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Abstract—The diffraction of a uniform unit-amplitude E-polarized
plane wave is considered in the case of its normal incidence on a
strip periodic metal grating placed on the anisotropic hyrotropic
ferromagnetic half-space boundary. The Dirichlet boundary conditions
on the grating strips, the medium interface conjugation conditions, the
Meixner condition that the energy is finite in any confined volume and
the radiation condition are applied, and the boundary value diffraction
problem in terms of Maxwell’s (Helmholtz) equations is equivalently
reduced to the dual system of functional equations with exponential
kernel. The system is shown to be the Riemann-Hilbert problem in
analytic function theory with the conjugation coefficient differing, in
general, from “−1” and dependent on the incident wave frequency.
An analytical regularization procedure based on the Riemann-Hilbert
boundary value problem solution with the following use of the Plemelle-
Sokhotsky formulas is suggested, resulting in the system of linear
algebraic equations of the second kind with a compact operator. For
these systems, the truncation technique possibility has been shown.
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Calculation algorithms and simulation packages in terms of C++

language have been developed. As a result, the reflection coefficient
performance has been studied over sufficiently wide ranges of frequency
and constitutive and geometrical parameters of the electrodynamical
systems of interest. The frequency bands of the reflection coefficient
resonant behavior have been established and examined. A numerical
analytical model of these resonances has been proposed.

1. INTRODUCTION

There is increasing research activity on effects accompanying the
electromagnetic wave propagation, diffraction and radiation when
a boundary of such a medium as dielectric, ferromagnetic, chiral
composite, meta-material, etc. is involved in the process [1–9]. The
interest has been spurred by the growth in the synthesis of new
artificial materials possessing unusual electromagnetic properties in
the microwave band [6]. Another reason is pressing needs in both
high-reflection and absorption structures with controllable scattering
properties [4, 5].

According to [8, 9], a strip periodic grating backed by one
of the above-mentioned materials gives rise to specific resonance
effects. Furthermore, such familiar phenomena as nonreciprocity effect,
Faradey’s effect [10], etc. can go in unusual manner.

At present, the diffraction by a plane metal grating is understood
well enough when the grating is in the free space environment which
can additionally contain a homogeneous isotropic medium interface.
As to the anisotropic medium boundary, it can be only involved when
the medium of the kind is separated from the grating by an isotropic
magnetodielectric layer. See, e.g., [11–14] with the references.

Work [15] addressed the wave diffraction by a strip grating located
on a boundary of a medium whose permittivity and permeability were
nondiagonal tensors. The initial boundary value diffraction problem
was reduced to the singular integral equations that were algebraized
by singular integral quadratures [16]. The resulting system of linear
algebraic equations of the first kind had yet to be examined for the
numerical solution stability, the rate of the condition number growth
with quadrature order increase, etc. The only way to get rid of those
troubles is, according to [17], an analytical regularization procedure
to equivalently reduce the initial diffraction problem to the infinite
system of linear algebraic equations of the second kind. Yet it must
be mentioned that the system of dual series equations that the wave
diffraction problem for a plane strip grating (or a finite collection of
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cylindrical screens) backed by an anisotropic (gyrotropic) medium is
generally reduced to differs from the system appearing in the classical
diffraction by gratings [11–13]. In that event, a question naturally
arises on how the analytical regularization procedure can be built for
them, too.

Publications on the subject date back to the 60-s of the last
century (see [18]). The analytical regularization method suggested
in [19, 20] for systems of dual series equations is based on the
development of a closed-form solution to the “standard” dual equations
and goes through the conjugation problem solution in the analytic
function theory. This method was helpful to work the diffraction
by partially screened plasma cylinders [21–23] and also by a plane
strip grating attached to a “cold” magnetoactive plasma [24]. The
development of the regularization procedure, which represents the
Riemann-Hilbert problem method extension, was the subject of
works [25, 26], where magnetostatic waves traveling along a strip
grating laying on a ferrite layer boundary were treated.

