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Abstract—Reconstructing high-accuracy Digital Elevation Model
(DEM) is influenced by phase errors, such as phase trend, low
coherence problems and phase unwrapping. These problems could
result in the conversion errors from the phase to height. In this
paper, a method is proposed to reconstruct the high-accuracy DEM
using satellite interferometric synthetic aperture radar (InSAR). The
proposed algorithm mainly aims to reduce the phase errors from
the phase trend and low coherence problems. It consists of three
steps. Firstly, the orbit state vectors are precisely interpolated in 3-D
coordinates rather than in a separate dimension with the exploration
of the orbital elements. Secondly, the relationship between external
DEM and the interfermetric phase is built by the improved precise
geo-location algorithm. The phase trend is estimated according to
the topographic information and then removed from the unwrapped
interferogram. Thirdly, the interferogram in low coherent regions are
all updated with the simulated phases from actual DEM. The accuracy
of the InSAR derived DEM can be significantly improved without any
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ground control points (GCPs), especially in those regions contaminated
by masses of residues. Meanwhile, the phase trend caused by
atmosphere effects or orbits uncertainty can also be eliminated by using
this method. The experiment has demonstrated the proposed method
can yield quite satisfactory results for producing high-accuracy DEM
using Envisat data.

1. INTRODUCTION

Interferometric synthetic aperture radar (InSAR) has been widely
applied to digital elevation model (DEM) reconstruction or ground
displacements researches related to a variety of processes, both
natural and anthropogenic [1, 2]. In such applications, repeat-pass
satellite modes, i.e., a single antenna observes the same area from
different orbits with the same track, are mainly used in spaceborne
interferometric techniques. These techniques are attractive for
measuring and interpreting elevation information, motion or variations
of the reflecting elements on the ground according to the phase
differences between two SAR images [3, 4].

It is well considered that phase errors are one of the main error
sources when reconstructing DEM by InSAR techniques [5]. The phase
errors mainly consist of four parts: 1) phase trend in the interferogram;
2) errors caused by decorrelation and thermal noises; 3) atmospheric
phase screen (APS) difference between master and slave images, which
can be separated into the parts determined to topography or not [6, 7];
and 4) phase unwrapping process. These phase errors cannot be
ignored in the reconstruction of high-accuracy DEM.

Although multi baseline synthetic aperture radar (SAR) interfer-
ometry can be exploited successfully for high-quality digital elevation
model (DEM) reconstruction considering these errors [8, 9], it is com-
plicated to combine the multi uncorrelated interferogram, and many
scenes of images are required for the method.

Studies have indicated that the phase trend is mainly deter-
mined by the accuracy of orbit data (i.e., accurate baseline evalua-
tion) [10, 11]. The parts of APS dependent on the topography are
also related to orbit accuracies [7]. Therefore, accurate orbit data are
crucial for DEM reconstruction.

Currently for European Space Agency (ESA) satellites ERS-1/2
and Envisat, Delft Institute of Earth-Oriented Space Research (DEOS)
can provide highly precise orbits with a radial precision of 5–6 cm [10].
However, its available orbit data are sampled in a 1 second-interval,
which requires an interpolation to meet a large number of azimuth
data samples. And the error from the orbit data interpolation will
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impact the accuracy of DEM reconstruction to some extent, assuming
the spatial baseline of the interferogram shows 100 meters, the error of
0.5 meter for the orbit will result in about the error of 600m in DEM
reconstruction [21]. Conventional methods simply employ polynomial
functions (e.g., second or higher order polynomial models) to fit all
the orbit data provided in header file or obtained from DEOS in
separate dimension. This is inaccurate due to its neglect of the orbit
configuration. With the satellite’s orbital elements well considered
during orbit data interpolation, higher accuracy will be achieved for
the further processing, and the phase trend due to the orbit error
correspondingly will be greatly reduced.

Overall phase trends may result in elevation errors in unwrapped
phase images. These errors may either be removed in the phase
subtraction step by using the least squares fitting techniques to adjust
the scaling of the reference phase images, or, be estimated with FFT
flattening techniques [12]. The phase trends can be also reduced or
removed by using the ground control points (GCPs). However, usually
the GCPs are difficult to define in the interferogram especially in some
areas such as steep mountains [7].

