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Abstract—The finite-difference frequency-domain (FDFD) method
with the adaptive basis functions/diagonal moment matrix (ABF
/DMM) technique is proposed in this paper for finite periodic linear
arrays of inhomogeneous dielectric cylinders, in which the versatility of
the FDFD method and the high efficiency of the ABF/DMM technique
are combined. The method in this paper and the classical full-
domain FDFD method are compared in the given numerical examples.
The results obtained by the two methods respectively are in good
agreement, but the computational times are largely reduced in the
method in this paper.

1. INTRODUCTION

The finite-difference frequency-domain (FDFD) method is very flexible
to analyze complicated problems and has been widely used in numerical
simulations [1–6]. In the classical full-domain FDFD method, the
whole computational domain needs to be discretized with Yee’s cells [7]
and then truncated by a boundary condition like Mur’s absorbing
boundary condition, perfect matched layer (PML), etc. Boundary
integral equation as a global absorbing boundary condition was applied
to the FDFD method [2] which allows the boundary to be very close
to a scattering surface. But the global absorbing boundary condition
based on boundary integral equation results in dense matrix blocks
in the final matrix equation, which largely increases the burden of
computation and storage. This demerit becomes very serious when
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a large scattering object is analyzed, such as a large array, so some
efficient techniques must be adopted.

Boundary integral equation not only can be applied as an
absorbing boundary condition, but also can be used to set up the
relationship between the FDFD method and the method of moment
(MoM), which allows some efficient techniques for the MoM to be
used for the FDFD method. The adaptive basis functions/diagonal
moment matrix (ABF/DMM) technique as an efficient technique was
proposed for the MoM [8]. Then it was used to analyze problems of
arrays [9]. The final matrix equation of the MoM with this technique is
highly diagonally dominant and can be solved by an iterative algorithm
efficiently.

In this paper, the combining scheme of the FDFD method and
the ABF/DMM technique are given for analyzing finite periodic
linear arrays of inhomogeneous dielectric cylinders, so that both
the versatility of the FDFD method and the high efficiency of the
ABF/DMM technique can be utilized. The FDFD method with
the ABF/DMM technique is described in Section 2 in detail. Some
numerical results obtained by the method in this paper are given
and compared with those obtained by the classical full-domain FDFD
method in Section 3. Finally, the work of this paper is concluded in
Section 4.

2. FORMULATION

A finite periodic linear cylinder array is shown in Figure 1, which
has Me elements. These elements are included in Me sub-domains,
respectively. A boundary integral equation is set up on the boundaries
of these sub-domains which are close to the surfaces of elements.

Figure 1. A finite periodic linear cylinder array with Me elements,
which are included in Me sub-domains respectively.
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2.1. Boundary Integral Equation

Here, the case of TE wave is considered, and the case of TM wave can
be handled in a similar way. Equation (1) should be satisfied on the
boundary Γ:

H inc
z (ρ)=Ht

z(ρ)−
∮

Γ

Ht
z(ρ

′)
∂G(ρ,ρ′)

∂n′
dΓ′+

∮

Γ

∂Ht
z(ρ

′)
∂n′

G(ρ, ρ′)dΓ′

ρ on Γ (1)

where Ht
z is the z-component of the total magnetic field. H inc

z is
the z-component of the incident magnetic field. G(ρ, ρ′) is the two-
dimensional Green function in free space. ρ and ρ′ are position vectors.
Γ is the boundary of all sub-domains and equal to Γ1 ∪Γ2 ∪ . . .∪ΓMe ,
where Γm is the boundary of Sub-domain m. n is normal to Γ and
outward of the sub-domains, and ∂

∂n′ is n-directional derivative with
regard to ρ′. Ht

z and ∂Ht
z

∂n on the boundary Γ can be represented with
rectangular pulse functions as follow:

Ht
z(ρ) =

Me∑

m=1

N0∑

n=1

am,nUm,n(ρ),
∂Ht

z(ρ)
∂n

=
Me∑

m=1

N0∑

n=1

bm,nUm,n(ρ) (2)

where N0 is the number of sub-domain basis functions on the boundary
of a sub-domain. Um,n(ρ) is the nth rectangular pulse function on the
boundary of sub-domain m. [am,1, . . . , am,N0 ]

T and [bm,1, . . . , bm,N0 ]
T

are denoted as |am〉 and |bm〉 respectively for concision, where the
superscript ‘T ’ denotes the transpose. After substituting (2) into (1),
Equation (3) can be obtained by the Galerkin’s procedure:




Z0 Z1 . . . ZMe−1

Z−1 Z0
. . .

...
...

. . . . . . Z1

Z1−Me . . . Z−1 Z0







a1

a2
...

aMe




+




Y0 Y1 . . . YMe−1

Y T
1 Y0

. . .
...

...
. . . . . . Y1

Y T
Me−1 . . . Y T

1 Y0







b1

b2
...

bMe


 =




g1

g2
...

gMe


 (3)

where the matrix blocks [Zm], [Ym] or [Z−m], [Ym]T represent the
mutual coupling between a sub-domain and the mth sub-domain from
its right or left respectively. [Z0] and [Y0] represent the self-coupling.
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The sizes of all the matrix blocks in (3) are N0 ×N0. The elements of
[Zm] and [Ym] are

Zi,j
m =

〈
Um′,i, L1(Um′+m,j)

〉
, Y i,j

m =
〈
Um′,i, L2(Um′+m,j)

〉
(4)

where L1(U) = U−∮
Γ

U ∂G
∂n′dΓ′ and L2(U) =

∮
Γ

UGdΓ′. Zi,j
m and Y i,j

m are

independent of m′. Because of the symmetry of the Green’s function,
the second matrix in (3) is symmetrical. The element of the exciting
vector |gm〉 of Sub-domain m is gi

m = 〈Um,i, H
inc
z 〉.

2.2. Using the FDFD Method in Each Sub-domain

Without loss of generality, Sub-domain m is discussed. Sub-domain
m is discretized with Yee’s cells [7], and the vector |φm〉 is used to
represent the total field values at all nodes of the Yee’s cells. The
following two relationships exist between |am〉, |bm〉 and the total field
values at the nodes.

Relationship 1: The elements of |am〉 are the average values of Ht
z

on the two outmost layers of the Ht
z nodes of the Yee’s cells.

Relationship 2: The elements of |bm〉 can be expressed by the
tangential total electric field values on the outmost layer of the
corresponding nodes of the Yee’s cells.

By combining Relationship 1, Relationship 2 and the classical
FDFD equations at the nodes of the Yee’s cells, Equation (5) is
obtained: [

A1,1 0 A1,3

A2,1 A2,2 0

] [
φm

bm

am

]
= 0 (5)

Then the relationship between |am〉 and |bm〉 can be derived from
(5) as follow:

|bm〉 = [B] |am〉 (6)

where [B] = [A2,2]−1[A2,1][A1,1]−1[A1,3]. The matrix [A2,2] is just a
diagonal matrix. If [A1,1] is large, the computation of [A1,1]−1[A1,3] can
be replaced with solving the matrix equation [A1,1][Atemp] = [A1,3], so
the inverse of [A1,1] is avoid and the sparse characteristic is kept.

Because all the elements in the array are the same, Equation (6)
should be satisfied on the boundary of each sub-domain, and this can
be expressed as




b1
...

bMe


 =




B . . . 0
...

. . .
...

0 . . . B







a1
...

aMe


 (7)
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After substituting (7) into (3), Equation (8) is obtained:
([

Z ′1−Me

]
+ . . . +

[
Z ′0

]
+ . . . +

[
Z ′Me−1

]) |a〉 = |g〉 (8)

where |a〉 = [a1, . . . , aMe ]
T and |g〉 = [g1, . . . , gMe ]

T . [Z ′m] is

[
Z ′m

]
=




0 0 . . . 0 Ze
m 0 . . . . . . 0 0

0 0 0 . . . 0 Ze
m 0 . . . . . . 0

...
...