The present paper concern is, first, the development of the
analytical regularization procedure for dual series equations appearing
in a wide class of problems for monochromatic plane wave diffraction
by a strip grating backed by a gyromagnetic medium and, second, the
performance of numerical experiments for studying specific features of
the wave interaction with a ferromagnetic medium interface supporting
a strip grating and placed in a magnetic field.

2. FORMULATION OF THE PROBLEM

A periodic grating is considered as a collection of z-parallel infinitely
thin perfectly conducting strips placed in the plane x = 0. The grating
slots are d wide, the grating period is l (see Fig. 1).

The half-space {(x, y) : |y| < ∞, x < 0} is filled with a homoge-
neous ferromagnetic medium of the permittivity ε (ε = ε′ + iε′′,
ε′ > 1; ε′′ ≥ 0) and the permeability like the tensor below (a constant
magnetic field ~H0 is parallel to the oz axis)

µ̂ =

∥∥∥∥∥
µ iµa 0

−iµa µ 0
0 0 1

∥∥∥∥∥ .

Here, µ = 1 − χHχM

χ2−χ2
H

, µa = χχM

χ2−χ2
H

with χ = ω l
2πc , χH = ωH l

2πc , χM =
ωM l
2πc , where ω is the incident (primary) field frequency, ωH =
|γ|H0, ωM = 4πM0 |γ| is the frequency characterizing the medium
magnetization (γ is the gyromagnetic ratio for electrons, M0 is the
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Figure 1. The cross-sectional view of the structure.

saturation magnetization, see. [10]), and c is the velocity of light in a
vacuum.

In the half-space x > 0, a monochromatic E-polarized plane wave
Ei

z = e−ikx travels along the 0x axis (normal incidence), where k = ω/c.
Throughout the paper, the time dependence described by the factor
e−iωt will be omitted. The problem is to obtain the electromagnetic
field of the wave diffraction by a strip grating attached to the boundary
of the ferromagnetic half-space x < 0. One readily finds that, this
electromagnetic field is E-polarized ( ~E = (0, 0, Ez) , ~H = (Hx,Hy, 0)).
Mathematically this case reduces to the following boundary value
problem.

Functions U1(x, y) and U2(x, y) are required to determine in the
half-spaces x > 0 and x < 0, respectively. The functions must meet

a) the Helmholtz equations
{

∆U1(x, y) + k2U1(x, y) = 0, x > 0;
∆U2(x, y) + k2εµ⊥U2(x, y) = 0, x < 0; (1)

b) the periodicity condition

Uj(x, y ± l) = Uj(x, y), j = 1, 2; (2)

c) the boundary conditions on the grating strips |y + nl| >
d/2, n = 0,±1, . . .

(
e−ikx + U1 (x, y)

)∣∣∣
x=0

= 0, U2 (0, y) = 0, (3)
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and the conjugation condition across the slots |y + nl| < d/2, n =
0,±1, . . .

1 + U1(0, y) = U2(0, y),

k + i
∂U1(0, y)

∂x
=

i

µ⊥
∂U2(0, y)

∂x
+

τ

µ⊥
∂U2(0, y)

∂y
,

(4)

d) the Meixner condition [27] in the vicinities of the grating strip
edges∫
M

(|Uj |2 + |∇Uj |2) dxdy < ∞ for any compact M from R2, j =

1, 2;
e) the radiation conditions

U1 (x, y) =
+∞∑

n=−∞
anei 2πn

l
yeiG1n

2π
l

x, x > 0,

U2 (x, y) =
+∞∑

n=−∞
bnei 2πn

l
ye−iG2n

2π
l

x, x > 0,

(5)

where G1n =
√

χ2 − n2 and G2n =
√

χ2εµ⊥ − n2. The root branches
are chosen along the following lines. When ε is a complex number,

χReG1n ≥ 0, ImG1n ≥ 0,
χReG2n ≤ 0, ImG2n ≥ 0 for χ0 < χ < χ+,

and
χReG1n ≥ 0, ImG1n ≥ 0,
χReG2n ≥ 0, ImG2n ≥ 0 for χ < χ0 or χ > χ+,

When ε is real,

χReG1n ≥ 0, ImG1n ≥ 0,
χReG2n ≥ 0, ImG2n ≥ 0.

