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Abstract—To solve radiation problems in time domain directly the
modal representation of transient electromagnetic fields is consid-
ered. Using evolutionary approach the initial nonstationary three-
dimensional electrodynamic problem is transformed into the problem
for one-dimensional evolutionary equations by the construction of the
modal basis for electromagnetic fields with arbitrary time dependence
in spherical coordinate system. Elimination of the radial components
of electrical and magnetic field from Maxwell equation system permits
to form the four-dimensional differential operators. It is proved that
the operators are self- adjoint ones. The eigen-functions of the opera-
tors form the basis. The completeness of the basis is proved by means
of Weyl Theorem about orthogonal detachments of Hilbert space. The
expansion coefficients of arbitrary electromagnetic field are found from
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the set of evolutionary equations. The transient electromagnetic field
can be found directly without Fourier transform application by means
of one-dimensional FDTD method for the medium with dependence
on longitudinal coordinate and time or using Laplace transform and
wave splitting for the case of homogeneous stationary medium. The
above mentioned methods are compared with the three-dimensional
FDTD method for the case of the problem of small loop excitation by
transient current.

1. INTRODUCTION

Modern computer systems for direct calculation of transient
electrodynamic problems in bounded domains permit to calculate
characteristics of complicated structures that can have dielectric
filling, non-coordinate boundaries, and sources with arbitrary time
dependence [1]. But it is difficult to construct and optimize radiating
systems by the same means because of the significant increase of
amount of required main memory and computer time. One of solutions
of this problem consists in a restriction of an electrodynamic volume
by absorbing boundaries [2–4] but it does not simplify the problem
noticeably if the electrical size of calculated electrodynamic structure
is significant. Usually, after carrying out the calculation in the
bounded volume, the characteristics of radiation systems in far zone
are estimated with the use of equivalent sources of transient electrical
and magnetic currents on boundaries. The suggested evolutionary
approach in the present work allows the finding of the all components
of radiated fields in near and far zone by means of the solution of
nonstationary one-dimensional equations in partial derivatives. The
decreasing of dimension of a problem simplifies its solving significantly
irrespective of a method [5].

Solving of a radiation problem in time domain directly assists to
clarify electromagnetic phenomena in different structures [6]. To solve
inner problems in time domain directly the Modal Basis Method was
proposed by Tretyakov [7]. Using the method there was obtained the
set of evolutionary equations that contain dependence of electrical and
magnetic parameters of medium inside resonator on time in an explicit
form rather than its Fourier Transform [8–10].

The method also known as Evolutionary Approach in Electromag-
netics was applied to waveguides filled with nonstationary nonlinear
inhomogeneous in longitudinal direction medium [11, 12]. The initial
transient three-dimensional electrodynamic problem was transformed
into the problem for one-dimensional evolutionary equations by the
construction of the modal basis for electromagnetic fields with arbi-
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trary time dependence. There were obtained self-adjoint operators in
transverse plane of waveguide with arbitrary contour of cross-section.
The eigen-functions of the operators form the modal basis. Using Weyl
Theorem about orthogonal detachments of Hilbert space [13] the com-
pleteness of the basis of an arbitrary regular waveguide was proved
for the first time. Projection of the set of Maxwell equations onto
the Modal Basis permits to get the set of Evolutionary Equations.
Actually, the MBM is one of varieties of the method of incomplete
separation of variables [2, 14] for more general statements of problems.
MBM allows to exclude the dependence of functions on transversal co-
ordinates from Maxwell Equations and leave the dependence of func-
tions on longitudinal coordinate and time that permits to satisfy the
causality principle in solution of the problem. To solve a problem in
waveguide filled with inhomogeneous medium not only in longitudinal
but in transversal plane as well for the problems like in [15] the MBM
was successfully applied later [16].

The same Evolutionary Approach was found suitable for radiation
problems too. Firstly it was applied to construct Modal Basis
in cylindrical coordinate system [17, 18]. The set of Evolutionary
Equations for more complicated case of inhomogeneous medium in
transversal plane was obtained in [19, 20] as well as it was received
in [16] for waveguides. But the spherical coordinate system is more
widely used in radiation problems than the cylindrical coordinate
system because of the spherical coordinate system reflects physical
essence of radiation processes conveniently. The analysis of different
broadband antennas in time domain is more simple in spherical
coordinate system [21–23].

