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Abstract—This paper is an overview of important concepts and
formulas involved in the application of coupling coefficients of
microwave resonators for the design of bandpass filters with
a particular emphasis on the frequency dispersion of coupling
coefficients. The presumptions and formulas are classified into
accurate, approximate, and erroneous ones.

1. INTRODUCTION

Coupling coefficients of resonators are widely used in the design of
microwave bandpass filters. They offer a fairly accurate method for
a direct synthesis of narrow-band filters and provide initial estimate
structure parameters for optimization synthesis of wide-band filters [1–
4]. Coupling coefficients together with resonator oscillation modes and
their resonant frequencies are the keystones of a universal physical
view on microwave bandpass filters. They underlie the intelligence
method of filter optimization based on a priory knowledge of physical
properties of resonator filters [5–7]. The frequency dispersion of
coupling coefficients is a primary cause of the asymmetrical slopes
of the filter passband [8, 9]. Attenuation poles in a filter frequency
response are often due to coupling coefficients becoming null [8]. An
energy approach to coupling coefficients gives a clue to their abnormal
dependence on the distance for some resonators [3, 10].

However, there is no generally accepted definition of a resonator
coupling coefficient currently available. The difference between
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the existing definitions is most exposed and becomes an important
consideration in the case of a strong coupling, i.e., in wide-band filters.

In this paper, we endeavor to compare various approaches to
resonator coupling coefficients currently existing in the microwave filter
theory and to select the best ones from the point of view of application.
We also dwell on some widely believed misconceptions concerning the
coupling coefficients.

2. BANDPASS NETWORKS OF RESONANT CIRCUITS

M. Dishal was the first to introduce coupling coefficients into the
microwave filter theory [11]. He started with a bandpass network
comprising a ladder chain of alternate series and parallel dissipative
resonant circuits tuned to the same resonant frequency ω0 = 1/

√
LC.

He defined the coupling coefficient between adjacent resonant circuits
for this network as

|κ| =
√

Cs/Cp, (1)

where Cs is the capacitance of the series RLC resonant circuit, and Cp

is the capacitance of the parallel RLC resonant circuit. In this case an
exact expression for the network transfer immitance is a ratio, where
the numerator is independent of the frequency ω and is proportional
to the product of coupling coefficients of all adjacent resonant circuits
while the denominator is a polynomial of (ω/ω0 − ω0/ω) with the
highest power n being the number of resonant circuits. All coefficients
of the polynomial are solely functions of the coupling coefficients and
the Q factors of the resonant circuits. The polynomial may take
the form of Chebyshev polynomial at certain values of the coupling
coefficients in the network. Exact simultaneous equations for those
values were obtained in [11] for n up to 4. So the coupling coefficient
κ defined by (1) has an unlimited value range.

Another bandpass network considered in [11] was a ladder chain
of parallel RLC resonant circuits with both capacitive and mutual
inductive coupling. This network is usually more practical to build
physically. It has been shown that the denominator of the transfer
immitance of the other network is not a polynomial of (ω/ω0 −
ω0/ω) [11]. The two bandpass networks are approximately equivalent
only in the case of a narrow passband, i.e., when |κ| ¿ 1. Their



Progress In Electromagnetics Research B, Vol. 21, 2010 49

transfer functions coincide in the vicinity of ω0 if |κ| = |k(ω)|, where

k(ω)≈ ω

ω0
kC − ω0

ω
kL, (2)

kL = Lm

/√
L1L2, (3)

kC = Cm

/√
(C1 + Cm)(C2 + Cm). (4)

Here C1, L1, C2, L2 are the capacitances and inductances of
two coupled parallel resonant circuits, and Cm, Lm are the coupling
capacitance and mutual inductance. Constants kL and kC are known as
inductive coupling and capacitive coupling coefficients of two parallel
resonant circuits.

Thus the coupling coefficient k(ω) between two parallel RLC
resonant circuits is an algebraic sum of two frequency-dependent terms.
One term is responsible for capacitive coupling, and the other term
accounts for inductive coupling. The algebraic sum (2) may vanish at
a certain frequency ωp, where the transfer function of the bandpass
network has an attenuation pole. This essentially means that of the
capacitive coupling and the inductive coupling have compensated each
other. At a resonant frequency ω0 the absolute values of both terms
in the algebraic sum (2) are limited to unity.

