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Abstract—Ultra-Wideband (UWB) radar is one of the most
promising emerging technologies for the early detection of breast
cancer, and the development of robust beamforming algorithms for
imaging has been the subject of a significant amount of research.
Extending the monostatic Microwave Imaging via Space Time (MIST)
beamformer originally developed by Bond et al., the authors proposed
the Multistatic MIST beamforming algorithm that uses the spatial
diversity of the receiving antennas to acquire more energy reflected
from dielectric scatterers which propagate outwards via different
routes, while compensating for multistatic path-dependent attenuation
and phase effects. In this paper, the performance and robustness
of the Multistatic MIST beamformer is examined across a range of
potential clinical scenarios. The multistatic beamformer is directly
compared with the traditional monostatic beamformer and the effects
of the additional multistatic channels is investigated. Furthermore,
the robustness of the beamformer with respect to tumor size and
location, variations in dielectric properties, and significantly, different
fibroglandular tissue distributions within the breast based on recently
published data, is examined.
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1. INTRODUCTION

Breast cancer is one of the most common cancers in women. In the
United States alone, it accounts for 31% of new cancer cases, and is
second only to lung cancer as the leading cause of deaths in American
women [1]. More than 184,000 new cases of breast cancer are diagnosed
each year resulting in approximately 41,000 deaths [1]. However, breast
cancer mortality is on the decline in industrialized countries like as the
United States, Canada, Germany, Austria and the United Kingdom [2].
This decline can be attributed in no small part to increased breast
cancer screening, and the early detection and treatment of the disease.
Earlier detection and intervention is one of the most significant factors
in improving the survival rates and quality of life experienced by
breast cancer sufferers [2], since this is the stage when treatment is
most effective. While X-ray mammography is currently the standard
imaging modality for detecting early-stage non-palpable breast cancer,
it’s inherent limitations in terms of sensitivity and specificity are well
documented [2].

One of the most promising breast imaging modalities is microwave
imaging. Two alternative active microwave imaging techniques are
currently under development, Microwave Tomography and Ultra-
Wideband (UWB) Radar imaging. Microwave Tomography involves
reconstructing the complete dielectric profile of the breast using a
forward and inverse scattering model [3–7]. The tomographic approach
has shown significant promise in both detecting small tumors [8, 9] and
also differentiating between malignant and benign tissue for lesions as
small as 1 cm in diameter [9].

On the other hand, Ultra-Wideband (UWB) Radar imaging,
as proposed by Hagness et al. [10], uses reflected UWB signals to
determine the location of microwave scatterers within the breast.
Rather than using the tomographic approach of reconstructing the
entire dielectric profile of the breast, UWB radar imaging uses the
Confocal Microwave Imaging (CMI) approach [10] to identify and
locate regions of scatterings within the breast [11–19]. Adaptive
beamforming is typically used to process the backscattered signals, and
to compensate for frequency-dependent propagation effects [20–26].

In a monostatic beamformer, each antenna in turn illuminates the
breast and the reflected energy is recorded only at the transmitting
antenna. In some monostatic approaches, the transmitting antenna is
moved across the breast to produce a synthetic aperture. Conversely, in
the multistatic approach, the tissue is illuminated by one transmitting
antenna while the backscattered signals are recorded at several
antennas placed at different positions around the breast. As described
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by Xie et al. [24], the multistatic approach can produce better imaging
results when the actual aperture used in the multistatic system is
close to the synthetic aperture used in the monostatic case. A
multistatic imaging system has been developed by Craddock et
al. [27, 28], while several other multistatic imaging algorithms have
been developed and demonstrated, including a simple Delay and
Sum (DAS) [29] and a Robust Capon Beamforming (RCB)-based
adaptive method [24, 25, 30]. Bond et al. proposed a monostatic
MIST beamformer which is described in [20]. The Multistatic
MIST beamformer [31] examined here extends the monostatic MIST
beamformer algorithm, compensating for attenuation and phase
effects as the multistatic signals propagate through the breast.
The multistatic MIST beamformer has been previously shown to
significantly outperform the monostatic MIST beamformer from which
it is derived [31].

A recent study of the dielectric properties of adipose, fibroglan-
dular and cancerous breast tissue has highlighted the dielectric het-
erogeneity of normal breast tissue [32, 33]. The dielectric properties
of adipose tissue were found to be lower than any previously pub-
lished data for normal tissue. Conversely, the dielectric properties of
fibroglandular tissue were found to be significantly higher than any
previously published data for normal breast tissue. This heterogene-
ity of normal breast tissue had been considerably underestimated by
previous studies [34], and presents a much difficult imaging scenario.
Therefore, in order to accurately determine the effectiveness, and in-
deed limitations of the Multistatic MIST beamformer [31], the ability
of the beamformer to accurately identify the presence and location of
cancerous tissue within the dielectrically heterogeneous breast is as-
sessed in this paper.

The remainder of the paper is organized as follows: Section 2
describes Multistatic MIST beamforming algorithm; Section 3
describes the test procedure applied to the Multistatic MIST
beamformer and the corresponding results; Finally, the conclusions
and suggestion for possible future work are discussed in Section 4.