Here, µ⊥ =
χ2−χ2

+

χ2−χ2
0

is the effective permeability of the ferromagnetic

medium, χ0 =
√

χH(χH + χM ) is the normalized frequency of the
ferromagnetic resonance, χ− = χH + 0.5χM , χ+ = χH + χM , and
τ = χχM

χ2−χ2
0
.

The functions U1(x, y) and U2(x, y) are related to the sought
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diffraction field components as

Ez =
{

U1 (x, y) , x > 0
U2 (x, y) , x < 0 ,

Hx =
1
ik

{∂U1
∂y , x > 0
1

µ⊥

(
∂U2
∂y + iτ ∂U2

∂x

)
, x < 0

,

Hy = − 1
ik

{
∂U1
∂x , x > 0
1

µ⊥

(
−iτ ∂U2

∂y + ∂U1
∂x

)
, x < 0

.

(6)

Upon radiation condition (5), relationships (6) yield the
electromagnetic field components tangential to the medium interface
as follows

Ez(x, y) =





e−ikx +
∞∑

n=−∞
anei 2πn

l
yeiG1n

2π
l

x, x > 0,

∞∑
n=−∞

bnei 2πn
l

ye−iG2n
2π
l

x, x < 0,

Hy(x, y) =





e−ikx − 1
χ

∞∑
n=−∞

anG1nei 2πn
l

yeiG1n
2π
l

x, x > 0,

1
χµ⊥

∞∑
n=−∞

bn(G2n + inτ)ei 2πn
l

ye−iG2n
2π
l

x, x < 0.

(7)

Here, an and bn are the unknown amplitudes of spatial harmonics of
the diffraction field. In view of (3) and (4), these amplitudes are related
as b0 = 1 + a0, bn = an, n 6= 0.

3. REDUCTION OF THE BOUNDARY VALUE
PROBLEM TO THE INFINITE SYSTEM OF LINEAR
ALGEBRAIC EQUATIONS OF THE SECOND KIND

Using representations (7) and satisfying conditions (3) and (4), the
system of dual series equations for the unknown amplitudes (bn)+∞n=−∞
is obtained in the form



∞∑
n=−∞

bnei 2πn
l

y = 0, |y| > d
2

∞∑
n=−∞,

n 6=0

bn (G2n+µ⊥G1n+inτ) ei 2πn
l

y = 2χµ⊥−b0χ
(
µ⊥+

√
εµ⊥

)
,

|y| < d
2 .

(8)
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Elementary manipulations (see [8]) reduce (8) to the equivalent
system





+∞∑
n=1

nbneinϕ − b
−1∑

n=−∞
nbneinϕ = f

(
eiϕ

)
, |ϕ| < θ,

+∞∑
n=−∞

nbneinϕ = 0, |ϕ| > θ,

+∞∑
n=−∞

(−1)nbn = 0, ϕ = π.

(9)

Here ϕ = 2π
l y, θ = πd

l , b = 1+µ⊥−τ
1+µ⊥+τ , and the function f

(
eiϕ

)
can be

written in the Fourier series form

f
(
eiϕ

)
=

+∞∑
n=−∞

fneinϕ, (10)

where f0 = iχ
1+µ⊥+τ

[
b0

(
µ⊥ +

√
εµ⊥

)− 2µ⊥
]
, fn = δnbn, and δn =

(1 + µ⊥ + τ)−1 [|n| (1 + µ⊥) + i (G2n + µ⊥G1n)].
The multiplication of the first and the second equations from (9)

by eimϕ, m = 0,±1, . . . and the integration within the limits (−θ, θ)
and (−π, θ) to (θ, π), respectively, yield the infinite system of linear
algebraic equations, which is the functional equation of the first kind
for unknowns (bn)+∞n=−∞. All disadvantages of these equations, such
as numerical instability of the finite system solution, the increase
of the finite-system condition number as the truncation number
increases, etc. have remained. Evidently whatever straightforward
“algebraization” of Equation (9) is used, the result will be the same.
Therefore the solution of (9) calls for a proper regularization procedure
providing its equivalent reduction to the infinite system of linear
algebraic equations of the second kind in the proper space of (bn)+∞n=−∞
sequences.