In [12], it was claimed that physical realization of narrow-band
filters having no attenuation poles at finite frequencies must exactly
supply the numerical values for three kinds of quantities: resonant
frequency ω0, resonator Q factors, and coupling coefficients between
adjacent resonators ki,i+1. In this case, the coupling coefficient is
defined as

|k| ≈ |ωe − ωo|/ω0, (5)

where ωe, ωo are the frequencies of even and odd coupled oscillations
of resonators, and ω0 is the resonant frequency of each resonator,
including all coupling reactances. In other words, the coupling
coefficient in a narrow passband case is defined as a constant computed
at a resonant frequency. One should be careful in using such a
simplified approach.

In [1], an approximate formula

ki,i+1 ≈ ω2 − ω1√
ω1ω2

1√
gigi+1

, (6)

was proposed for narrow-band filters, which relates the coupling
coefficient ki,i+1 between resonator i and i + 1 to the passband edge
frequencies ω1, ω2, on the one hand, and to the normalized elements gi

of the lowpass prototype filter, on the other hand. This formula gives
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ki, i +1 symmetrical relative to the substitution i → n + 1 − i even for
an asymmetrical filter.

Expression (6) for a bandpass network comprising a ladder chain
of coupled nondissipative microwave resonators was derived in [2]. Yet
another definition of the coupling coefficient was used therein:

ki, i +1 = Ji, i +1/
√

bibi +1. (7)
where Ji,i+1 is the characteristic admittance of the inverter between
parallel-type resonators i and i + 1 in an equivalent network of a
microwave filter, and bi is the susceptance slope parameter for ith
resonator. All resonators have zero susceptance Bi(ω) at resonant
frequency ω0. The slope parameter is found as

bi =
ω0

2
dBi(ω)

dω

∣∣∣∣
ω=ω0

. (8)

Approximate formulas (5) and (6) both indicate that the value of
the coupling coefficient at a resonant frequency is totally dependent on
the coupled oscillation frequencies ωe, ωo of two identical resonators.
Therefore the coupling coefficient of two identical resonators was
defined in [13] as:

k = (ω2
o − ω2

e)
/
(ω2

o + ω2
e). (9)

Formula (9) coincides with (5) in a weak coupling case. It yields
the |k| value, coinciding with (3) in the case of a sole mutual-inductive
coupling, and with (4) in the case of a sole capacitive coupling. In order
for formula (9) to be true in a general case, i.e., when both capacitive
coupling and mutual-inductive coupling are present, expression (4) has
to alter the sign and satisfy the following summation rule for coupling
coefficients [13]

k = (kL + kC)/(1 + kLkC). (10)
Formula (10) is identical to the velocity-addition formula in the special
theory of relativity. It agrees with (2) and coincides in a weak coupling
case with the commonly used approximate formula [3]

k ≈ kL + kC . (11)
Formulas (9) and (10) assume that k, kL, and kC may be both

positive and negative. The sign of a coupling coefficient has a physical
meaning only when one coupling is compared to another, e.g., in
summation.

As for the case of two coupled series and parallel resonant circuits,
the frequencies of coupled oscillations ω± are related to the coupling
coefficient (1) as follows:

ω2
± =

(2 + κ2)±
√

(2 + κ2)2 − 4
2

ω2
0. (12)
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Here new notations ω+ and ω− have been used instead of ωe and ωo

because two resonant circuits tuned to the same frequency ω0 are not
symmetrical.

Solution of (12) gives the coupling coefficient

|κ| = (ω+ − ω−)/
√

ω+ω−. (13)

This formula agrees with approximate expression (5). Being equivalent
to (1), it may serve as a definition of κ.

Using (9) and (13) one is able to compare two different coupling
coefficients k and κ. They are related as

|k| = |κ|
√

4 + κ2

2 + κ2
. (14)

One can see that |κ| is greater than |k|. This formula has not been
published before.

In a bandpass network obtained from a lowpass prototype filter
using the bandpass frequency transformation

Ω =
√

ω1ω2

ω2 − ω1

(
ω

ω0
− ω0

ω

)
, (15)

the frequencies of coupled mode oscillations for resonant circuits i and
i+1 have the following values

ω± = ω0

[√
1 +

(ω2 − ω1)2

4gigi+1ω1ω2
± ω2 − ω1

2√gigi+1ω1ω2

]
, (16)

where Ω is the frequency of the lowpass prototype filter with
normalized parameters gi.

For a bandpass network with alternate series and parallel resonant
circuits, using (13) and (16) one can obtain the following values for the
coupling coefficients

|κi, i +1| = ω2 − ω1√
ω1ω2

1√
gigi+1

. (17)

This exact formula for κi,i+1 agrees with the approximate formula (6)
for ki,i+1.