If there are no obvious geometric variations in the study area,
external DEM can be directly used as reference data. Low-resolution
shuttle radar topography mission (SRTM) data are generally used as
external DEM in InSAR techniques. These data have been used to
remove the topography phase in differential interferogram, to flat the
interferogram, also to geocode the InSAR products, and so on [7, 12].
In this paper, the SRTM data are also selected as reference for
retrieving simulated phase to match the interferogram. Then, phase
trend in the unwrapped interferogram can be well modeled according to
build the relationship between the simulated phase and interferogram
facilitated by the more accurate precise orbit data.

On the other hand, low coherence problems are also caused
by decorrelation during imaging interval. The phases within low
coherent areas show disorganized patterns, which usually cause the
phase unwrapping difficult and inaccurate. Although some assistant
techniques such as stereoscopy [13] and clinometry [14] outside InSAR
technique can be used to solve low coherence problems, it is generally
difficult and complicated to make the results from these methods well
matched with the unwrapped phase, more elaborated methods should
be developed to recover the phases in low coherent area. If some
external data can be directly used as a reference, it is expected that
the phase errors in low coherent area will be more accurately removed.

This paper attempts to develop the methodologies to mainly
solve the phase trend and low coherence problems for producing high-
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accuracy DEM without any ground control points (GCPs). The main
procedures are described in details in the following sections. An
improved interpolation method for processing orbit data is introduced
by revealing the satellite’s orbital elements in 3-D coordinates rather
than in separate dimension. The simulated phase is then retrieved
by the improved precise geo-location algorithm to provide information
for phase trend removal and low coherence problem solution. A subset
scene of Envisat imaging from Bam, a city located in Kerman Province
of Iran, is further selected as the sample area to validate this proposed
method.

2. METHODOLOGY

2.1. Obtaining and Processing the Precise Orbit Data

The satellite orbit data refer to the satellite’s instantaneous location
(that is, XS, YS, and ZS) in the WGS84 coordinate system. In
the data processing procedures, acquiring and processing satellite’s
precise orbits are crucial for further analyses, such as: 1) coarse co-
registration of the image pair; 2) calculation of the reference phase on
the ellipsoid; and 3) conversion of radar coded heights to geocoded
coordinates. For a full SAR imaging scene, only several orbit data
points with one second interval can be provided for all the azimuth
lines. Therefore it is important to find an effective interpolation
method to accurately obtain the position at every imaging location
with the sample times provided by the precise orbit data. A
polynomial fitting in separate dimensions is usually employed by using
conventional methods. Although the satellite’s location is relatively
stable, such simple interpolation is rather inaccurate. In order to
overcome this limitation, this paper presents an improved interpolation
method by revealing the satellite’s orbital elements from known 1s-
interval orbit data. As it is done in the open source software DORIS,
the conversion requires about 5 seconds before the first and after the
last imaging time respectively to avoid the interpolation error in the
image margin. The orbit data can be synchronously interpolated in
3-D coordinates rather than in a separate dimension.

It is well known that a satellite’s instantaneous location is
determined by six orbital elements shown in Table 1 [15].

The satellite’s instantaneous location (x(r), y(r), z(r)) in the
WGS84 coordinate system (i.e., the earth-rotated reference frame) is
therefore computed by:[

x(r)
y(r)
z(r)

]
= MZ

HG
MZ
−ΛMZ

−iM
Z
−ω

[
r cos θ
r sin θ

0

]
(1)
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Table 1. Orbital parameters.
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where, HG is the Greenwich time for a vernal equinox, the satellite’s
range to the Earth’s core r and true anomaly θ are functions of a, e
and τ [15]. M b

α indicates the rotation matrix of an angle α around an
axis b.

Among all the six orbital elements, the first five parameters
(corresponding to the orbit) can be obtained in the annotation data,
leaving the last one varied. With the known 1s-interval time t from
DEOS, a polynomial function can be constructed for describing the
dependence of τ on t. It will be further tested that a cubic polynomial
is sufficient in accuracy. Then the satellite orbit data can be computed
by Equation (1). Compared with the conventional methods, only
the orbital element τ is interpolated for every azimuth time, the
interpolation method synchronously interpolates the orbit data in 3-D
coordinates rather than in separate dimensions. The orbital error can
be restrained below 0.4 cm.