Based on the results from [19–24], such a regularization procedure
will be built now for coefficient b positive. It readily comes that b > 0, if
the normalized frequency χ of the excitation wave meets the condition
χ < χ− or χ > χ+.

The central point of this regularization procedure is building a
closed-form solution to (9) under the assumption that the Fourier
coefficients of function (10) are available. To this end, system (9) is
reduced to the boundary value conjugation (Riemann-Hilbert) problem
in the analytic function theory.

Assume that (bn)+∞n=−∞ is a desired solution. According to [11],
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define a function B (w) of complex variable w by the formula

B (w) =





∞∑
n=1

nbnwn, |w| < 1,

−
−1∑

n=−∞
nbnwn, |w| > 1.

(11)

As follows from the second equation of system (9), this function is
analytic in a complex plane cut along the unit-circle arc L connecting
the points e−iθ and eiθ through the point w = 1. Denote by B+ (w)
and B− (w) the limiting values of B (w) on the arc L from the outside
and inside of the circle |w| < 1, respectively. Then the first equation
of system (9) becomes

B+ (w) + bB− (w) =
+∞∑

n=−∞
fnwn, w ∈ L. (12)

So, we have arrived at the boundary value conjugation (Riemann-
Hilbert) problem, which means building function B (w) such that is
analytic everywhere but on arc L. The B (w) limiting values on arc
L must meet condition (12). The problem solution will be sought in
the class of functions admitting an intergrable singularity at the ends
of arc L and decaying as w → ∞. Owing to the methods suggested
in [28], this problem solution is

B (w) = G (w)


 1

2πi

∫

L

f (t) dt

G+ (t) (t− w)
+ C


 , (13)

where f (t) =
+∞∑

n=−∞
fntn is function (10) and C is an arbitrary

constant. The function G (w) is the homogeneous Riemann-Hilbert
problem solution (fn = 0, n = 0,±1, . . .). It belongs to the indicated
class of functions and can be written in the form

G (w) =
(
w − eiθ

)−1/2−iβ (
w − e−iθ

)−1/2+iβ
, (14)

where β = 1
2π ln b = 1

2π ln 1+µ⊥−τ
1+µ⊥+τ . The function G+ (w) in (13) is the

limiting value of G (w) function on arc L from within the circle |w| < 1.
It should be mentioned that the G (w) behavior near the ends of arc L
asymptotically coincides with the behavior of ∇U1 and ∇U2 functions
near the grating strip edges and guarantees the Meixner condition
fulfillment. It is easily seen that β = 0 when the ferromagnetic medium
is absent (χM = 0), which is the only case when the function G (w)
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and, hence, the functions ∇U1 and ∇U2 possess a root singularity near
the grating strip edge (w = e±iθ).

A straightforward calculation will show that G (w) fits the
following differential equation

dG (w)
dw

=
2β sin θ + cos θ − w

w2 + 1− 2w cos θ
G (w) , w 6= e±iθ,

G (0) = −e2θβ.

(15)

In view of (15), G (w) and G−1 (w) are readily expanded into the series
in terms of powers of complex variable w

G (w) =





−e2βθ
∞∑

n=0
Pn (β, θ) wn, |z| < 1,

w−1
∞∑

n=0
Pn (−β, θ) w−n, |z| > 1,

(16)

G−1 (w) =





−e−2βθ
+∞∑
n=0

Υn (−β, θ)wn, |z| < 1,

w
+∞∑
n=0

Υn (β, θ) wn, |z| > 1.
(17)

Here, Pn (β, θ) are the Pollaczek polynomials [29] admitting the
recurrent formulas

P0 (β, θ) = 1; P1 (β, θ) = cos (θ) + 2β sin (θ) ;

Pn (β, θ)|n≥2 =
((

2− 1
n

)
cos (θ) +

2
n

β sin (θ)
)

Pn−1 (β, θ)

−
(

1− 1
n

)
Pn−2 (β, θ) ;

P−n (β, θ) = exp (−2βθ) Pn−1 (−β, θ) .