3. COUPLED MICROSTRIP RESONATORS

A microstrip filter is one of simple filters with distributed parameters.
The coupling coefficient of two identical equal regular microstrip
resonators at a resonant frequency was considered in [13]. For a
maximum coupling length lc of resonators with both open ends, i.e.,
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when lc is equal to the resonator strip length lr, the electrical length θ
of the resonator is a multiple of π at resonant frequencies ωe and ωo.
Therefore, (9) yields

k(lc)| lc= lr
= (εe − εo)/(εe + εo). (18)

where εe and εo are the effective dielectric constants for even and odd
modes in coupled microstrip lines.

The theory of non-uniform coupled transmission lines makes
intensive use of inductive coupling and capacitive coupling coefficients.
They are defined as [14]

KL = Lm/
√

L1L2, (19)

KC = Cm/
√

(C1 + Cm)(C2 + Cm). (20)
Here L1, L2, C1, C2 are self inductances and self capacitances per
unit length of transmission line conductors, and Lm, Cm are mutual
inductances and mutual capacitances per unit length. Formulas (19)
and (20) are similar to (3) and (4). Coefficients KL and KC are always
positive and less than unity.

Using (19), (20) and also the formulas for effective dielectric
constants of even and odd modes

εe = c2C1(L1 + Lm), (21)
εo = c2(C1 + 2Cm)(L1 − Lm), (22)

one can rewrite (18) as follows [13]
k(lc)| lc= lr

= (KL −KC)/(1−KLKC). (23)

By comparing (10) and (23), the inductive coupling and capacitive
coupling coefficients for two equal microstrip resonators are found to
be

kL(lc)|lc=lr
= KL, (24)

kC(lc)|lc=lr
= −KC . (25)

Taking into consideration (21), (22), and

Ze =
√

(L1 + Lm)/C1, (26)

Zo =
√

(L1 − Lm)/(C1 + 2Cm), (27)
one can rewrite (19), (20) for symmetrical coupled microstrip lines as
follows:

KL =
Ze
√

εe − Zo
√

εo

Ze
√

εe + Zo
√

εo
, (28)

KC =
Ze

/√
εe − Zo

/√
εo

Ze

/√
εe + Zo

/√
εo

. (29)
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In coupled microstrip lines, the effective dielectric constant is
always εe > εo, therefore (18) and (23) yield the inequality KL > KC ,
whereas in uniform coupled lines εe = εo and hence KL = KC .

The numerical simulation carried out in [13] has shown that the
ratio KC/KL for coupled microstrip lines is a monotonic decreasing
function of the substrate dielectric constant εr and the rate of
decreasing grows with the spacing S between the strips.

An equation for resonant frequencies of two equal parallel regular
microstrip resonators with an arbitrary coupling length lc was also
obtained in [13]. A numerical solution of the equation and the use
of (9) allowed the authors to plot a series of curves k(lc/lr) for different
values of εr. It was found that all the curves intersected at one point
lc/lr = 0.646. This indicates that the coupling coefficient at the point
of intersection is independent of εr. According to (10), this is feasible
when kC = 0.

The authors of [13] worked on the assumption that kL is
proportional to the mutual part of the total magnetic energy of coupled
resonators, and kC is proportional to the mutual part of the total
electrical energy, i.e.,

kL ∝ Lm

lc∫

0

I1(x)I2(x)dx, (30)

kC ∝ −Cm

lc∫

0

U1(x)U2(x)dx, (31)

where I1(x), I2(x), U1(x), U2(x) are real functions, describing the
current and voltage distributions along coupled microstrip resonators.
Assuming the distributions to be sinusoidal and using (24), (25),
the following formulas were derived from (30), (31) for the inductive
coupling and capacitive coupling coefficients at the first resonant
frequency [13]:

kL(lc) = KL [(1/π) sin(πlc/lr)− (lc/lr) cos(πlc/lr)] , (32)
kC(lc) = KC [(1/π) sin(πlc/lr) + (lc/lr) cos(πlc/lr)] . (33)

Expression (33) shows that indeed kC(lc) becomes zero at the point of
intersection mentioned above.

Then, using (23), (28), (29), (32), and (33), another series of
curves k(lc/lr) was plotted in [13]. The both series of curves coincided
within graphical accuracy, which proves that final formulas (32)
and (33) as well as original formulas (30) and (31) are true.