2. MULTISTATIC MIST BEAMFORMER

Consider a planar array of antennas placed across a naturally flattened
breast. Each antenna element of the array sequentially transmits
a UWB pulse into the breast, and the returns are recorded on all
antennas in the array, including the transmitting antenna. For the
purposes of this section, it is assumed that the early-stage artifact
in each channel has been effectively removed and all that remains is
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dout d return

Figure 1. The propagation path distance for multistatic signals is
equal to the sum of the outward distance dout and return distance
dreturn. The antennas are shown as black dots located across the
surface of the breast. The voxel of interest, r0, is shown in blue, and
the propagation paths dout and dreturn are shown as red arrows for
clarity.

the response from any tumor present and clutter due to the natural
heterogeneity of the breast; artifact removal is considered further in
Section 3. The first step in the beamforming is coarse time-alignment.
Consider a voxel of interest r0 within the breast, as shown in Figure 1.
For each antenna transmission, the propagation distance between
the transmitting antenna, the voxel r0, and the receiving antenna is
calculated. The distance is denoted by d(i,j) where i is the transmitting
antenna index and j is the corresponding receiving antenna index. For
multistatic signals, the distance d(i,j) is defined as:

d(i,j) = dout + dreturn (1)
where dout is the distance between the transmitting antenna and r0

and dreturn is the distance between r0 and the receiving antenna, as
shown in Figure 1. For the signal recorded at the transmitting antenna
itself (the monostatic signals), the distance is simply:

d(i,i) = 2dout (2)

The round-trip time (in samples) to r0, and back to the receiving
antenna, is calculated as follows:

Trt(i,j) =
d(i,j)

s
fs (3)

where fs is the sampling frequency, and s is the average speed of
propagation in breast tissue and is defined as follows:

s =
c√
εr

(4)
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where εr is the relative permittivity of normal breast tissue at the
centre frequency of the UWB input signal and c is the speed of light.
Each of the signals is then delayed, to coarsely time-align all the
responses from the candidate location as a pre-processing step to allow
further processing to take place. The delay applied to each channel is
defined as:

delay(i,j) = max(Trt)− Trt(i,j) (5)

Once the delay is applied to each channel, and the response from the
scan location of interest coarsely aligned, the delay term, max(Trt),
is removed, to ignore energy from any interference or clutter present
outside the time window of interest.

Once the initial time-alignment has taken place, an FIR filter,
based on the monostatic beamformer design of Bond et al. [20], is used
to mitigate path-length dispersion and attenuation, interpolate any
fractional time delays remaining, and bandpass filter the signal. For
each multistatic channel i, the FIR filter of length L can be denoted
by wi =

[
wi0, wi1, . . . , wi(L−1)

]T . The frequency response of each filter
is given by:

Wij(ω) =
L−1∑

l=0

ωile
−jωlTs = wT

ijd(ω) (6)

where d(ω) =
[
1, e−jωTs , . . . , e−jω(L−1)Ts

]T
and Ts is the sampling

interval. Assuming the time-alignment step has been completed, the
filter coefficients must satisfy the following equation:

N∑

i=0

S̃ij(r0, ω)wT
ijd(ω) ≈ e−jωTs(L−1)/2 (7)

where Sij(r0, ω) is a model of the channel which affects the input signal
as it propagates from the ith transmitting antenna to the target, and
back to the jth receiving antenna, and is defined as follows:

Sij(r0, ω) =

[
1√

Trt(i,j)

e−α(ω)Trt(i,j)e−jβ(ω)Trt(i,j)

]
(8)

where α(ω) is the frequency-dependent attenuation factor and β(ω) is
the frequency-dependant phase constant.

There are two differences between this channel model and the
model used by Bond et al. [20]. Firstly, Bond et al. calculated the
one-way distance between the transmitting antenna and the target,
and then squared the channel model to account for the round-trip
propagation. This is not appropriate for multistatic signals where dout

and dreturn are often quite different. Secondly, Bond et al. assumed
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that α(ω) and β(ω) are constant and were evaluated at the spectral
peak of the input signal. For a more complete representation of the
frequency-dependence of the channel, the variation of α(ω) and β(ω)
with frequency is incorporated into the channel model, used here.

Let N define the total number of multistatic channels used,
and the filtering weight vector w as w = [wT

1 ,wT
2 , . . . ,wT

N]T; then
Equation (7) becomes:

wTd(r0, ω) ≈ e−jωTs(L−1)/2 (9)

and d(r0, ω) is defined as:

d(r0, ω) =




S̃11(r0, ω)d(ω)
S̃12(r0, ω)d(ω)

.