2.2. Forming the Relationship Between the Interferogram
and the Simulated Phase

Studies have indicated that the phase trend is mainly caused by the
orbital data errors [10, 11]. More accurate orbit data can be obtained
according to the above procedures. The phase trend correspondingly
can be significantly reduced in the unwrapped interferogram. However,
no matter what interpolation method is used, the residual phase
trend due to orbit errors will still remained in the unwrapped
phase. As discussed above, the relationship between simulated phases
and the actual unwrapped interferogram can be well built if the
external reference DEM data can be obtained based on the achieved
precise orbit data. Considering the feature of SRTM (Shuttle Radar
Topography Mission), these data can be used as the reference for
removing the residual phase trends. In this paper, an improved precise
geolocation algorithm is introduced to build the relationship between
the SRTM data and the unwrapped interferogram.

The SRTM equipped the Space Shuttle Endeavour with two
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antennas during an 11-day mission in February 2000 and obtained
elevation data on a near-global scale [16]. Nowadays the 1 arc-second
(about 30m) resolution data of the USA and 3 arc-second (about 90m)
resolution data of other area regions have been available for public use.
These data have horizontal and vertical accuracy near 20m and 16m
respectively (linear error at 90% confidence) [17].

Based on the satellite orbit data in each azimuth time, it is
convenient to transform the SRTM DEM to radar coordinates. These
coordinates can then be easily interpolated to integer coordinates (re-
gridding). Some researches showed this can be done with the nearest
neighbor method [18]. However, this method may have the following
problems:

• It is difficult to construct a one-to-one correspondence between
the raw interferogram and the DEM, especially for the boundary
of the imaging area.

• Only the size of the DEM, and not the size of the interferogram,
affects the numerical cost. This is inefficient for dealing with large
areas [19].

An alternative simulation method, that is, the precise geo-location
algorithm was then adopted by some researchers to solve the above
problems [12]. The proposed method works from an interferogram
pixel, and then finds its corresponding SRTM DEM (both height
and location) by interactively solving according to the following
Equations (2)–(4):

(S1(τ)−P) · Ṡ1(τ) = 0 (2)
|S1 −P| = r1(t) (3)
P 2

x + P 2
y

(a + h)2
+

P 2
z

(b + h)2
= 1 (4)

where S1(τ) and Ṡ1(τ) represent the master antenna’s location and
velocity as a function of the SAR azimuth time τ respectively,
P (Px, Py, Pz) is a target’s position in the WGS84 coordinate system,
and λ is the radar wavelength; r1(t) is the range between the master
antenna and the target P also as a function of the SAR range time t.
The Earth semi-major a and semi-minor axis b have been modified by
the target P’s height h.

Once a tentative P with the location and height has been
determined, a table search is carried out in the SRTM data. The actual
terrain’s height for an interferogram sample can be determined if this
height with the same location in SRTM DEM is equal, or sufficiently
approximate to h; Otherwise procedures of (2)–(4) are repeated. Then
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the zero-Doppler position of the slave antenna is determined according
to the following equation:

(S2(τ)−P) · Ṡ2(τ) = 0 (5)

Finally, the range difference between the ground point and the
two antennas provides the interferometric phase ϕ by:

ϕ = −4π

λ
(|S1(τ)−P| − |S2(τ)−P|) (6)

Although the above procedures seem to provide better effects,
there are still some other technical issues which should be addressed:

1) DEM interpolation: the resolution (about 90 m) of SRTM DEM
is well below that of the interferogram. To make the relationship
between the DEM and the interferogram more precise, the DEM has
to be interpolated, and correspondingly, the interferogram has to be
multilooked to achieve an eclectic resolution (e.g., 40 m).

2) Obtaining the target’s position: a closed-form expression of
P (Px, Py, Pz) is unobtainable from (2)–(4), so the Newton’s iteration
method is used, starting at geographic coordinates of the scene centre
given in the annotation data. This is true for (5) as well. Normally,
after 3 or 4 iterations, the solution converges to values better than
10−6 m and 10−10 s, respectively [12].

3) Building the 3-D geometry approximation to save running
time: the coordinate transformations within the iteration loop on
every pixel point make the computation quite slow [19], only parts
of pixels were determined with the Newton’s iteration, and then the
polynomial interpolation was used both in height and the geometry.
As geo-location of every pixel in the image scene varies slowly with
the height, a cubic polynomial is sufficient to model this relationship
(1-D approximation). Meanwhile, the SAR imaging geometry changes
slowly in range and azimuth [19] and can, also approximately expressed
by introducing a grid on the interferometric data (2-D approximation).
A significant acceleration is achieved by using both 1-D and 2-D
approximation above.