The functions Υn (β, θ) are expressed in Pn (β, θ) terms as
Υ0 = 1; Υ1(β, θ) = − cos(θ) + 2β sin(θ);
Υn(β, θ) = Pn(β, θ)− 2 cos(θ)Pn−1(β, θ) + Pn−2(β, θ) for n ≥ 2.

Notice that the Pollaczek polynomials Pn (β, θ) coincide with the
Legendre polynomials if β = 0.

The further step in the solution of system (9) is making use of the
Plemelle-Sokhotsky formulas [28] for the Cauchy-type integral in (13)
to finally have that for |ϕ| ≤ π

B+
(
eiϕ

)−B− (
eiϕ

)
= af̂

(
eiϕ

)
+Ĝ

(
eiϕ

)

 1

2πi

∫

L

f (t) dt

G+ (t) (t− eiϕ)
+C


.

(18)
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Here, a = − 2τ
1+µ⊥−τ , Ĝ(eiϕ) = G+(eiϕ) − G−(eiϕ), f̂(eiϕ) ={

0, |ϕ| > 0,
f(eiϕ), |ϕ| < 0.

And G−(eiϕ) = lim
ε→+0

G(eiϕ(1 + ε)).

After the singular integral in (18) has been evaluated (the Cauchy
residue theorem [30] is applied and the function G−1 (w) from (17) is
expanded in the power series),

+∞∑
n=−∞

nbneinϕ = Ĝ
(
eiϕ

)
[

+∞∑
n=−∞

fnWn

(
eiϕ

)
+ C

]
, (19)

where

Wn(z)=
1+µ⊥+τ

2(µ⊥ + 1)





−
n+1∑
s=0

Υn+1−s(β, θ)zs : n ≥ 0

e−2βθz−1 − 1 : n = −1

e−2βθ
−n−1∑
s=0

Υ−n−1−s(−β, θ)z−s−1 : n < −1

,

fn are the Fourier coefficients of function f(eiϕ).
Then, correlating the Fourier coefficients in (19) and using the

third equation in (9) to determine the constant C, we eventually have

b0 = Ŵ0f̂0 +
∑

n6=0

n−1V̂ −1
n−1 (β, θ) f̂n,

bm =
+∞∑

n=−∞
m−1V̂ n−1

m−1 (β, θ) f̂n, m = ±1,±2, . . . ,

(20)

where f̂n =
(
1 + τ

1+µ⊥

)
fn. The values Ŵ0 and V̂ n−1

m−1 (β, θ) are
expressed via the Pollaczek polynomials Pn (β, θ) and the functions
Υn (β, θ) by the formulas below.

If m = n,

V̂ m−1
m−1 (β, θ) =

1
2





0, m = 0,
m∑

n=0
Υm−n (β, θ) Pn−m (−β, θ) , m ≥ 1,

−
|m|∑
n=0

Υ|m|−n (−β, θ) Pn+m (β, θ) , m ≤ −1.

(21)
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If m 6= n,

V̂ n−1
m−1 (β, θ)=

1
2





e2βθm
m−n [Pm−1 (β, θ)Pn (β, θ)−Pm (β, θ)Pn−1 (β, θ)],

n 6= 0
e2βθPm−1 (β, θ)− Pm (β, θ) , n = 0.

(22)

Ŵ0=−1
2

∞∑

n=1

(−1)n

n

[
e2βθPn−1 (β, θ)

+e2βθPn−1 (−β, θ) + Pn (−β, θ) + Pn (β, θ)
]
. (23)

By definition, for the Pollaczek polynomials Pn (β, θ) in (21), (22)
with index n negative, we have

Pn (−β, θ) = e−2βθP|n|−1 (−β, θ) , n = −1,−2, . . . . (24)

So, under the assumption that (fn)+∞n=−∞ are known, formulas
(20)–(24) provide a closed form solution to dual series Equation (9).
This solution reduces initial Equation (8) to the infinite system of linear
algebraic equations of the second kind.