First studies of the frequency dispersion of coupling coefficients
between microstrip resonators were reported in [8, 15]. A symmetrical
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pair of electromagnetically coupled regular microstrip resonators with
tapped input and output ports was studied. The total electromagnetic
energy of symmetrically excited coupled resonators was written in the
form:

W = 2W11L + W12L + 2W11C + W12C , (34)

where W11L and W11C are the energies of magnetic and electric fields
stored in the first and the second resonator separately, and W12L and
W12C are the energies of magnetic and electric fields stored in the first
and the second resonator jointly. These summands are defined as

W11L =
1
2
L1

lr∫

0

I2
1 (x)dx, (35)

W11C =
1
2
(C1 + Cm)

lr∫

0

U2
1 (x)dx, (36)

W12L = Lm

lc∫

0

I1(x)I2(x)dx, (37)

W12C = −Cm

lc∫

0

U1(x)U2(x)dx. (38)

The frequency-dependent inductive coupling and capacitive
coupling coefficients were defined in [8, 15] as follows:

kL =
W12L

W11L + W11C
, (39)

kC =
W12C

W11L + W11C
. (40)

It was assumed that all energies were computed for U1(x) = U2(x).
Formulas (39), (40) agree with (30) and (31). They were used

to obtain analytical expressions for kL(ω) and kC(ω). Here I1(x) and
U1(x) have been approximated by sinusoidal functions with the average
effective dielectric constant and average impedance in the coupling area

εa =
1
4

(
√

εeZe +
√

εoZo) (
√

εe/Ze +
√

εo/Zo) , (41)

Za =
√

(
√

εeZe +
√

εoZo)/(
√

εe/Ze +
√

εo/Zo). (42)
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When the tapping points, which are the input and output ports,
are opposite each other and lc = lr, the expressions have a simple form:

kL(ω) = KL

[
1− tan(θ1) + tan(θ2)

θ1

/
cos2(θ1) + θ2

/
cos2(θ2)

]
, (43)

kC(ω) = −KC

[
1 +

tan(θ1) + tan(θ2)
θ1

/
cos2(θ1) + θ2

/
cos2(θ2)

]
. (44)

Here θ1, θ2 are the electrical lengths of the two sections, into which
the tapping point divides the resonator. One can satisfy himself that
(43) and (44) are in perfect agreement with (24) and (25) at the first
resonant frequency when θ1 + θ2 = π.

Graphs of k(ω) were plotted in [8, 15] for various cases using
summation rule (10) and the analytical expressions for kL(ω) and
kC(ω). Also L(ω) graphs of the frequency response were computed
and plotted for the same cases. It was found that all attenuation pole
frequencies ωp in graphs L(ω) coincided with the frequencies ωn of
nulls in the graphs k(ω). Hence (10), (39), (40) are in agreement with
(1)–(4), (9).

There is a widely believed false opinion that the asymmetrical
passband response in parallel coupled microstrip filters is due to a
difference in even- and odd-mode phase velocities [16, 17]. That was
disproved in [8, 15]. In actual fact, it is the frequency dispersion of
coupling coefficients between resonators that is responsible for the
asymmetric passband response.

The coupling coefficients between two equal irregular microstrip
resonators at a resonant frequency were studied in [10]. Microstrip
resonators, having a stepped narrowing of the strip conductor in
its central part, were considered. Analytical expressions for kL

and kC were obtained for the case of a maximum coupling length
using definitions (39) and (40). Also obtained were average wave
approximations (41) and (42). With the use of these expressions and
rule (10), k had been plotted as a function of the resonator spacing S,
which was then compared with another graph k(S) calculated from (9).
Resonant frequecies ωe and ωo were found from equations:

tan θe2 tan θe1 = Ze2/Ze1, tan θo2 tan θo1 = Zo2/Zo1, (45)

respectively, where index 1 refers to a half of the central part of the
resonator, and index 2 refers to the end part of the resonator. The
comparison showed satisfactory agreement between the two graphs
k(S).

A graph of the relative difference between the coupling coefficients
∆k(S)/k(S) was also plotted in [10]. It was shown that the use of
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average wave approximation (41) and (42) results in the relative error
∆k/k of order 10−4, except in the vicinity of one specific value S0

where k = 0.
The presence of S0 is due to d |kC/kL|/dS < 0, kL > 0 and kC < 0

for any value of S on the one hand, and lim
S→0

kC/kL < −1 on the other

hand. Thus the coefficient k(S) is negative below S0 and positive above
S0. Besides, the coefficient k(S) is an increasing function of S over a
range just above S0. As a result, the specified value of |k| may be
realized at one, two or even three different values of S [10].

A similarly abnormal behavior of the coupling coefficient
depending on the spacing between resonators was reported later
in [3, 18] for other cases.