. . . . . . . . . . . . . . .
...


 (m > 0) (9)

The positions of non-zero matrix blocks of [Z ′m] and the positions of
those of [Z ′−m] are symmetrical with respect to the diagonal line, which
represent the mutual coupling between a sub-domain and the mth sub-
domain from its right and between a sub-domain and the mth sub-
domain from its left, respectively. [Z ′0] represents the self-coupling.
Because all the elements in the array are the same, each matrix in (8)
includes only one corresponding kind of matrix block, which can be
expressed as{

[Ze
m] = [Zm] + [Ym] [B] for [Z ′m][

Ze−m

]
= [Z−m] + [Ym]T [B] for

[
Z ′−m

] (10)

2.3. Application of the ABF/DMM Technique

The ABF/DMM technique is applied to solve (8). For the sake of
integrity of this paper, it is described as follow, which has double
iterations:

Step 0 |a〉0 = [Z ′0]
−1 |g〉

Step 1 |a〉1k = |a〉0 − [Z ′0]
−1 (

[
Z ′−1

]
+ [Z ′1]) |a〉1k−1

k = 1, 2, 3, . . .
...

Step n |a〉nk = |a〉0 − [Z ′0]
−1




[
Z ′−n

]
+ . . . +

[
Z ′−2

]
+

[
Z ′−1

]
+ [Z ′1] + [Z ′2]

+ . . . + [Z ′n]


 |a〉nk−1

k = 1, 2, 3, . . .
...

Step Ni |a〉Ni
k = |a〉0 − [Z ′0]

−1




[
Z ′−Ni

]
+ . . . +

[
Z ′−2

]
+

[
Z ′−1

]
+ [Z ′1] + [Z ′2]

+ . . . + [Z ′Ni]


 |a〉Ni

k−1

k = 1, 2, 3, . . .
The script ‘n’ denotes Step n, and the script ‘k’ denotes the kth
iteration in a step. In Step n, the iteration is carried out until a
stopping condition is satisfied, and then the iteration of Step n+1 is
carried out.
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The formula in each step is only a Jacobi iteration and can be
modified to a Gauss-Seidel iteration. Then without loss of generality,
the iteration formula for updating the unknown expansion coefficients
|am〉 on the boundary Γm is

|am〉nk = |am〉0 − [Ze
0 ]
−1





m−1∑

m′=max{m−n,1}

[
Ze

m′−m

] |am′〉nk

+
min{m+n,Me}∑

m′=m+1

[
Ze

m′−m

] |am′〉nk−1



 (11)

In fact, the elements of the column vectors of [Ze
0 ]
−1 are the

ABFs’ expansion coefficients, which are expanded by rectangular pulse
functions with these expansion coefficients. Here, an ABF’s physical
interpretation is the distribution of the field on the boundary of a sub-
domain, which is excited by a unit delta source on its boundary. The
following two error criterions εc and εl are used for the convergence in
each iteration step and the global convergence respectively:

εc =

∥∥|a〉nk − |a〉nk−1

∥∥
∥∥|a〉nk−1

∥∥ , εl =

∥∥∥|a〉n+1
1 − |a〉n

∥∥∥
‖|a〉n‖ (12)

|a〉n is the final result of the iteration of Step n. When the two error
criterions are less than the given threshold values, the iterations stop.

In the method in this paper, the whole process is divided into two
steps as follows:

In the first step, a matrix equation constructed with finite-
difference equations in only one sub-domain needs to be solved, whose
size is much smaller than the matrix equation in the classical full-
domain FDFD method, and can be solved by a direct method.