Indeed, replace fn in (20) by its expression in bn terms (see (10)).
Finally, after some innocent manipulations we have

bm +
+∞∑

n=−∞
Amnbn = Qm, m = 0,±1,±2, . . . ,. (25)

where the matrix elements Amn and the right-hand side Qm are

Amn = δ̂n





Ŵ0, m = 0, n = 0,

−n−1V̂ −1
n−1 (β, θ) , m = 0, n 6= 0,

−m−1V̂ n−1
m−1 (β, θ) , m 6= 0,

(26)

δ̂n = |n|+ i
G2n + µ⊥G1n

1 + µ⊥
,

Q0 = − iχ2µ⊥
1 + µ⊥

, Qm = − iχ2µ⊥
(1 + µ⊥) m

V̂ −1
m−1 (β, θ) . (27)

Let us show that (25) is an infinite system of linear algebraic
equations of the second kind. To this end, it will be suffice to prove that
the matrix ‖Amn‖+∞

m,n=−∞ produces a compact operator in the space

of sequences l2 =
{

(bn)+∞n=−∞ :
+∞∑

n=−∞
|bn|2 < ∞

}
, and the sequence

(Qm)+∞m=−∞ ∈ l2.
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According to [17], the Pollaczek polynomials Pn (β, θ) asymptoti-
cally tend as n → +∞ to

Pn(β, θ) =
2e−( 3π

2
+θ)β

√
2 sin(θ)n |Γ (0.5 + iβ)|2

cos
(
β ln (2n sin θ)−

(
n+1/2

)
θ− 3π

4

)
ReΓ (0.5 + iβ)

+ sin
(
β ln (2n sin θ)−

(
n+1/2

)
θ− 3π

4

)
ImΓ (0.5+iβ)



(
1+O

(
1
n

))
,(28)

where Γ (z) is the gamma-function and Re (. . .) and Im (. . .) are its real
and imaginary parts, respectively.

The Pn (β, θ) asymptotical estimate as n → −∞ comes from (28)
in view of the relationship P−n(β, θ) = e−2βθPn−1(−β, θ). By virtue
of (28), as |m| , |n| → ∞, the inequalities

∣∣∣V̂ n−1
m−1 (β, θ)

∣∣∣ <
C

√
|m|

|m− n|
√
|n| , (29)

∣∣∣V̂ m−1
m−1 (β, θ)

∣∣∣ < C, (30)

readily come from (22) when m 6= n and from (21) for m = n . Here,
C only depends on β and θ.

From the δ̂n expression, δ̂n = O
(

1
|n|

)
. Therefore in view of (29)

and (30), as |m| , |n| → ∞, relationship (26) yields the inequalities

|Amn| < C

|m− n| |n|3/2
√
|m|

,

|Amm| < C

|m| .
(31)

Hence, the series
+∞∑

m,n=−∞
|Amn|2 < ∞ is convergent, and matrix

‖Amn‖+∞
m,n=−∞ sets a compact operator (the Hilbert-Schmidt operator)

in the l2 space [31]. The series convergence
+∞∑

m=−∞
|Qm|2 < ∞ follows

from (29).
We have shown that system (25) is an infinite system of linear

algebraic equations of the second kind. This fact guarantees that
a solution to system (25) can be constructed with any preassigned
accuracy by truncation [31], which is the replacement of infinite system
(25) by the system of N equations for N unknowns. This method
provided the obtained numerical results discussed below.
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4. NUMERICAL RESULTS

To numerically solve finite (truncated) system (25) of linear algebraic
equations, corresponding algorithms were developed, delivering
all characteristics of the diffraction field with any preassigned
accuracy. The program realization on an IBM compatible PC was
in programming language C++. The analysis of the results for
convergence and reliability was made to find out, for one, that the
reflection coefficient (the zeroth harmonic module |a0| = |b0 − 1|) can
be calculated with an error of 0.1% of the value provided that the
truncation order of system (25) is chosen by the rule N = [χ

√
|εµ⊥|+5]

(here [. . . ] is the integral part of the number).
The numerical analysis was performed at the ferromagnetic

medium characteristic frequencies ωM = 31.1GHz and ωH = 3.52 GHz,
with the normalized frequencies being χM = ωM l

2πc = 0.27 and χH =
ωH l
2πc = 0.306 for the grating period l = 16.4mm.