The present paper is devoted to the construction of the Modal
Basis and obtaining of Evolutionary Equation Set in spherical
coordinate system to solve radiation problems in time domain. The
same approach was applied in [24] but the obtained field expansion
wasn’t complete. The drawback was eliminated in [25] that permitted
to solve radiation problems [26–29]. The comparison of the analytical
and numerical solutions of the problem of propagation of spherical
electromagnetic wave with arbitrary time dependence from a radiator
with the results of direct three-dimensional numerical simulation is
carried out. The operator of transient field transformation from an
initial spherical boundary to another one is constructed. The problem
of propagation of spherical electromagnetic wave with arbitrary time
dependence through radially inhomogeneous medium is solved by
numerical calculations of nonstationary one-dimensional problem for
Evolutionary Equation in partial derivatives. The obtained results is
compared with the direct solution of the problem by three-dimensional
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FDTD method.

2. STATEMENT OF THE PROBLEM

Considering electromagnetic wave propagation in the space filled by
spherical inhomogeneous nonstationary medium the material equations
and the continuity equations are of the following form

~D (~r, t) = ε0ε (r, t) ~E (~r, t) , ~B (~r, t) = µ0µ (r, t) ~H (~r, t) ,

∂

∂t
ρ = −div~J,

∂

∂t
ρm = −div~Jm,

where ~r ≡ ~r (r, ϕ, θ). Write down Maxwell’s equations in any space
region

rot~H =
∂

∂t
ε0ε~E + ~J; rot~E = − ∂

∂t
µ0µ~H− ~Jm;

div
(
ε0ε~E

)
= ρ; div

(
µ0µ~H

)
= ρm.

(1)

The problem is completed by initial and boundary conditions.
According to procedure firstly proposed in [7], we should

construct basis in transversal plane. It will permits to transform
original three-dimensional nonstationary problem into one-dimensional
nonstationary problem as it was done for the case of transient wave
propagation in waveguides [11].

3. ELIMINATION OF RADIAL COMPONENTS OF
FIELD

Writing arbitrary three-dimensional vector as a sum of two-dimensional
angular and one-dimensional radial vectors we introduce the following
notations
~E = ~E + ~r0Er; ~H = ~H + ~r0Hr; ~J = ~J + ~r0Jr; ~Jm = ~Jm + ~r0J

m
r ,

where ~r0 is unit vector.
One should keep in mind that ∇ = ~θ0

1
r

∂
∂θ + ~ϕ0

1
r sin θ

∂
∂ϕ +

~r0
∂
∂r = 1

r∇t + ~r0
∂
∂r , where ∇t is angular Hamilton’s operator. After

projecting (1) to longitudinal axis and sphere we obtain expressions

∂

∂r

(
r2µ0µHr

)
= −r∇t ·

(
µ0µ ~H

)
+ r2ρm;

∂

∂r

(
r2ε0εEr

)
= −r∇t ·

(
ε0ε ~E

)
+ r2ρ;

(2)
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r
∂

∂t
(µ0µHr) = −~r0 ·

[
∇t × ~E

]
− rJm

r ;

r
∂

∂t
(ε0εEr) = ~r0 ·

[
∇t × ~H

]
− rJr;

(3)

[∇t × ~r0] Hr = r

(
∂

∂t

(
ε0ε ~E

)
+

1
r

∂

∂r

[(
r ~H

)
× ~r0

]
+ ~J

)
;

[∇t × ~r0] Er = r

(
− ∂

∂t

(
µ0µ ~H

)
+

1
r

∂

∂r

[(
r ~E

)
× ~r0

]
− ~Jm

)
.

(4)

Substituting in (4) the expressions (2) and (3) we eliminate Er and Hr

from the Equations (2)–(4) and obtain

[~r0 ×∇t]∇t · ~H =
1
rµ

∂

∂r

(
µr3

{
∂

∂t

(
ε0ε ~E

)

+
1
r

∂

∂r

[(
r ~H

)
× ~r0

]
+ ~J

})
− r

µ0µ
[∇t × ~r0] ρm;

∇t [~r0 ×∇t] · ~E = −r2 ∂

∂t

(
µ0µ

[
~r0 ×

{
∂

∂t

(
ε0ε ~E

)

+
1
r

∂

∂r

[(
r ~H

)
× ~r0

]
+ ~J

}])
− r∇tJ

m
r ;

(5)

[∇t × ~r0]∇t · ~E =
1
rε

∂

∂r

(
εr3

{
∂

∂t

(
µ0µ ~H

)

− 1
r

∂

∂r

[(
r ~E

)
× ~r0

]
+ ~Jm

})
+

r

ε0ε
[∇t × ~r0] ρ;

∇t [∇t × ~r0] · ~H = r2 ∂

∂t

(
ε0ε

[
~r0 ×

{
∂

∂t

(
µ0µ ~H

)

− 1
r

∂

∂r

[(
r ~E

)
× ~r0

]
+ ~Jm

}])
− r∇tJr.