.
˜SNN (r0, ω)d(ω)




(10)

To ensure the filter weights are real-valued, Equation (9) is evaluated
across positive and negatives frequencies within the frequency band
[ωl, ωu]. The vector d(r0, ω) at each of the discrete frequencies across
the band is contained within matrix A:

A = [d(r0, ω1), . . . ,d(r0, ωM )] (11)

and Equation (9) now becomes:

wTA ≈ fd (12)

where
fd =

[
e−jω1Ts(L−1)/2, . . . , e−jωMTs(L−1)/2

]
(13)

The least squares solution [35] to this problem is defined as:

w = min
w

∣∣∣∣wTA− fd
∣∣∣∣2

2
(14)

The minimum norm solution to Equation (14) is given by:

w =
(
AAH

)−1
AfHd (15)

However, if A is ill-conditioned, the solution will have a large norm,
which could amplify signals from outside the required synthetic focus
and so a penalised least squares solution is used instead [35]:

min
w

∣∣∣∣wTA− fd
∣∣∣∣2

2
+ λ ||w||22 (16)

Solving (16) for w yields the following:

w =
(
AAH − λI

)−1
AfHd (17)
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where AH is the Hermitian transpose of A. Assuming the tumour is a
point scatterer, the backscattered signal after beamforming will be a
distorted time-shifted version of the transmitted pulse, and therefore
the size and shape of the backscatterer can be estimated. Since the
time delay max(Trt) has already been removed from the signal, the
window containing the backscattered response is defined as:

h(r0, n) =
{

1, 0 ≤ n ≤ nh

0, otherwise

The energy at the point of interest, r0, is calculated as the sum of
the squares of samples within this window. As described by Bond
et al. [20], if the tumour is large, the duration of the backscattered
tumour response will be greater, and so a larger window would be
more appropriate in this case. However, since we are concerned with
the detection of small tumours, a smaller temporal window is chosen
to more effectively determine the presence of early-stage cancers.
While this may lessen somewhat the strength of the return from
larger tumours compared to background clutter, these large tumours
inherently provide a much stronger response and so detection of these
tumours should not be problematic. The synthetic focus is then
scanned throughout the breast in increments of 1mm2 (depth and
span). The energy is converted to an appropriate pixel intensity with
high intensity regions in the image suggesting the possible presence of
malignant tissue within the breast.

3. TESTING PROCEDURE AND RESULTS

3.1. FDTD Models

In order to evaluate the Multistatic MIST beamforming algorithm,
three Finite Difference Time Domain (FDTD) models, reflecting
increasing levels of fibroglandular tissue within the breast are created.
These models accurately represent the dielectric properties of the
constituent tissues and the highly correlated distribution of these
tissues within the breasts [36], and have previously been used by the
authors to investigate the effects of dielectric heterogeneity on data-
independent beamforming algorithms [37].

The models are that of a naturally flattened breast with the
patient lying in the supine position. Therefore, in two dimensions,
a sagittal slice of breast is considered with a conformal antenna array
placed close to the skin. The adipose/fibroglandular tissue distribution
within the breast is established by linearly mapping the regions of
adipose and fibroglandular tissue from a high resolution T2 weighted
MR image to the FDTD grid, as previously used by Li [16], Bond [20]
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and O’Halloran et al. [37]. The lighter regions within the breast
represented fibroglandular tissue, while the darker regions represented
adipose tissue. A simple thresholding algorithm was applied to the
MRI scan to differentiate between the different regions of tissue, and
then a linear transformation algorithm was used to map the tissue
distribution in the MRI scan to the FDTD grid. This method was
chosen since it preserved the highly correlated nature of fibroglandular
tissue distribution in the breast, as opposed to the other methods
that model the variance of dielectric properties as being randomly
distributed. The antenna array consists of 14 elements modeled
as electric-current sources, with the elements equally spaced on the
surface of the skin along the horizontal span-axis from 1 cm to 9 cm.
The antenna array is backed by a synthetic material matching the
dielectric properties of skin.

The first of the three FDTD models is homogeneous and is
composed entirely of adipose tissue. This model acts as an “ideal”
imaging scenario for the beamformers and is a useful benchmark in
determining the effects of dielectric heterogeneity within the breast.

(a) Homogeneous Model (b) Heterogeneous Model

(b) Dense Model

Figure 2. FDTD Models of the breast. The first model is composed
entirely of adipose tissue (no fibroglandular tissue), the second
heterogeneous model contains a both adipose and fibroglandular tissue
and the third model is that of a dense breast where the fibroglandular
tissue content is significant. Note: depth is measured on the vertical
axis and span is measured on the horizontal axis.
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Table 1. Debye parameters for the FDTD model and dielectric
properties of each tissue at the centre frequency of the input pulse.

Tissue εr χ1 σ t0 (ps)
Relative
Perm.

Cond.
(S/m)

Skin 15.63 8.2 0.82 12.6 21.65 2.35
Tumor 7 47 0.15 7 49.2 6.1
Adipose 3.20 1.65 0.035 16 4.30 0.38

Fibroglandular 11.2 38 0.738 12 39.65 7.65

The second model is a heterogeneous model based on an MRI slice
taken at a distance from the areola and nipple, where the fibroglandular
distribution is less significant. In this model, there are significant
regions of fibroglandular tissue, but also regions of adipose tissue where
no fibroglandular tissue is present. The third model is a dense model
based on a sagittal slice close to the areola, where the fibroglandular
tissue distribution is much more significant and presents a much more
difficult imaging scenario. The three models are shown in Figure 2, and
are referred to as the Homogenous, Heterogenous and Dense models in
the remainder of the paper.

The dielectric properties of adipose and fibroglandular tissue
used in the FDTD models are based on Lazebnik et al.’s recent
studies [32, 33]. The frequency dependence of the dielectric properties
were incorporated using Debye models [38]). The Debye parameters
for skin are chosen to fit published data by Gabriel et al. [39, 40], while
the Debye parameters for malignant tissue are those used by Bond
et al. [20]. The Debye parameters for each type of tissue, along with
the permittivity and conductivity at the centre frequency, are shown
in Table 1.