A comparative study of frequency responses was carried out in [19]
for three microstrip filters having identical irregular resonators and
passbands but different spacing. A numerical analysis of the frequency
dispersion of the coupling coefficient for stepped impedance microstrip
resonators was performed in [20].

4. ASYMMETRICAL PAIR OF COUPLED
RESONATORS

The coupling coefficients of an asymmetrical pair of coupled resonators
tuned to the same frequency were studied in [21]. It was a study of
two unequal parallel resonant circuits coupled both inductively and
capacitively. Arbitrary complex voltage amplitudes U1 and U2 were
assumed in the input and output ports.

Based on that study, the following refined definitions of inductive
and capacitive coupling coefficients were proposed:

kL(ω) =
Ẇ12L√

(W̄11L + W̄11C)(W̄22L + W̄22C)
, (46)

kC(ω) =
Ẇ12C√

(W̄11L + W̄11C)(W̄22L + W̄22C)
, (47)

where W is a real summand of the total electromagnetic energy of
coupled resonators at an arbitrary frequency ω. Subscripts L and
C refer to the magnetic and electric fields, respectively. Bar over
W indicates the constant energy component. Dot over W indicates
the amplitude of the oscillating energy component. Subscripts 11, 12,
and 22 denote summands, proportional to |U1|2, |U1||U2|, and |U2|2,
respectively, even for magnetic energy. Summation of (46) and (47)
must follow rule (10). Formulas (46), (47) are a generalization and
refinement of above formulas (39), (40).
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For unequal parallel resonant circuits enveloped in both mutual-
inductive and capacitive coupling, definitions (46), (47) give the
following expressions for the coupling coefficients [21]:

kL =
Lm√
L1L2

2√
(1 + ω2ω−2

1 )(1 + ω2ω−2
2 )

, (48)

kC =
−Cm√

(C1 + Cm)(C2 + Cm)
2√

(1 + ω2
1ω

−2)(1 + ω2
2ω

−2)
, (49)

where the resonant frequencies of the circuits are:

ω1 = 1
/√

L1(C1 + Cm)[ 1− L2
m

/
(L1L2)], (50)

ω2 = 1
/√

L2(C2 + Cm)[ 1− L2
m

/
(L1L2)]. (51)

Formulas (10), (48), and (49) agree with (2), (3), and (4) for
ω1 = ω2 = ω0 and ω ≈ ω0. Besides (10), (48), and (49) yield the
frequency:

ωp =
√

Lm

/
[(L1L2 − L2

m) Cm], (52)

where k(ωp) = 0. Frequency ωp coincides exactly with the attenuation
pole frequency of a two-port network of coupled parallel resonant
circuits. All the above proves that expressions (48), (49) are accurate,
and definitions (46) and (47) are true.

Two unequal parallel coupled microstrip resonators were then
studied in [21]. Analytical expressions for coupling coefficients were
obtained from (46) and (47) using average wave approximations (41)
and (42). A numerical comparison of the approximate analytical
formulas with the exact k value obtained from (9) was performed in
that paper. It was found that the relative error |∆k/k| < 0.01 if
|k| < 0.10.

There are also other similar definitions of the coupling coefficients
being used. In [3], the total coupling coefficient is defined as:

k =
W12L

2
√

W11LW22L
+

W12C

2
√

W11CW22C
, (53)

where magnetic and electric energies are computed for real resonant
fields H1, E1, H2, E2 of the first and the second resonator.
This formula provides a frequency independent value even when
electromagnetic fields are not resonant, which is its major drawback.

In [22], the definition of the coupling coefficient for two identical
resonators has the form

k =
W̄12L

2W̄11L
− W̄12C

2W̄11C
. (54)
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Here constant components of magnetic and electric energies are
determined for complex fields H1, E1, H2, E2 of the first and the
second resonator and are calculated for the case when one of the
resonators is missing. The current frequency is assumed to be resonant.
So, definition (54) yields a frequency independent value too. The
negative sign at the second term in (54) is the result of dropping the
negative sign in the identity

ε0

∫∫∫
εrE1E2 dx dy dz ≡ −

∫
C12U1U2dx.