(6)

So, we state the problem in the form (5), (6), adding initial and
boundary conditions. Radial vectors of electromagnetic field are
calculated by integration of formulas (2), (3).

4. FOUR-DIMENSIONAL ELECTROMAGNETIC FIELD
VECTORS

The vectors ~E and ~H form the four-dimensional electromagnetic field

vector X (ϕ, θ) =
(

~E (ϕ, θ)
~H (ϕ, θ)

)
. Let’s introduce the Hilbert functional
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space L4
2 (S) of vector-functions X (ϕ, θ) with energy measure

〈X1, X2〉 =
1
4π

∫

S

dS
(

~E1 · ~E∗
2 + ~H1 · ~H∗

2

)
,

where symbol ∗ notes complex conjugation, S is the unit sphere with
the center in the origin.

Let us now consider two matrix differential operations in the space
L4

2 (S)

W̃HX =
(

0 [~r0 ×∇t]∇t·
∇t [~r0 ×∇t] · 0

)(
~E
~H

)
=

(
[~r0 ×∇t]∇t · ~H

∇t [~r0 ×∇t] · ~E

)
;

W̃EX =
(

0 ∇t [∇t × ~r0] ·
[∇t × ~r0]∇t· 0

)(
~E
~H

)
=

(∇t [∇t × ~r0] · ~H

[∇t × ~r0]∇t · ~E

)
,

where WH and WE are linear operators in L4
2 (S) that are given by W̃H

and W̃E correspondingly and included proper boundary conditions.
Operators WH and WE have orthonormal sets of eigenfunctions

Y±mk =
( ∇tΨmk × ~r0

±∇tΨmk

)
, Z±nl =

( ∇tΨnl

±~r0 ×∇tΨnl

)
that correspond

to real eigenvalues p±m = ±m (m + 1), q±n = ±n (n + 1), where

Ψmk =
√

2m+1
2

(m−|k|)!
(m+|k|)!P

|k|
m (cos θ) eikϕ with P k

m (x) being the associate
Legendre functions, n,m = 1, 2, . . ., k = −m,m, l = −n, n. Vector-
functions Ymk, Znl form the orthonormal basis in Hilbert functional
space L4

2 (S) according Weyl’s theorem about orthogonal splitting [13].

5. EVOLUTIONARY EQUATIONS

Let’s unknown coefficients of the expansion of electromagnetic field on
modal basis are found from the solution of evolutionary equations.
Set of evolutionary equations are found by projection of initial
Maxwell equations on the basis obtained. So the problem is reduced
to the following equations obtained from evolutionary equation set
supplemented with relations between evolutionary coefficients and field
components [25]:

5.1. TE-wave

{
1
c2

∂

∂t
ε

∂

∂t
− ∂

∂r

1
µ

∂

∂r
+

pmk

r2µ

}(
r2µBmk

)
=− 1

2πµ0





∂

∂r


r2

µ

∫

S

ρmΨ∗
mkdS
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−rµ0

∫

S

~J · [∇t × ~r0] Ψ∗
mkdS+

r2

c2

∂

∂t


ε

∫

S

Jm
r Ψ∗

mkdS






 ;

{
1
c2

∂

∂t
ε

∂

∂t
− ∂

∂r

1
µ

∂

∂r

} (
r2µB0

)

= − 1
4πµ0

∂

∂r


r2

µ

∫

S

ρmdS


− r2ε0

4π

∂

∂t


ε

∫

S

Jm
r dS


 ;

~E =
∞∑

m=1

m∑

k=−m

[∇tΨmk × ~r0]



−rµ0

∂

∂t
(µBmk)− r

2π

∫

S

Jm
r Ψ∗

mkdS



;

~H =
∞∑

m=1

m∑

k=−m

∇tΨmk





1
µr

∂

∂r

(
r2µBmk

)− r

2πµ0µ

∫

S

ρmΨ∗
mkdS



;