The FDTD grid resolution, dx, is 0.5 mm and the time step
dt is defined as 0.833 ps (dt = dx

2c ). A specific location within the
FDTD model is defined as follows: (depth cm, span cm). A scan
involves sequentially illuminating the breast model with a UWB pulse
from each antenna, while recording the backscattered signal at all
antennas. Since there are 14 antenna array elements, this results in 196
recorded multistatic signals. Before further processing, the signals are
downsampled from 1200 GHz (the time step in the FDTD simulation)
to 50GHz. The input signal is a 150-ps differentiated Gaussian pulse,
with a centre frequency of 7.5 GHz and a −3 dB bandwidth of 9GHz.

An idealized artifact removal algorithm, as previously described
by Bond [20] and O’Halloran et al. [37] is used to remove the input
signal and the reflection from the skin-breast interface. The artifact to
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be removed is established by measuring the backscattered signals from
the first homogeneous FDTD model with no tumour present. These
signals are then subtracted channel-by-channel from the with-tumour
responses. Finally, since the input signal is a differentiated Gaussian
pulse with a zero crossing at its centre point, the backscattered signal
from any dielectric scatterer would also have a zero crossing at its
centre point. In order to overcome this, the signals are integrated to
produce a maximum at the centre point.

3.2. Metrics

In order to evaluate the robustness and performance of the
beamformer, a several different metrics are used:

• Signal-to-Mean Ratio (SMR) [41].
• Signal-to-Clutter Ratio within-breast (SCR) [12, 42, 43].
• The difference between the actual location of the tumor and the

location of the peak in the resulting image of backscattered energy
(Mdiff ) [31, 43].

The SMR compares the maximum tumor response with the mean
response of the different tissues across the breast in the same image
of backscattered energy [41]. The SCR within-breast compares
the maximum tumor response to the maximum clutter response in
the same image. To obtain the value of the maximum clutter,
the maximum pixel value of the image is found, excluding the area
which includes the tumor peak response up to twice the extent
of the Full Width Half Maximum (FWHM) response of the tumor
itself [12, 42, 43]. Mdiff determines the ability of the beamformer to
effectively localise the tumor within the breast.

3.3. Results

3.3.1. Effects of Multistatic Channels

The Multistatic MIST beamformer presented in this paper extends the
monostatic MIST beamformer developed by Bond et al. Therefore, its
important to examine the effect of these extra multistatic channels
have on the resultant images. Six simulations were completed, with a
10mm diameter tumor placed at three different locations in both the
homogeneous and heterogeneous breast models. The location of the
tumors were (1.5 cm, 3.0 cm), (1.5 cm, 5.0 cm) and (1.5 cm, 7.0 cm),
with each location defined in terms of (depth cm, span cm). A simple
monostatic image using only signals of the form bi,i[n] was created
initially, and signals of the form bi,i±k[n] were added incrementally. In



Progress In Electromagnetics Research, Vol. 105, 2010 413

this way, the effect of the extra multistatic signals on the algorithms
performance (in terms of SCR and SMR) could be determined, and
hence the optimum number of multistatic channels could be established
empirically. The results of this experiment are shown graphically in
Figure 3.

In the homogeneous model, the Multistatic MIST beamformer
outperformed the monostatic MIST beamformer by 2–3 dB and 2.5–
5 dB in terms of SMR and SCR respectively. Similarly, in the
heterogeneous model, the Multistatic beamformer also showed an
improved performance of 2–6 dB and 2–7 dB in terms of SMR and
SCR, as shown in Figure 3. Figures 4(a) and (b) show the resultant
images created by the monostatic and Multistatic MIST beamformers

(a) Signal To Mean (Homogeneous

     Model)

(b) Signal To Clutter (Homogeneous

      Model)

(c) Signal To Mean (Heterogeneous

     Model)

(d) Signal To Clutter (Heterogeneous

     Model)

Figure 3. The effect of multistatic channels on the performance of
the MIST beamformer. The SMR and SCR ratio for homogeneous
and heterogeneous breast models are shown in shown in Figures (a)
and (b), and (c) and (d) respectively.
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(a) (1.5 cm, 3.0 cm) (Monostatic

     MIST)

(b) (1.5 cm, 3.0 cm) (Multistatic

      MIST)

(c) (1.5 cm, 7.0 cm) (Monostatic

MIST)

(d) (1.5 cm, 7.0 cm) (Multistatic

MIST)

Figure 4. Comparison of images created by the monostatic and
multistatic MIST beamformer. Figures (a) and (b) show images created
by the monostatic and multistatic MIST beamformer respectively of a
tumour located at (1.5 cm, 3.0 cm). A similar comparison is shown in
Figures (c) and (d) with a tumor at location (1.5 cm, 7.0 cm).

respectively of a tumor located at (1.5 cm, 3.0 cm), while Figures 4(c)
and (d) show corresponding images for a tumor located at (1.5 cm,
7.0 cm). The images are shown side-by-side for direct comparison. In
both cases, the presence and precise location of the tumor is much
more clearly identifiable in the Multistatic MIST image.