The authors of [18] suggest the following definition of inductive
and capacitive coupling coefficients:

kL(ω) =
2Im (W c

12L)(
W c

11L + W c
22L + W c

11C + W c
22C

) |S21|
, (55)

kC(ω) =
2Im (W c

12C)(
W c

11L + W c
22L + W c

11C + W c
22C

) |S21|
. (56)

Here S21 is the scattering matrix element, W is a complex summand of
the total electromagnetic energy of coupled resonators at an arbitrary
frequency ω. Superscript c indicates a complex value. Subscripts L
and C refer to the magnetic and electric fields, respectively. Subscripts
11, 22, and 12 denote energies stored individually and jointly in the
resonators, where summands of magnetic energy are supposed to be
proportional to |I1(x)|2, |I2(x)|2, and I1(x)I∗2 (x), while summands
of electric energy to |U1(x)|2, |U2(x)|2, and U1(x)U∗

2 (x). The total
frequency dependent coupling coefficient k(ω) is an algebraic sum
of (55) and (56) complying with rule (10).

Note, that the denominator in (55) and (56) is a real value. The
sum in brackets is a constant component of the total electromagnetic
energy stored individually in each resonator. Numerators in (55) and
(56) are merely doubled amplitudes of the oscillating components of
jointly stored magnetic and electric coupling energies.

It should be mentioned that (55) and (56) give a reasonable
frequency dispersion of the coupling coefficient. However these
formulas suffer two illogicalities. The first one is the combined
use of energy (W c) and dynamic (S-matrix) characteristics in one
consideration, which has never been practiced in theoretical physics.
The second one is that the output resonator terms W22C and/or W22L

in the denominator of (55) and (56) appear to be different from zero
even at the frequency at which the coupling turns zero. Formulas (46),
(47) do not suffer such inconsistency.
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5. COUPLING COEFFICIENTS IN BANDPASS FILTERS

Exact values of coupling coefficients |ki,i+1| were obtained in [23]
for a bandpass network comprising a ladder chain of alternate series
and parallel nondissipative resonant circuits and featuring Chebyshev
frequency response. In order to calculate the coupling coefficient for
a certain asymmetrical pair of adjacent resonant circuits, formula (9)
was rewritten in the form

|k| = (ω2
+ − ω2

−)
/
(ω2

+ + ω2
−). (57)

Here ω− and ω+ are the lower and upper frequencies of coupled
oscillations in an isolated pair of series and parallel resonant circuits.
The isolation of a pair was achieved by disconnecting the external port
of the parallel resonant circuit and closing the external port of the
series resonant circuit.

The coupling coefficients acquired the following values [23]:

|ki, i+1| = w√
gigi+1

√
1 +

w2

4gigi+1

/(
1 +

w2

2gigi+1

)
, (58)

where w is the relative bandwidth defined as w = (ω2 − ω1)/
√

ω1ω2.
Formula (58) agrees with the initial approximate formula (6) when
w ¿ 1.

The values of |ki,i+1| obtained from (58) for a bandpass network
of alternate series and parallel resonant circuits were compared
in [23] with the corresponding values of |ki,i+1| in an optimized
microwave bandpass filter of cascaded alternate low-impedance and
high-impedance half-wavelength transmission line sections having the
same passband. A pair of cascaded sections in microwave filters may
be treated as coupled series and parallel half-wavelength resonators.
Resonant frequencies ω± of their coupled oscillations are determined
from [23]:

θ± = π ± arctan
√

Z−/Z+, (59)

where Z+ and Z− are the impedances of high-impedance and low-
impedance sections of the optimized filter, and θ± are their electrical
lengths at ω±. Substitution of (59) into (57) gives [23]:

|k+ −| = 2π arctan
√

Z−/Z+

π2 + arctan2
√

Z−/Z+

. (60)

A comparison of the coupling coefficient values computed in [23]
with (58) and (60) for seven-pole filters having the same passband with
w = 0.40 is presented in Table 1.



60 Tyurnev

Table 1. Coupling coefficients in bandpass filters on lumped (58) and
distributed (60) elements.

formula |k1,2| |k2,3| |k3,4|
(58) 0.2903 0.2270 0.2176
(60) 0.2720 0.2299 0.2177

Table 2. Parameters of bandpass networks.

kL:kC k1,2 k2,3 k3,4 dk/dω

0:1 −0.2968 −0.2625 −0.2507 > 0
1 : 1 −0.2773 −0.2224 −0.2147 = 0
1:0 ±0.2657 ±0.2017 ±0.1984 < 0

The difference between two sets of |ki,i+1| in Table 1 is significant.
It can also be seen from the graphs presented in [23]. They show
frequency responses corresponding to the two sets of |ki,i+1| in Table 1.

Thus a set of values of coupling coefficients |ki,i+1| in wideband
filters tuned to the same passband may vary depending on the filter
construction. This variation was believed to be due to the frequency
dispersion ki,i+1(ω) [23].