Hr =
∞∑

m=1

m∑

k=−m

BmkpmΨmk + B0,

5.2. TM-wave

{
1
c2

∂

∂t
µ

∂

∂t
− ∂

∂r

1
ε

∂

∂r
+

qnl

r2ε

}(
r2εAnl

)
=− 1

2πε0





∂

∂r


r2

ε

∫

S

ρΨ∗
nldS




+rε0

∫

S

~Jm · [∇t × ~r0] Ψ∗
nldS +

r2

c2

∂

∂t


µ

∫

S

JrΨ∗
nldS






 ;

{
1
c2

∂

∂t
µ

∂

∂t
− ∂

∂r

1
ε

∂

∂r

} (
r2εA0

)

= − 1
4πε0

∂

∂r


r2

ε

∫

S

ρdS


− r2µ0

4π

∂

∂t


µ

∫

S

JrdS


 ;

~E =
∞∑

n=1

n∑

l=−n

∇tΨnl





1
εr

∂

∂r

(
r2εAnl

)− r

2πε0ε

∫

S

ρΨ∗
nldS



;

~H =
∞∑

n=1

n∑

l=−n

[~r0 ×∇tΨnl]



−rε0

∂

∂t
(εAnl)− r

2π

∫

S

JrΨ∗
nldS



;
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Er =
∞∑

n=1

n∑

l=−n

AnlqnΨnl + A0.

To complete the statement of the problem the initial and (or)
boundary conditions for the evolutionary equations are necessary. The
same set of equations was obtained in [24] but without coefficients A0

and B0.

6. ANALYTICAL SOLUTIONS OF EVOLUTIONARY
EQUATIONS

Let us consider propagation of TE-wave in free space (ε ≡ 1, µ ≡ 1)
without sources of given electrical and magnetic current. Initial
conditions for Bmk are homogeneous. The source of a field is given
on a sphere of the radius r0: Bmk (r0, t) = Fmk (t), where Fmk (t)
are arbitrary functions of time, m and k describe angular distribution
sources on the sphere. We will take into account the outgoing waves
only.

Let’s apply Laplace Transform to the written above equation for
evolutionary coefficient Bmk (r, t). We obtain{

r2 ∂2

∂r2
−

(
r2s2

c2
+ m (m + 1)

)} (
r2Bmk (r, s)

)
= 0,

where s is a parameter of Laplace Transform. The general solution of
this equation [30] is

Bmk (r, s) = r−3/2
(
C1 (s) Jm+1/2

(
i
s

c
r
)

+ C2 (s) J−m−1/2

(
i
s

c
r
))

,

where Jν (z) is a Bessel function. Using the known representation of
Bessel function of half-integer order one can convert the solution to
the form

Bmk (r, s) = rm−1

(
1
r

d

dr

)m (
1
r

(
C̃1e

− s
c
r + C̃2e

s
c
r
))

.

Taking into account outgoing waves only we assume that C̃2 ≡ 0. C̃1

is found from boundary condition. As a result one can get

Bmk (r, s) = Fmk (s)
(

r

r0

)m−1
(

1
r

d
dr

)m
(

1
re−

s
c
r
)

(
1
r

d
dr

)m
(

1
re−

s
c
r
)∣∣∣

r=r0

.

Performing the differentiation the expression for Bmk (r, s) is reduced
to

Bmk(r, s)=
(r0

r

)2
Fmk(s)e−

s
c
(r−r0) +

(r0

r

)m+2
Fmk(s)e−

s
c
(r−r0) Qm−1

(
sr
c

)

Pm

(
sr0
c

) ,
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where Qm−1 (x) and Pm (x) are the polynomials of degrees m− 1 and
m correspondingly,

Pm

(sr

c

)
= (−1)m e

s
c
rr2m+1

(
1
r

d

dr

)m (
1
r
e−

s
c
r

)
;

Qm−1

(sr

c

)
= Pm

(sr

c

)
−

(
r

r0

)m

Pm

(sr0

c

)
.

After returning to the originals the amplitude of longitudinal
component of magnetic field can be written in form of the operator
of wave propagation [27]

Bmk (r, t)=
(r0

r

)2
Fmk

(
t− r−r0

c

)
+

(r0

r

)m+2
Fmk

(
t− r−r0

c

)
∗Gm (r, t) ,

where ∗ denotes the operation of conjunction, Gm (r, t) =
m∑

l=1

Qm−1

(
rαl
r0

)

P ′(αl)
e

c
r0

αlt, αl are the simple roots of the polynomial Pm (x).