3.3.2. Lateral and Depth Localisation

An important attribute of any breast imaging modality is the ability to
precisely determine the location of any tumor tissue within the breast.
In order to evaluate the lateral localisation ability of the beamformer,
5 FDTD simulations were performed with a tumor positioned at 5
different locations 1 cm apart, and at a constant depth of 1.5 cm. All
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tests were performed in the homogeneous distribution model. The
distance between the actual location of the tumor and the peak tumor
response in the resultant image is calculated for each simulation and is
presented in Table 2. The average error was found to be approximately
5.9mm.

Similarly, the depth localisation ability of the beamformer was
examined by completing 5 simulations where the lateral location of the
tumour was constant, and the depth of the tumour was varied. Once
again the distance between the actual tumour location and the location
of the peak tumour response in the resultant images was recorded.
The results are shown in Table 3. The average error in the depth
localisation was found to be approximately 5.6 mm. In all tests, the
peak of the tumour response occurred 5 to 6 mm shallower than the
actual centre of the tumour. This localization error is due to the fact
that the tumour was 1 cm in diameter and therefore the surface of
the tumour closest to the antenna array was at a distance of 5 mm
from the tumour centre; the reflection from the tumour is generated at
the surface of the tumour. The localisation ability of the beamformer
could potentially be improved by using a cylindrical rather than a
planar antenna configuration [43].

Table 2. Evaluation of the lateral localization ability of the multistatic
MIST beamformer.

Sim. No.
Actual

Tumour Location

Location

in Image
Error (mm)

1 (1.5 cm, 3.0 cm) (1.0 cm, 3.3 cm) 5.83

2 (1.5 cm, 4.0 cm) (0.9 cm, 4.2 cm) 6.32

3 (1.5 cm, 5.0 cm) (0.9 cm, 4.9 cm) 6.08

4 (1.5 cm, 6.0 cm) (0.9 cm, 5.8 cm) 6.32

5 (1.5 cm, 7.0 cm) (1.0 cm, 6.8 cm) 5.38

Table 3. Evaluation of the depth localization ability of the multistatic
MIST beamformer.

Sim. No.
Actual

Tumour Location

Location

in Image
Error (mm)

1 (1.5 cm, 5.0 cm) (0.9 cm, 4.9 cm) 6.08

2 (2.0 cm, 5.0 cm) (1.4 cm, 4.9 cm) 6.08

3 (2.5 cm, 5.0 cm) (2.0 cm, 5.0 cm) 5.0

4 (3.0 cm, 5.0 cm) (2.6 cm, 5.0 cm) 4.0

5 (3.5 cm, 5.0 cm) (3.0 cm, 5.0 cm) 5.0
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3.3.3. Robustness to Tumor Size

Early detection and intervention is key to the successful treatment
of breast cancer [2]. Therefore, the ability of the UWB imaging
technology to detect tumours ≤ 10mm is critical to its application
as an effective imaging alternative to traditional X-ray mammography.
Four test scenarios are considered: A 12 mm, 10 mm, 7.5mm and 5mm
tumour positioned at location (1.5 cm, 3.0 cm). The tests are repeated
across the homogeneous and heterogeneous models and the SCR and
SMR ratios are recorded. The results are shown in Figure 5.

Both the SMR and SCR decrease significantly with decreasing
tumor size. However, even for the smallest tumor (5 mm in diameter),
there still exists a significant contrast between the tumor and the
background clutter, with a SMR of 9 dB and a SCR of 3 dB across
both distributions.

(a) SMR Versus Tumor Size

     (Homogeneous Model)

(b) SCR Versus Tumor Size

     (Homogeneous Model)

(c) SMR Versus Tumor Size

     (Heterogeneous Model)

(d) SCR Versus Tumor Size

     (Heterogeneous Model)

Figure 5. Variation of SMR and SCR ratios with tumor size for
the homogeneous, Figures 5(a) and 5(b), and heterogeneous models,
Figures 5(c) and 5(d).
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In all imaging scenarios examined up to this point, the assumed
average dielectric properties of the breast used by the beamformer
precisely matched the actual average dielectric properties of the
numerical breast phantom. In the next section, the robustness of the
beamformer to incorrectly assumed dielectric properties is evaluated.

3.3.4. Natural Variations in Dielectric Properties

The dielectric properties of normal breast tissue has been shown
to vary significantly between patients [32, 44]. Recently, Lazebnik
et al. established three groups of normal tissue, based on the low,
medium and high percentile dielectric properties for normal adipose
and fibroglandular tissue [32]. For completeness, it is appropriate
to examine the effectiveness of the beamformer in detecting tumors
in each type of normal breast tissue. Three FDTD breast models
are created based on the low, medium and high percentile dielectric
properties, and the heterogeneous distribution model. A 10 mm tumor
is placed at two different locations within each model, (1.5 cm, 3.0 cm)
and (1.5 cm, 7.0 cm). Once again, the SMR and SCR performance
metrics are calculated for each simulation.

The SCR and SMR is greatest in the low percentile breast model,
where there exists a greater dielectric contrast between the normal and
malignant breast tissue.