The numerical modeling corresponds to a lossy ferromagnetic
medium of complex permittivity ε = ε′+ iε′′, the real ε′ and imaginary
ε′′ parts extended widely. The normalized frequency χ = ωl

2πc of the
E-polarized excitation wave is varied over the interval χ0 < χ < χ−,
where χ0 is the ferromagnetic resonance normalized frequency and χ−
is the normalized surface-wave cutoff frequency of the ferromagnetic
half-space.

Figure 2. Frequency dependences of the reflection coefficient
module for a grating backed by a ferromagnetic half-space and for
a ferromagnetic half-space without a grating.
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The frequency dependence of the reflection coefficient module
|a0| of a grating attached to a ferromagnetic medium is presented
in Fig. 2 for d/l = 0.8, ε = 5.5 + i0.41 (solid line). There
one also finds the analogous dependence (dashed curve) for d/l =
1.0, ε = 5.5 + i0.41, which corresponds to the ferromagnetic half-
space without a grating, the reflection coefficient explicitly determined
by the expression |a0| =

∣∣∣µ⊥−√εµ⊥
µ⊥+

√
εµ⊥

∣∣∣. A pronounced resonance character
of the reflection coefficient module of the lossy ferromagnetic half-space
with the periodic grating on its boundary is evident.

The frequency parameter χ can take a discrete set of values at
which the considered structure either mostly reflects the excitation
field energy |a0| > 0.5 or mostly absorbs it |a0| < 0.5. In the same
frequency range, a ferromagnetic half-space without a grating (dashes)
or a grating-loaded lossless ferromagnetic half-space (ε′′ = 0) can
fully reflect the incident plane wave, i.e., |a0| = 1. The exception
is some vicinity of the ferromagnetic resonance normalized frequency
χ0. There the frequency dependences of the reflection coefficient of
the ferromagnetic half-space with and without a grating demonstrate
a Wood’s anomaly resonance. The resonance is caused by the wave
appearing and travelling in the ferromagnetic medium at χ < χ0.

To interpret an infinitely large number of resonances on frequency
dependences of the reflection coefficient of a strip grating attached to
a lossy ferromagnetic half-space, an approximate model is suggested.
As known [3], when frequency parameter χ meets the condition χ0 <
χ < χ−, a slow surface wave can propagate along the ferromagnetic
half-space boundary. Its phase velocity V0 depends on the frequency
parameter χ according to the formula

V0 = 2c

√
(χ+ − χ−)(χ2− − χ2)

α(χ, ε) +
√

∆(χ, ε)
, (32)

where

α(χ, ε) = χ2((ε + 1)χ− − 2χ+) + χ+χ− [χ+ (ε− 1)− 2εχ−] ,
∆(χ, ε) = α2(χ, ε)− [(ε− 1)χ2 + χ+(χ+(ε + 1)− 2εχ−)]2(χ2

− − χ2),

c is the velocity of light in a vacuum.
As follows from (32), the χ− value of the frequency parameter is

the cutoff frequency of this surface wave, for its phase velocity vanishes
at χ = χ−. When a grating is present on the ferromagnetic half-space
boundary, the diffraction field in the frequency range χ0 < χ < χ− is a
superposition of an infinite number of spatial harmonics exponentially
decaying away from the grating and traveling along it with the phase
velocity Vn = cχ

n , n = ±1,±2, . . . . (the exception is the n = 0
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Table 1. Accuracy of the resonance frequency calculation.

n χmin
n

χn Error, %

1 0.431057 0.423569 0.75
2 0.436721 0.432875 0.38
3 0.438558 0.436548 0.20
4 0.439350 0.438163 0.12
5 0.439757 0.438987 0.08
6 0.439994 0.439458 0.05
7 0.440142 0.439750 0.04
8 0.440242 0.439944 0.03
9 0.440312 0.440078 0.02
10 0.440363 0.440174 0.02

spatial harmonic). Upon the phase synchronism condition of these
spatial harmonics with the surface wave on the ferromagnetic medium
boundary, relation (32) yields the equation of the appearance

χ = 2n

√
(χ+ − χ−)(χ2− − χ2)

α(χ, ε) +
√

∆(χ, ε)
, (33)

where n = 1, 2, . . . are the numbers of the diffraction field spatial
harmonics.