For example,

G1 (r, t) =
c

r2
0

(r0 − r) e
− c

r0
t
,

G2 (r, t) = 2
√

3
c

r3
0

(r0−r)e−
3
2

c
r0

t

(
r sin

(√
3

2
ct

r0
−π

6

)
−r0 sin

(√
3

2
ct

r0

))
.

Easy to see that the first term in the expression for Bmk (r, t) coincides
with the solution of the problem for spherically symmetrical source
B0 (r, t), other terms describe retarding part of nonstationary wave.

As for the problem for Neumann boundary condition one can
get [28]

Bmk (r, t) = r
(r0

r

)m+3
Gmk

(
t− r − r0

c

)
∗ Ĝm (r, t) ,

where Ĝ1 (r, t) = 2 c√
3r2

0

e
− 3

2
c

r0
t
(√

3r sin
(√

3
2

ct
r0
− π

6

)
− r0 sin

(√
3

2
ct
r0

))
.

7. NUMERICAL SIMULATION

As an example, let’s consider the small loop of radius r0 = 0.01m with
infinitesimal radius of wire which is excited by the transient current
with time dependence in form of short pulse

f (t) =
1
2

(
1− cos

(
2πt

T

))
(H (t)−H (t− T )) ,
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where H(t) is Heaviside step function, T = 1 ns.
It is easily seen that the chosen source radiates TE-waves

only, and does not generate zero mode. The radiation problem
can be stated either in form of problem for inhomogeneous partial
differential equation with homogeneous initial and boundary conditions
or in form of problem for homogeneous partial differential equation
with homogeneous initial and inhomogeneous Neumann boundary
conditions. Let solve the problem in the second form transforming
the given currents of the loop into equivalent magnetic field on the
sphere of radius r0.

Excitation of loop by point source with above mentioned time
dependence of current is accompanied by appearance of significant
induced currents that cause the change of time dependence of total
current. The change of current time dependence can be calculated
by three-dimensional FDTD method. Normalized initial current time
dependence and total current time dependence obtained by 3D FDTD
method are depicted on Fig. 1. Really, neither the shape of curve 1,
nor the form of curve 2 is not the time dependence of surface currents
because of nonsynchronous excitation by point source, but we will
neglect the effect in our further simulations.

One dimensional evolutionary equations can be solved numerically
as well by well-known change of operations of differentiation by time
and radial coordinate with finite differences (one-dimensional FDTD
method) [31]. As a result on the Fig. 2 and Fig. 3 time dependences of

0,0 0,5 1,0 1,5
0,0

0,2

0,4

0,6

0,8

1,0
I, A

Time, ct, m

 1

 2

Figure 1. Normalized time
dependences of given current
of external source (curve 1)
and current with accounting of
induced surface currents (curve
2).

0 2 4 6 8
-3,0x10

-3

-2,0x10
-3

-1,0x10
-3

0,0

1,0x10
-3

2,0x10
-3

3,0x10
-3

4,0x10
-3 H

r
, A/m

Time, ct, m

 Laplace
 1-D FDTD
 3-D FDTD

Figure 2. Time dependences of
radial component of magnetic field
for r = 0.167m, θ = 0◦ (1 —
Laplace transform method, 2 — 1D
FDTD, 3 — 3D FDTD).
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6 8 10 12 14
-1,5x10

-4

-1,0x10
-4

-5,0x10
-5

0,0

5,0x10
-5

1,0x10
-4

1,5x10
-4

 Laplace
 1-D FDTD
 3-D FDTD

H
r
, A/m

Time, ct, m

Figure 3. Time dependences of radial component of magnetic field for
r = 0.83 m, θ = 0◦ (1 — Laplace transform method, 2 — 1D FDTD,
3 — 3D FDTD).

the amplitude of radial component of magnetic field are presented for
the points of observation r = 0.167 m and r = 0.83m correspondingly
at θ = 0◦. Curves 1 correspond to the time shape of excitation
current obtained by the analytical approach, curve 2 received by one-
dimensional FDTD method for the same form of current, curve 3 is
obtained by three-dimensional simulation with taking into account the
distortion of time shape of current and asynchronous excitation of the
loop. It is seen that curves 1 and 2 show change the time form of pulse
from the form of current in near-field region (Fig. 2) to the form of its
first derivative in far-field region (Fig. 3).