3.3.5. Fibroglandular Distribution

In order to examine the robustness of the beamformer to fibroglandular
tissue dsitribution, a homogeneous, heterogeneous and dense breast
model were created as described previously. A 10 mm diameter tumor
was positioned at three different locations, (1.5 cm, 3.0 cm), (1.5 cm,
5.0 cm) and (1.5 cm, 7.0 cm), in each of the three models. The
backscattered signals were recorded and an image of each breast was
created using the Multistatic MIST beamformer. The SMR and SCR,
plotted as a function of fibroglandular tissue distribution, are shown in
Figure 7. Both the SMR and SCR decrease considerably with increased
fibroglandular tissue content. There are three specific reasons for this
decrease:

• As the breast becomes more dielectrically heterogeneous, there is
a reduced dielectric contrast between normal and cancerous breast
tissue.

• The increased fibroglandular content in the more dense breast
means constructive addition of UWB backscattered signals is
much more difficult.
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• The MIST beamformer assumes that the breast is primarily
dielectrically homogeneous, and therefore cannot appropriately
compensate for the attenuation and phase distortion as the UWB
signals propagate through the fibroglandular tissue.

(a) SMR Versus Natural Variation

      in Dielectric Properties

(b) SCR Versus Natural Variation

      in Dielectric Properties

Figure 6. Effects of natural variations in the dielectric properties
of normal breast tissue on the performance of the Multistatic MIST
beamformer. Two tumor positioned are considered in three breast
models based on the low, medium and high percentile dielectric
properties established by Lazebnik et al.. SMR Versus dielectric
heterogeneity is shown in (a), while SCR versus dielectric heterogeneity
is shown in (b).

(a) SMR Versus Dielectric

     Heterogeneity

(b) SCR Versus Dielectric

      Heterogeneity

Figure 7. Effects of dielectric heterogeneity on the performance
of the Multistatic MIST beamformer. Three tumor positioned are
considered in three breast models with increasing fibroglandular tissue
content. The SMR and SCR both decrease significantly with increasing
fibroglandular content.
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4. CONCLUSIONS

This paper has examined the performance and robustness of a
multistatic MIST beamformer, previously proposed by the authors.
The multistatic beamformer improves on the performance of the
monostatic beamformer by exploiting the additional information from
multiple receive antennas.The beamformed multistatic channels have
been shown to add coherently at the site of significantly dielectric
scatterers, and provide a considerable improvement in terms of both
SMR and SCR in the resultant images compared to the monostatic
MIST beamformer. The robustness of the Multistatic beamformer
to the range of dielectric properties of normal breast tissue and
different fibroglandular tissue distributions has also been investigated.
Three 2D numerical breast models, based on a homogeneous,
heterogeneous and dense distribution of fibroglandular tissue have
been developed to comprehensively evaluate the performance of the
beamformer. Tumours as small as 5 mm have been successfully imaged
using the Multistatic beamformer. However, while the beamformer
performs well in the homogeneous and heterogeneous distributions,
the presence and exact location of a tumour in the dense model is
much more difficult to establish. This is due in part to the large
difference between the assumed homogeneous channel model and the
actual heterogeneous channel, and is a problem shared by all data-
independent beamformers [37]. Methods to better estimate the overall
average dielectric properties of patient specific breast tissue, such as
those developed by Winters et al. [45, 46], could be incorporated into
future beamforming algorithms. Future work will involve extension
of the numerical breast phantom to 3 dimensions, the investigation
of classification techniques to differentiate between normal, benign
and malignant tissue, and methods to estimate the patient-specific
dielectric properties of the breast.

ACKNOWLEDGMENT

This work is supported by Science Foundation Ireland (SFI) under
grant number 07/RFP/ENEF420.

REFERENCES

1. Society, A. C., “Cancer facts and figures 2008,” American Cancer
Society, 2008.

2. Nass, S. L., I. C. Henderson, and J. C. Lashof, Mammography



420 O’Halloran, Glavin, and Jones

and Beyond: Developing Technologies for the Early Detection of
Breast Cancer, National Academy Press, 2001.

3. Bulyshev, A. E., S. Y. Semenov, A. E. Souvorov, R. H. Svenson,
A. G. Nazorov, Y. E. Sizov, and G. P. Tatsis, “Computational
modeling of three-dimensional microwave tomography of breast
cancer,” IEEE Trans. Biomed. Eng., Vol. 48, No. 9, 1053–1056,
Sep. 2001.

4. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and
K. D. Paulsen, “A clinical prototype for active microwave imaging
of the breast,” IEEE Trans. Microwave Theory Tech., Vol. 48,
No. 11, 1841–1853, Nov. 2000.

5. Meaney, P. M., K. D. Paulsen, J. T. Chang, M. W. Fanning,
and A. Hartov, “Nonactive antenna compensation for fixed-array
microwave imaging: Part II — Imaging results,” IEEE Trans.
Med. Imag., Vol. 18, No. 6, 508–518, Jun. 1999.

6. Souvorov, A. E., A. E. Bulyshev, S. Y. Semenov, R. H. Svenson,
and G. P. Tatis, “Two-dimensional analysis of a microwave
flat antenna array for breast cancer tomography,” IEEE Trans.
Microwave Theory Tech., Vol. 48, No. 8, 1413–1415, Aug. 2000.

7. Liu, Q. H., Z. Q. Zhang, T. Wang, J. A. Byran, G. A. Ybarra,
L. W. Nolte, and W. T. Joines, “Active microwave imaging I - 2-D
forward and inverse scattering methods,” IEEE Trans. Microwave
Theory Tech., Vol. 50, No. 1, 123–133, Jan. 2002.