The impact of the frequency dispersion of coupling coefficients on
their resonant values ki,i+1(ω0) in tuned wideband filters was studied
in [24]. The studies were carried out for a bandpass network comprising
a ladder chain of six parallel resonant circuits with both mutual-
inductive coupling and capacitive coupling. Three bandpass networks
of that kind differing in the kL/kC ratio were tuned to the same
passband with a fractional bandwidth of 40%. Parameters of the
obtained networks are shown in Table 2.

As one can see from Table 2 the resonant values of coupling
coefficients |ki,i+1(ω0)| in bandpass filters indeed increase with the
capacitive component, i.e., with dk/dω, in the electromagnetic
coupling.

This makes us to conclude that formula (58), as well as its
approximate version (6), as a direct-synthesis formula is only valid
for bandpass filters with a narrow fractional bandwidth. For wideband
filers, these formulas may be used for obtaining approximate initial
values of coupling coefficients, which have to be improved during
optimization.



Progress In Electromagnetics Research B, Vol. 21, 2010 61

6. FILTER OPTIMIZATION AND COUPLING
COEFFICIENTS

Standard optimization methods are in a wide use in popular microwave
software packages. However, being universal, the standard methods are
not good enough for optimization of microwave filters.

Intelligence optimization method is more effective due to use of a
priori knowledge about a structure to be optimized. Such optimization
method for symmetrical bandpass microwave filters was proposed
in [5, 6].

The aim of the intelligence optimization is to obtain the given
passband by varying as minimum number of designable parameters as
possible. All other designable parameters are kept unchanged in order
to be used for further possible optimizations, e.g., for miniaturization.
The filter passband is specified by the center frequency ω0, the
fractional bandwidth ∆ω0/ω0, and the maximum reflected power in
the passband R0 measured in decibels.

The deflection vector D with n + 1 components, where n is the
number of resonators in the filter, is an objective function in the
intelligence optimization. The first three components are defined as

D1 = (ωc − ω0)/ω0, (61)
D2 = (∆ωc −∆ω0)/∆ω0, (62)

D3 =

(
1

n− 1

n − 1∑

i=1

Ri −R0

)
/R0, (63)

where ωc is the current center frequency, ∆ωc is the current bandwidth,
and Ri is the ith maximum reflected power numbered in the frequency
axis direction [5, 6]. Definitions of other components depend on n. In
the case of a four-resonator filter,

D4 = R1 −R3, (64)
D5 = R2 − (R1 + R3)/2. (65)

There are rules in the intelligence optimization how to build a
proper conjugate correction operation for each deflection component.
These rules operate in terms of such physical quantities as resonant
frequencies of all resonators, external Q factor of input and output
resonators, and coupling coefficients for all pairs of adjacent resonators.

Components of the deflection vector D are divided into even and
odd relative to the center frequency or center reflection maximum(s).
Odd components are D1, D4. Even components are D2, D3, D5.

Each physical quantity is matched with one the best suitable
structure parameter, e.g., the coupling coefficient |k| is matched with
spacing S between resonators.
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The correction operation for an odd component involves correction
operations for frequency-related structure parameters. The correction
operation for an even component involves correction operations for
coupling-related structural parameters. For example, the correction
operation for D5 > 0 comes down to increasing the coupling coefficient
|k12| and simultaneously decreasing the coupling coefficient |k23| in
order to try to maintain the same value of the product |k12|2|k23| [5].

All correction operations associated with deflection vector
components are quasi-orthogonal. This means that each correction
operation, while eliminating its conjugate deflection component,
produces other deflection components with absolute values being much
less than the absolute value of the eliminated deflection component.

The intelligence optimization is a robust method due to quasi-
orthogonality of the correction operations. The process terminates
when the absolute values of all components of the D vector become
less than a specified value.

The expert system Filtex32 has been successfully using the
intelligence optimization method for over ten years for synthesis,
analysis, and investigation of strip and microstrip filters [25, 26].

Recently the intelligence optimization method has been general-
ized for bandpass filters with dual-mode resonators [7, 27]. The pass-
band formation in such filters involves two oscillation modes rather
than one per resonator. In order to be able to apply the rules formu-
lated for single-mode filters, each dual-mode filter resonator should be
treated as a pair of coupled single-mode resonators. The frequencies of
coupled oscillations in such an imaginary pair must coincide with two
resonant frequencies of the actual dual-mode resonator. In a specific
case, an experiment or simulation can provide an answer as to how
to control the coupling coefficient and resonant frequencies of coupled
imaginary resonators. However, it is difficult to figure out the physical
nature of coupling coefficient and resonant frequencies of imaginary
resonators.