It can be shown that, within χ0 < χ < χ− for n given,
Equation (33) has a unique root χn such that χn → χ− as the spatial
harmonic number n grows. In the other words, the normalized value
of the cutoff frequency χ− of the ferromagnetic half-space surface wave
is the point of the accumulation of the roots of Equation (33).

Equation (33) has been solved numerically. The first ten roots
χn, n = 1, 2, . . . , 10 are given in Table 1 together with the frequency
parameter χmin indicating the local minima of the reflection coefficient
curve from Fig. 2. As seen, these frequency parameter values tend to
the χn results coming from Equation (33) (the relative error is indicated
in Table 1). The numerical analysis suggests that χmin → χn as the
grating slot increases (d

l → 1).
Thus, at a certain frequency parameter χ, a plane E-polarized

electromagnetic wave incident on a strip grating backed by a
ferromagnetic half-space can bring the phase velocity of the surface
wave into the coincidence with the phase velocity of one of
the spatial harmonics. After that the incident wave energy is
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Figure 3. Equal amplitude lines |Ez| = const.

resonantly transferred to the surface electromagnetic field, which is
a superposition of spatial harmonics.

In support, refer to Fig. 3 for the Ez equal amplitude lines
(|Ez| = const) corresponding to the first four values of χ, where |a0| has
a local minimum (see Fig. 2). One can see that the field is localized near
the ferromagnetic half-space boundary, being, on this point, a surface
field. Besides, as the resonance value of frequency parameter χ grows, a
number of field variations within the structure period increases, which
agrees well with the mentioned approximated model.

Here it should be noted that even though the excitation field is
symmetrical (in view of the normal incidence of the wave Ez = e−ikx)
and the grating has geometrical symmetry about the oX axis, the
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diffraction field is clearly asymmetrical because of the ferromagnetic
medium nonreciprocity.

The reflection coefficient |a0| versus the slot size (parameter d/l)
of the strip grating is presented in Fig. 4, where equal amplitude

Figure 4. The reflection coefficient module versus frequency and
grating slot size.

Figure 5. The reflection coefficient module versus frequency and the
real part of the ferromagnetic medium permittivity.
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Figure 6. The reflection coefficient module versus frequency and
ferromagnetic medium loss.

lines |a0| are presented as a function of χ and d/l. The same |a0|
dependences on χ and Re(ε) are shown in Fig. 5 to follow the dynamics
of the absorption resonances (the dark zones) under varying these
parameters.

Of even more interest is the reflection coefficient behavior
depending on the ferromagnetic medium loss described by the loss
tangent tgδ = ε′′/ε′. Fig. 6 indicates that there exist optimum values
of the loss tangent (the dark zones), where practically all the energy
of the incident electromagnetic wave is transferred to one of surface
harmonics of the periodic strip grating placed on the ferromagnetic
half-space boundary.

5. CONCLUSION

In this paper, a method has been suggested for solving the diffraction
problem of a plane E-polarized electromagnetic wave normally incident
on a strip grating located on the ferromagnetic half-space boundary.

Based on this method, algorithms and computing programs
were developed, and characteristic features of the E-polarized wave
diffraction by a strip grating backed by a ferromagnetic half-space
received their study in a wide range of geometrical and constitutive
parameters. It has been found that the interval

√
ωH (ωH + ωM ) <

ω < ωH + ωM
2 contains an infinite sequence of frequencies with a finite



Progress In Electromagnetics Research B, Vol. 23, 2010 127

accumulation point coinciding with the surface-wave cutoff frequency
of the ferromagnetic half-space. At these frequencies, a resonant
absorption of the excitation wave energy holds.
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