In the second step, the matrix [Ze
0 ]
−1 needs to be obtained firstly,

whose size is N0 × N0. It is small and can be obtained by a direct
method. Then Equation (8) is solved, whose size is MeN0 × MeN0.
Equation (8) is improved to be highly diagonally dominant through
the ABF/DMM technique so that it can be solved efficiently by the
iterative method. Additionally, considering the periodic property of
the array, 2Ni + 1 matrices need to be stored in the process of solving
the matrix Equation (8), whose sizes are all N0 ×N0.

3. NUMERICAL RESULTS

To compare the method in this paper with the classical full-domain
FDFD method, an example of a dielectric cylinder linear array with 30
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elements is provided. The geometry of the array is shown in Figure 2,
and the gap between the elements is 0.2375λ. The incident angle (θ) is
45◦ and the side length of the Yee’s cells is 0.0125λ. For the classical
full-domain FDFD method, the uniaxial PMLs are used to truncate
the computational domain, and the number of the layers is 12. For
the method in this paper, the size of each sub-domain is 0.55λ×0.25λ.
Both the two methods are programmed with Matlab 7.0 and running
in a P4 desktop computer (CPU: 3.2 GHz).

Firstly, the size of the computational domain of the classical full-
domain FDFD method is 23λ × 0.7λ, and the radar cross section
(RCS) obtained by it is given in Figure 3(a). The RCSs obtained
by the method in this paper with the stopping condition (εc ≤ 1%,
εl ≤ 1.5%) and with considering all mutual coupling (εc ≤ 0.004%) are
also given in Figure 3(a), respectively. It can be seen that the three
RCSs are consistent except at the angles near θ = 90◦ (see Figure 3(a)),
where the RCS obtained by the classical full-domain FDFD method
ascends, and is larger than the other RCSs. Secondly, the size of the
computational domain of the classical full-domain FDFD method is
extended to be 23λ × 2.7λ, and the RCS obtained by it is given in
Figure 3(b), which is compared with the RCS obtained by the method
in this paper with considering all mutual coupling (εc ≤ 0.004%).
Now the RCS obtained by the classical full-domain FDFD method
descends at the angles near θ = 90◦, and the two RCSs are in very
good agreement (see Figure 3(b)). By comparing the two cases, it can
be seen that the ascending at the angles near θ = 90◦ in the RCS
obtained by the classical full-domain FDFD method in the first case
is due to artificial error, and this error can be reduced by extending
the computational domain of the classical full-domain FDFD method
as shown in the second case. However, this remedy will increase the

Figure 2. The geometry of a dielectric cylinder linear array.
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(b)

(a)

Figure 3. The RCSs of the array with 30 elements. (a) The size of
the computational domain of the classical full-domain FDFD method
is 23λ×0.7λ. (b) The size of the computational domain of the classical
full-domain FDFD method is extended to be 23λ× 2.7λ.

burden of computation rapidly. But this artificial error does not occur
in the method in this paper. The total computational times are shown
in Table 1, which are normalized with the computational time of the
classical full-domain FDFD method with the extended computational
domain, and it can be seen that the computational times of the method
in this paper are largely less than that of the classical full-domain
FDFD method, while the artificial error is avoided.
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Table 1. Normalized computational time.

Exact time
Normalized

computational
time

The classical full-domain
FDFD method with the

extended computational domain
1908 s 100%

The method in this
paper with the given
stopping condition

(εc ≤ 1%, εl ≤ 1.5%)

147 s 7.7%

The method in this
paper with considering all

mutual coupling (εc ≤ 0.004%)
249 s 13.1%

4. CONCLUSION

In this paper, the combining scheme of the FDFD method and
ABF/DMM technique is given for finite periodic linear arrays of
inhomogeneous dielectric cylinders. Comparative numerical examples
are given, in which some artificial error is observed in the classical
full-domain FDFD method with PMLs. But in the method in this
paper, no such problem occurs, and the computational time is largely
reduced. Compared with the method in [5], the method in this paper
does not need sample circles. The sample circles in the method in [5]
may result in added computational domain in some cases, such as
simulating flat cylinders. In the method in this paper, the boundary
of the computational domain can be more close to objects, so it seems
more flexible.
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