8. Yu, C., M. Yuan, J. Stang, E. Bresslour, R. T. George,
G. A. Ybarra, and W. Joines, “Active microwave imaging II: 3-
D system prototype and image reconstruction from experimental
data,” IEEE Trans. Microwave Theory Tech., Vol. 56, No. 4, 991–
1000, 2008.

9. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang,
C. A. Kogel, S. P. Poplack, and K. D. Paulsen, “Initial clinical
experience with microwave breast imaging in women with normal
mammography,” Academic Radiology, Vol. 14, No. 2, 207–218,
2007.

10. Hagness, S. C., A. Taflove, and J. E. Bridges, “Two-dimensional
FDTD analysis of a pulsed microwave confocal system for breast
cancer detection: Fixed-focus and antenna-array sensors,” IEEE
Trans. Biomed. Eng., Vol. 45, No. 12, 1470–1479, 1998.

11. Susan, C., A. Taflove, and J. E. Bridges,“Three-dimensional
FDTD analysis of a pulsed microwave confocal system for
breast cancer detection: Design of an antennaarray element,”
IEEE Trans. Antennas and Propagat., Vol. 47, No. 5, 783–791,
May 1999.



Progress In Electromagnetics Research, Vol. 105, 2010 421

12. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, “Confocal
microwave imaging for breast cancer detection: Localization of
tumors in three dimensions,” IEEE Trans. Biomed. Eng., Vol. 49,
No. 8, 812–822, Aug. 2002.

13. Fear, E. C. and M. A. Stuchly, “Microwave system for breast
tumor detection,” IEEE Microwave and Guided Wave Letters,
Vol. 9, No. 11, 470–472, Nov. 1999.

14. Fear, E. C., J. Sill, and M. A. Stuchly, “Experimental feasibility
study of confocal microwave imaging for breast tumor detection,”
IEEE Trans. Microwave Theory Tech., Vol. 51, No. 3, 887–892,
Mar. 2003.

15. Fear, E. C., J. Sill, and M. A. Stuchly, “Experimental feasibility
study of confocal microwave imaging for breast tumor detection,”
IEEE Trans. Microwave Theory Tech., Vol. 51, No. 3, 887–892,
Mar. 2003.

16. Li, X. and S. C. Hagness, “A confocal microwave imaging
algorithm for breast cancer detection,” IEEE Microwave and
Wireless Components Letters, Vol. 11, No. 3, 130–132, 2001.

17. Li, X., E. J. Bond, B. D. V. Veen, and S. C. Hagness, “An overview
of ultra-wideband microwave imaging via space-time beamforming
for early-stage breast-cancer detection,” IEEE Antennas and
Propagation Magazine, Vol. 47, No. 1, 19–34, Feb. 2005.

18. Craddock, I. J., R. Nilavalan, J. Leendertz, A. Preece, and
R. Benjamin, “Experimental investigation of real aperture
synthetically organised radar for breast cancer detection,” IEEE
AP-S International Symposium, Washington, DC, 2005.

19. Hernandez-Lopez, M., M. Quintillan-Gonzalez, S. Garcia,
A. Bretones, and R. Martin, “A rotating array of antennas for
confocal microwave breast imaging,” Microw. Opt. Technol. Lett.,
Vol. 39, No. 4, 307–311, Nov. 2003.

20. Bond, E. J., X. Li, S. C. Hagness, and B. D. V. Veen, “Microwave
imaging via space-time beamforming for early detection of breast
cancer,” IEEE Trans. Antennas and Propagat., No. 8, 1690–1705,
Aug. 2003.

21. Davis, S. K., E. J. Bond, X. Li, S. C. Hagness, and B. D. van-Veen,
“Microwave imaging via space-time beamforming for the early
detection of breast cancer: Beamformer design in the frequency
domain,” Journal of Electromagnetic Waves and Applications,
Vol. 17, No. 2, 357–381, 2003.

22. Li, X., S. K. Davis, S. C. Hagness, D. W. van der Weide, and
B. van Veen, “Microwave imaging via space-time beamforming:
Experimental investigation of tumor detection in multilayer breast



422 O’Halloran, Glavin, and Jones

phantoms,” IEEE Trans. Microwave Theory Tech., Vol. 52, No. 2,
1856–1865, Aug. 2002.

23. Li, X., E. J. Bond, S. C. Hagness, B. D. V. Veen, and
D. van der Weide, “Three-dimensional microwave imaging via
space-time beamforming for breast cancer detection,” IEEE
AP-S International Symposium and USNC/USRI Radio Science
Meeting, San Antonio, TX, USA, Jun. 2002.

24. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, “Multistatic
adaptive microwave imaging for early breast cancer detection,”
IEEE Trans. Biomed. Eng., Vol. 53, No. 8, 1647–1657, Aug. 2006.

25. Xie, Y., B. Guo, J. Li, and P. Stoica, “Novel multistatic adaptive
microwave imaging methods for early breast cancer detection,”
EURASIP J. Appl. Si. P., Vol. 2006, No. 91961, 1–13, 2006.