Another area of application of coupling coefficients for filter
optimization has to do with the coupling matrix [28, 29] and the
extended coupling matrix [30]. These matrices are symmetrical. Their
off-diagonal elements are coupling coefficients kij between ith and
jth resonators. This allows for cross-coupling between non-adjacent
resonators. The coupling coefficients in the matrix are assumed to
be frequency independent constants. The coupling matrix and the
extended coupling matrix allow a direct computation of the frequency
response for an equivalent network of mutual-inductively coupled
parallel resonant circuits. So they are used as coarse models in space-
mapping optimization of coupled-resonator microwave filters [31].
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Moving on from resonator voltages to their linear combination, one
can perform a similarity transformation over the extended coupling
matrix. Such transformations do not affect the filter frequency
response. All transformed matrices are equivalent.

One of the equivalent matrices is called a transversal matrix. In
a transversal matrix all off-diagonal elements corresponding to two
transformed resonator voltages are zero. The diagonal elements are
eigenvalues of the coupling matrix. The eigenmodes are not coupled to
each other. The physical interpretation of similarity transformations
was discussed in [32].

7. CONCLUSION

The coupling coefficient is a dimensionless physical quantity describing
the degree of coupling between two resonators. It is a function of the
frequency and it has the following features:

1. For two coupled resonators tuned to the same frequency, the
absolute value of the coupling coefficient at a resonant frequency relates
to the frequencies of coupled oscillations as (57).

2. The transmitted power in ladder-type filters is proportional to
the product of coupling coefficients for all pairs of adjacent resonators,
i.e., all frequencies of zero coupling coefficients coincide with all
frequencies of attenuation poles in the frequency response.

The coupling coefficient is a certain algebraic sum of the inductive
coupling coefficient and the capacitive coupling coefficient. Their
summation rule is exactly the same as the velocity-summation formula
in the special theory of relativity.

The inductive coupling and capacitive coupling coefficients for two
parallel-type resonators are essentially the ratios of two energies. The
denominator in both coefficients is a root-mean-square of time constant
terms of the total electromagnetic energy in both coupled resonators,
which are proportional to squared voltages in the first resonator port
and in the second resonator port.

The numerator of the inductive coupling coefficient is amplitude of
the time dependent term of the total magnetic energy in both coupled
resonators, which is proportional to the product of voltage in the first
resonator port and voltage in the second resonator port.

The numerator of the capacitive coupling coefficient is amplitude
of the time dependent term of the total electric energy in both coupled
resonators, which is proportional to the product of voltage in the first
resonator port and voltage in the second resonator port.

There are cases when the absolute value of the coupling coefficient
may locally increase with the spacing between resonators due to the
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combined effect of inductive coupling and capacitive coupling. If this
is the case, then the filter synthesis problem may have up to three
solutions.

Exact formulas for frequency-dependent coupling coefficients of
two parallel-type coupled resonant circuits are available.

Approximate formulas for frequency-dependent coupling coeffi-
cients of two coupled parallel-type microstrip resonators are available.

There is no acceptable definition of a frequency dependent
coupling coefficient yet available for coupled series-type and parallel-
type resonators.

Approximate formulas are available for absolute values of coupling
coefficients at the resonant frequency in a narrow-band ladder-type
microwave filter.

Exact absolute values of coupling coefficients at the resonant
frequency in microwave filters tuned to the same passband vary
depending on their frequency dispersion.

The asymmetry of frequency response slopes relative to the center
frequency of a passband in microwave filters is due to the frequency
dispersion of coupling coefficients.

Attenuation poles in the frequency response can be attributed
to nulls in frequency dependences of coupling coefficients or to the
presence of an additional non-adjacent transverse coupling in the filter.

There are rules of intelligence optimization of bandpass filters
formulated in terms coupling coefficients, external Q factors, and
resonant frequencies of single-mode resonators.

Also a generalized intelligence optimization method is available
for optimization of a dual-mode resonator filter.

The coupling matrix is an array of coupling coefficients. Its
diagonal elements for a tuned filter are zero at the central passband
frequency. The off-diagonal elements are assumed to be frequency
independent constants.

An extended coupling matrix has additional lines and columns
containing reverse external Q factors. Both matrices allow
computation of an approximate frequency response of the filter near
the passband. So they are used as coarse models in space-mapping
optimization of microwave filters.

Similarity transformation of a coupling matrix does not change
the frequency response. In particular, it allows obtaining a transversal
matrix where all coupling coefficients are zero.

Thus the coupling coefficient is a useful tool for optimization of
microwave filters. Furthermore it helps physical understanding of many
features observed in microwave filers.
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