b) and Fig. 9(b) show ROI
extracted and their mask. Studies previously have shown that SAR

(b)

(d) (e)

Figure 8. (a) HB03787.001. (b) ROI and its mask. (c¢) TAIC with
modified ROI mask (0.135 bpp, 2bpp for target area). (d) TAIC with
generic ROI mask (0.137bpp, 2bpp for target area). (e) JPEG2000
algorithm (0.14 bpp).
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imagery can be compressed by 4:1 to 8:1 without significantly
degrading ATR performance [18]. So we give a larger bit rate of
target area from 8 bpp to 2bpp at step 1bpp, very low bit rate only of
0.01 bpp to background data [19] in order to achieve large compression.
We evaluate compression system performance by SNR’s of target area
(pixels corresponding to rectangular area), which is defined in (22).
Performance results are included in Tables 4 and 5 at different bit
rates. For comparison, the performance results of JPEG2000 algorithm
are also included. As verified in two tables, TAIC algorithm shows
exceptional target area coding efficiency, and modified ROI mask
enhances the performance.

M N
>, 50007

&,
2 32 lo9) — hli. )P

||M§

where g(1, j) is pixel value at site (2, j) in log-magnitude image, h(i, j) is
accordingly decoded value, M and N are the dimensions of the image.

Figures 8(c), 9(c) show how TAIC algorithm using modified ROI
mask performs, and Figs. 8(d), 9(d) show how the TAIC algorithm
using generic ROI mask performs. Figures 8(e), 9(e) show the
performance of JPEG2000 algorithm. All of them are working at
compression ratio 100 (bit rate for target area is 2bpp). From these
figures, we know TAIC algorithm with modified ROI mask outperforms
that with generic ROI mask, and either of them performs better than
JPEG2k algorithm. Context information (shadow) is preserved, which
is useful for ATR [20].

The computational complexity of proposed algorithm is mainly
determined by the size of image and target. We decompose the image

(b) (d (e)

Figure 9. (a) HB03397.015. (b) ROI and its mask. (c¢) TAIC with
modified ROI mask (0.153 bpp, 2bpp for target area). (d) TAIC with
generic ROI mask (0.159bpp, 2bpp for target area). (e) JPEG2000
algorithm (0.14 bpp).
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Table 4. SNR of target area comparing our TAIC algorithm and
JPEG2000 compression algorithm for HB03787.001.

TAIC
bPP o dified ROT | Generic ROT | °F HG2000
0.15 | 35.78 (dB) | 32.07 (dB) | 27.40 (dB)
0.20 | 40.72 (dB) | 34.70 (dB) | 27.99 (dB)
0.25 | 44.52 (dB) | 37.50 (dB) | 28.45 (dB)
0.30 | 47.63 (AB) | 40.89 (dB) | 28.99 (dB)
0.40 | 49.16 (dB) | 44.36 (dB) | 29.92 (dB)

Table 5. SNR of target area comparing our TAIC algorithm and
JPEG2000 compression algorithm for HB03397.015.

TAIC
bpp Modified ROI | Generic ROI JPEG2000
0.15 | 32.35 (dB) | 30.01 (dB) | 23.97 (dB)
0.20 37.51 (dB) 34.00 (dB) | 25.11 (dB)
0.30 43.47 (dB) 37.00 (dB) | 26.90 (dB)
0.40 47.00 (dB) 41.00 (dB) | 28.08 (dB)

up to 4 levels. Multiresolution target detection algorithm in wavelet
domain is much simpler than two-parameter CFAR detection algorithm
in image domain. ROI mask generation is simple too. The robust
quantizer is only used to encode target sequences and leads to a much
less complex implementation since targets only occupy small parts of
SAR image. The number of admissible quantizers for each sequence is
also a small constant compared to the size of image. Furthermore, the
number of iterations for bisection search of a convex curve is relatively
small. Therefore, the total computational complexity of our algorithm
is O(MN) for an image of size M x N.

4. CONCLUSION

We have investigated a target-aided SAR image intelligent compression
system with a multiresolution target detection scheme to designate
ROIs, where ROIs are encoded with robust FRTCQ, and the remains
are encoded with FRTCQ. We have found that multiresolution CFAR
detector using db4 wavelet is more reliable than others. We create
generic ROI mask according to the lifting steps of db4 wavelet inverse



Progress In Electromagnetics Research B, Vol. 20, 2010 301

transform. To ameliorate the situation that significance coefficients
expand too fast, which results in that the coding performance of target
area degrades dramatically, we modified ROI mask with respect to
the expression of the inverse wavelet transform. As coding results
illustrate, TAIC algorithm performs better than JPEG2k algorithm,
and modified ROI mask enhances the target area coding efficiency. The
image coder enables the transmission of very-high-quality compressed
imagery over limited bandwidth noisy channels without need for
entropy coding and its associated complexity and susceptibility to
channel errors. The robust quantizer is only used to encode target
sequences which leads to a much less complex implementation since
targets occupy small parts of SAR image.
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