Let consider the case when the radiator is surrounded by the
spherical layer of radially inhomogeneous medium with permittivity

ε (r) = 1 + ε1e
−4(r−r1)2

h2 , where ε1 = 4, effective radius of sphere
r1 = 0.6m and effective thickness of layer h = 0.01m. The problem can
be solved easily by one-dimensional FDTD method. The sampling step
is chosen reasoning from the quickest change of medium characteristics
on r and time dependence of exciting current to avoid numerical
instability [31, 32].

Time dependences of the amplitude of radial component of
magnetic field are presented on the Fig. 4 and Fig. 5 for the points
of observation r = 0.167m and r = 0.83m, inside and outside of
sphere correspondingly. Curves 1 correspond to the initial time shape
of excitation current from Fig. 1 (curve 1), curves 3 correspond to the
corrected shape from the same figure (curve 2), curve 2 is obtained by
three-dimensional simulation with taking into account asynchronous
excitation of the loop. Curve 2 is calculated in approximation of
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0,5 1,0 1,5 2,0 2,5

-0,01

0,00

0,01

0,02

Time, ct, m

H
r
, A/m  1

 2
 3

Figure 4. Time dependences
of radial component of magnetic
field for r = 0.167 m, θ = 0◦ (1
— Numerical solution for given
current of external source (1D
FDTD), 2 — Numerical solution
with calculation of induced cur-
rents (3D FDTD), 3 — Numerical
solution for given current with ac-
counting of induced currents (1D
FDTD).

1,0 1,5 2,0 2,5

-0,0004

0,0000

0,0004

0,0008
H

r
, A/m

Time, ct, m

 1
 2
 3

Figure 5. Time dependences
of radial component of magnetic
field for r = 0.83m, θ = 0◦ (1
— Numerical solution for given
current of external source (1D
FDTD), 2 — Numerical solution
with calculation of induced cur-
rents (3D FDTD), 3 — Numerical
solution for given current with ac-
counting of induced currents (1D
FDTD).

homogeneous dielectric spherical layer (ε = 5) with thickness of the
layer h = 0.01 m. The waves reflected from spherical layer once
(ct = 1m) and twice (ct = 2.2m) are seen on the Fig. 4. The travelling
through spherical layer waves are depicted on Fig. 5 where one of pulses
is reflected from the other side of sphere (ct = 2.1m). One can see that
the correction of the time shape of exciting current obtained by 3D
FDTD method for the use of 1D FDTD method give us satisfactory
precision of result with the significant decrease of calculation time.
The decreasing of amplitude of pulses of curves 2 and 3 is explained
by widening of exciting pulse shown on the Fig. 1 and asynchronous
excitation of the loop (curves 2).

According to the idea of modal expansion, to obtain the
amplitudes of fields we must calculate the amplitudes of fields of plenty
of modes. But even for the case of points situated close to the loop one
can calculate the amplitudes of fields of several modes. It is illustrated
on the Fig. 6 where dependence of ratio between values of amplitudes
of radial component of magnetic field and its precise value on number
of accounted modes for the close to loop distances of observation r is
depicted.
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Figure 6. Dependence of ratio between values of amplitudes of radial
component of magnetic field accounting first N modes and its precise
value for different distances of observation r.

One-dimensional numerical simulation have been carried out
for maximum frequency of signal spectrum Fmax = 400 GHz, and
the process consumed 2Mb RAM. Three-dimensional simulation was
performed for Fmax = 3 GHz, and needed 200 times more RAM and
40 times more CPU time. It means that to reach the same accuracy
in numerical calculation by 3D FDTD method we need in 27000 times
more RAM than using evolutionary equation technique and 1D FDTD
method for the considered problem.

8. CONCLUSIONS

The nonstationary one-dimensional equation set that describes evolu-
tion of transient electromagnetic waves in spherically inhomogeneous
transient medium is obtained. Using Laplace Transform the operator
of transformation of transient electromagnetic field on the sphere of
smaller radius to the field on the sphere of bigger radius is constructed.

Combination of three-dimensional numerical simulation for
obtaining the space-time distribution of a source of field and modal
basis method with the use of the numerical or analytical solving of
evolutionary equations permits to decrease the calculation time and
main memory significantly.
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