4) Obtaining the height derived from DEM: the bisection
algorithm, instead of point-wise search, is used to find the height in
DEM range. However, if there is either layover or shadow effects, more
than one root exist, and the actual point is not directly calculated but
interpolated from the neighbors.

Hence, the simulated phase corresponding to each interferometric
pixel can be computed by Equation (6). The phase trend can then be
more accurately removed by comparing the relationship between the
actual interferogram and the simulated one. This procedure is further
discussed in the following section.
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2.3. Removing the Phase Trend Based on the Simulated
Interferogram

The actual interferogram consists of the following parts [3]:
φr: Sensor-target range difference between sensors;
φt: Possible physical and geometric character changes of ground

scatters;
φa: Changes of atmosphere between two data acquire times;
φn: Thermal noise etc;
Then the intereferogram phase can be correspondingly denoted as

follows:
φ = φr + φt + φa + φn (7)

wherein, φr can be generally divided into two parts: the phase related
to the topographic information φz, and the ‘flat earth phase’ φflat

caused by orbit respectively. The topographic information φz is aimed
to obtain accurately with InSAR technique in this paper. φt can be
ignored if the time interval between the two imaged scenes is small,
especially during the time where no seriously geographic variation
such as earthquake appeared in the urban area. However, φa is very
complicated, which can also be separated as the parts determined
to topography or not. φn is mainly due to the imaging system,
which can be neglected in regression analysis for large number of
regression samples [7]. Then, the obvious phase trend due to the
orbit errors will be exposed to the unwrapped interferogram. In this
paper, the phase trend is modeled and then removed according to the
relationship between the simulated phase from external SRTM data
and the unwrapped interferogram.

Firstly, the topography information derived from the SRTM
should be assumed to be the same as actual DEM. This is also further
validated with the results from DORIS software. Then, the phase
derived from external DEM can be used as reference to evaluate
the quality of removing the phase trend. Comparing the actual
unwrapped interferogram with the simulated phase, the phase trend
can be expressed by using the following linear model considering the
atmospheric influence [7]:

φtrd = c + l1i + l2j + l3φz (8)

where, i and j represents the row and the column respectively, φz is
the phase which is only related to the height above sea level derived
from the SRTM data, and l1, l2 is the slope of phase trends along the
azimuth and slant range directions, l3 denotes the influence coefficient
of topographic information.

The phase trend varies slowly both in azimuth and slant direction,
linear model can basically meet the phase accuracy. In this paper, this
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linear method is firstly used to evaluate phase trend φtrd. However,
such linear method may have limitations because usually, there
is complex relationship between phase trends and the topographic
information φz. It is also considered that parts of the phase errors
due to APS depend on topography [7], and the polynomial function
can be built between them. A solution to capture such complex
relationship is to use polynomial models for evaluating phase trend. It
is expected that polynomial models may provide better performance.
In this paper, several polynomial functions will be tested for phase
trend simulation so that better performance can be achieved. The
polynomial model is based on the quadratic and cubic equations:

φtrd = f(i, j, φz) =
d∑

m=0

d∑

n=0

d∑

k=0

lm−n,n−k,ki
m−njn−kφk

z (9)

where d is 2 or 3.

2.4. Replacing the Interferometric Fringes within the Low
Coherent Area with Simulated Values

In the repeat-pass modes, decorrelation for non-simultaneous imaging
acquisition will bring a lot of noises in the interferogram and useful
information tends to be overshaded [20]. This will make it difficult
for phase unwrapping. Within the low coherent area, the phase
information deviates from the actual value and varies irregular, the
unwrapped phase is significantly different from the actual height
elevation. This will then result in higher errors for reconstructing
DEM. Therefore, the low coherence problem will be further tackled.
The process mainly includes: 1) updating interferogram phases in low
coherent areas with simulated ones; 2) phase filtering and unwrapping;
3) phase trend removal.

As described, the simulated phase derived from actual DEM is
well related to the interferogram, which can then be taken as accurate
reference phase. According to the Section 2.3, the simulated phase is
well matched with the interferogram, and if the low coherent area is
defined, then phases within these areas can be directly updated by the
simulated ones. This will provide valuable interferometric information
for phase filtering and unwrapping in the low coherent area.