26. Gao, B., Y. Wang, J. Li, P. Stoica, and R. Wu, “Microwave
imaging via adaptive beamforming methods for breast cancer
detection,” PIERS Online, Vol. 1, No. 3, 350–353, 2005.

27. Craddock, I. J., R. Nilavalan, A. Preece, and R. Benjamin, “Ex-
perimental investigation of real aperture synthetically organised
radar for breast cancer detection,” IEEE Antennas and Propaga-
tion Society International Symposium, Vol. 1B, 179–182, Wash-
ington, DC, 2005.

28. Klemm, M., I. J. Craddock, J. A. Leendertz, A. W. Preece,
and R. Benjamin, “Radar-based breast cancer detection using a
hemispherical antenna array-experimental results,” IEEE Trans.
Antennas and Propagat., Vol. 57, No. 6, 1692–1704, 2009.

29. Nilavalan, R., A. Gbedemah, X. Li, and S. C. Hagness, “Numerical
investigation of breast tumour detection using multi-static radar,”
IET Electronic Letters, Vol. 39, No. 25, 1787–1789, Dec. 2003.

30. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, “Microwave
imaging via adaptive beamforming methods for breast cancer
detection,” PIERS Online, Vol. 1, No. 3, 350-353, 2005.

31. O’Halloran, M., M. Glavin, and E. Jones, “Quasi-multistatic
MIST beamforming for the early detection of breast cancer,” IEEE
Trans. Biomed. Eng., in Press.

32. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins,
M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske,
M. Okoniewski, and S. C. Hagness, “A large-scale study of the
ultrawideband microwave dielectric properties of normal breast
tissue obtained from reduction surgeries,” Phys. Med. Biol.,
Vol. 52, 2637–2656, 2007.

33. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins,



Progress In Electromagnetics Research, Vol. 105, 2010 423

M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco,
T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski,
and S. C. Hagness, “A large-scale study of the ultrawideband
microwave dielectric properties of normal, benign and malignant
breast tissues obtained from cancer surgeries,” Phys. Med. Biol.,
Vol. 52, 6093–6115, 2007.

34. Sha, L., E. R. Ward, and B. Stroy, “A review of the dielectric
properties of normal and malignant breast tissue,” Proceedings
of the IEEE SoutheastCon, Columbia, South Carolina, USA,
Apr. 2002.

35. Haykin, S., Adaptive Filter Theory, 4th edition, Prentice Hall,
2001.

36. O’Halloran, M., R. Conceicao, D. Byrne, M. Glavin, and
E. Jones, “FDTD modeling of the breast: A review,” Progress
In Electromagnetics Research B, Vol. 18, 1–24, 2009.

37. O’Halloran, M., M. Glavin, and E. Jones, “Effects of fibroglan-
dular tissue distribution on data-independent beamforming algo-
rithms,” Progress In Electromagnetics Research, Vol. 97, 141–158,
2009.

38. Lazebnik, M., M. Okoniewski, J. Booske, and S. Hagness, “Highly
accurate debye models for normal and malignant breast tissue
dielectric properties at microwave frequencies,” Microwave and
Wireless Components Letters, IEEE, Vol. 17, No. 12, 822–824,
Dec. 2007.

39. Gabriel, C., S. Gabriel, and E. Corthout, “The dielectric
properties of biological tissues: I. Literature survey,” Phys. Med.
Biol., Vol. 41, 2231–2249, 1996.

40. Gabriel, S., R. W. Lau, and C. Gabriel, “The dielectric properties
of biological tissues: II. Measurements in the frequency range
10Hz to 20 GHz,” Phys. Med. Biol., Vol. 41, 2251–2269, 1996.

41. Lim, H. B., N. T. T. Nhung, E. P. Li, and N. D. Thang,
“Confocal microwave imaging for breast cancer detection: Delay-
multiplyand-sum image reconstruction algorithm,” IEEE Trans.
Biomed. Eng., Vol. 55, No. 6, 1697–1704, Jun. 2008.

42. Fear, E. C. and M. Okoniewski, “Confocal microwave imaging
for breast tumor detection: Application to a hemispherical breast
model,” 2002 IEEE MTT-S International Microwave Symposium
Digest, Vol. 3, 1759–1762, Seattle, WA, USA, 2002.

43. Conceição, R. C., M. O’Halloran, M. Glavin, and E. Jones,
“Antenna configurations for ultra wide band radar detection of
breast cancer,” SPIE BIOS West, Vol. 7169, San Jose, CA,
Jan. 2009.



424 O’Halloran, Glavin, and Jones

44. Campbell, A. M. and D. V. Land, “Dielectric properties of female
human breast tissue measured in vitro at 3.2 GHz,” Phys. Med.
Biol., Vol. 37, No. 1, 193–210, 1992.

45. Winters, D. W., E. J. Bond, S. C. Hagness, and B. D. van Veen,
“Estimation of the average breast tissue properties at microwave
frequencies using a time-domain inverse scattering technique,”
Proc. EMC, 59–64, Zurich, Feb. 2005.

46. Winters, D. W., E. J. Bond, and S. C. Hagness, “Estimation of the
frequency-dependent average dielectric properties of breast tissue
using a time-domain inverse scattering technique,” IEEE Trans.
Antennas and Propagat., Vol. 55, 3517–3528, 2006.