A minimum cost flow (MCF) unwrapping method will be used
in this paper, based on the updated interferogram, residue density,
average scene coherence, mean scene height and mean scene height
variation should be produced, and then positive and negative residues
are paired and connected by a line segment [22]. It is regarded that,
the phase inconsistency is caused when the integration path crosses
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the line segment. The optimized line segment will be achieved with
the coherence as cost value. It is expected to significantly reduce the
residues influence (phase singular points) on the interferogram with
the substitution of simulated phase in the low coherent area. Then the
phase trend is removed from the unwrapped interferogram with the
polynomial Equation (9).

Here, the coherence value of 0.45 is used as threshold for
distinguishing the low coherent area, and the substitution with the
simulated DEM phase is carried out in the extend area with the
minimum size of 5 pixels. The accuracy of derived DEM within the
low coherent region by using this proposed method is close to that of
SRTM. However, the derived DEM can have a higher spatial spacing
than that of SRTM.

3. IMPLEMENTATION RESULTS AND DISCUSSION

A part of Bam scene in Iran is selected as an example, which was
respectively imaged by Envisat ASAR on June 11th and December
3rd, 2003. The satellite’s flight time elapses about 16 seconds, there
are almost 27000 lines (i.e., azimuth time) of data for the whole scene.
The proposed method is used to remove the phase trend and solve low
coherence problem for high-accuracy DEM reconstruction.

The orbit data are processed with the proposed interpolation
method. The experiments have indicated that a cubic polynomial
is sufficient in terms of accuracy. To validate the efficiency of the
interpolation method, a simple and efficient method is then used to
compare the improved method with a conventional one. Orbital data
was decimated into two groups, odd seconds and even seconds, odd
seconds is selected as samples to acquire polynomial coefficients, and
even seconds are accordingly used to verify the models’ efficiency. The
results are shown in Table 2, which indicates a better orbit accuracy of
about 1 cm (corresponding to 6m height accuracy) by this interpolation
method.

Then, the simulated phase is derived from external SRTM data
for removing the phase trend. Figure 1 is about the coherence map,
raw interferogram and simulated interferogram based on SRTM. The

Table 2. Error comparison of interpolation method.

Max error (cm) Mean error (cm)
Conventional method 1.212 0.703

Our method 0.319 0.087



Progress In Electromagnetics Research M, Vol. 14, 2010 25

unwrapped phase of simulated interferogram and actual flattened
interferogram (interferogram with flat earth phase removed) are shown
in Figures 2(a) and Figure 2(b) respectively.

It is easy to find that, there is a difference between the actual
interferogram and the simulated one. And from the coherence map,
several low coherent areas are also obviously displayed. Especially, the
phases are more fragmented with noises in the raw interferogram.

A further step is to subtract the topography phase φz, which is
shown in Figure 3(a). The phase trends clearly show some correlation
with the topography. The linear model as Equation (8) is then used
to compute and remove the phase trend from the actual unwrapped

(a) (b)  (c) 

Figure 1. Coherence map, raw Interferogram and simulated
interferogram based on SRTM. (a) Coherence Map (ranging from 0
to 1). (b) Raw interferogram. (c) Simulated interferogram.

(a) Unwrapped Phase Derived from 

      SRTM

(b) Unwrapped Interferogram with 

        flat earth phase removed

Figure 2. Unwrapped phase: (a) simulated phase; (b) unwrapped
interferogram with flat earth phase removed.
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(a) (b) 

Figure 3. (a) Difference between the original unwrapped phase and
simulated phase; (b) phase trend removed with the linear method.

(a) (b) 

Figure 4. Phase trend removed with polynomial models: (a) phase
trend removed with quadratic model; (b) phase trend removed with
cubic model.

interferogram. The result is shown in Figure 3(b).
It is easily found that, the whole pattern of the unwrapped

interferogram with phase trend removed is similar with the unwrapped
raw interferogram as shown in Figure 2(b). This shows that residual
phase trend is still remained in the unwrapped interferogram, the
linear simulation model cannot produce satisfactory accuracy. The
polynomial model as Equation (9) is further validated. Results are
shown in Figure 4.

It can be noted that the phase map is quite different from the
raw interferogram if the phase trend simulated with polynomial model
is not included (shown as Figure 4(a) and Figure 4(b)). The phase
pattern is more close to that simulated from external reference DEM.
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(a) (b) 

Figure 5. Pattern of models’ errors probability: (a) the whole pattern
of models’ errors probability; (b) local zooming of (a) (Horizontal
axe represents the value of errors, and the vertical axe expresses the
probability of some error).

Table 3. Means and standard deviations of the linear and polynomial
models’ errors.

Linear model Quadratic model Cubic model
Mean (deg) −38.9097 −5.4964 5.2051
Std. (deg) 34.1474 20.8522 22.8709

The probability, the means and standard deviations of models’ errors
are calculated for validating the results. The validations are shown in
Figure 5 and Table 3.

The models’ errors probability (Figure 5(b)) shows that the
polynomial model has a low simulation error for phase trend removal.
Moreover, the errors from the quadratic model are very close to those
from the cubic model.

Table 3 indicates that the mean and standard deviations of
simulation errors from the polynomial model are obviously lower than
those of the linear model. Especially the mean error can be well
controlled to a lower level for the polynomial model. Table 3 and
Figure 5 indicate that the quadratic model seems to be the best
option for modeling phase trends. Phase error due to parts of APS
dependent on topography can be synchronously removed with the
nonlinear simulation model. However, because the phase error from
APS independent on topography is random and more complex, it is
difficult to remove by using this simple method.

The polynomial model still has a high value of the standard
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Figure 6. Histogram of different DEM height error.

variations (Table 3), although it can yield a relatively lower value.
Actually, it is easily understood from the coherence map (Figure 1(a)),
parts of which shows lower value due to decorrelation for non-
simultaneous imaging acquisition.

The rectangular region listed in Figure 1(b) and Figure 1(c)
shows low values in the coherence map (Figure 1(a)), and where
the phases are correspondingly disorganized in the raw interferogram
map (Figure 1(b)). The area is then further focused to explain the
solution for low coherence problems. With a topographic map obtained
from survey department as a reference, the height values between the
reference DEM and that derived in this paper are compared with the
point to point analysis, the patterns of height errors (i.e., accuracy
of DEM reconstruction) shown as Figure 6, the relationship between
the height error and coherence value shown as Figure 7 are further
analyzed for validating the results.

Where raw DEM refers to that derived from unwrapped
interferogram only with phase trend removed, while improved DEM
represents that derived from raw one with phases in low coherent area
further substituted.

It can be found that, height errors of raw DEM vary from −100m
to 100 m. The mean value and standard deviation are 12.8 m and
63.5m respectively. The overall accuracy of DEM reconstructed is
relative lower. However, on the contrary, the histogram of improved
DEM shows a peak around zero, the mean and standard deviation
are reduced to 1.4 m and 5.6 m respectively. This method can yield a
higher accuracy of DEM reconstruction.

According to the relationship between coherence values and height
errors in Figure 7, it can be found that the higher height errors of
raw DEM mainly centralize around the lower coherent area, especially
when coherence values are lower than 0.2. However, the height



Progress In Electromagnetics Research M, Vol. 14, 2010 29

Figure 7. Derived height error versus interferometric coherence in the
rectangle of Figure 1(b) and Figure 1(c), respectively.

errors of improved DEM scatter nearby zero including low coherent
area. The experiments indicate that the higher-accuracy DEM can be
reconstructed if low coherence problems have been solved.

4. CONCLUSION

During reconstructing high-accuracy DEM, phase errors caused by
different sources usually result in inaccurate unwrapped phase. This
paper attempts to develop the methodologies for reducing the errors
caused by phase trends and low coherence problems to reconstruct
high-accuracy DEM based on precise orbit data and external DEM.
The method mainly includes the following procedures: 1) obtaining
and interpolating the precise orbit data with an improved method; 2)
building the relationship between the interferogram and the external
reference DEM more accurately with InSAR geometry; 3) modeling
and removing the phase trend; and 4) recovering the phases in low
coherent area by using the simulated phases.

As the phase trend is mainly due to the orbital errors, the
improved interpolation method based on the satellite’s orbital elements
is introduced to retrieve high-accuracy orbit data in 3-D coordinates
rather than in a separate dimension. This method can achieve a better
accuracy of about 1 cm (corresponding to 6m height accuracy) for orbit
data.

The simulated phase derived from external reference SRTM data
by using this improved precise geo-location algorithm can then be well
matched to the interferogram with the InSAR geometry according to
the interpolated orbit data. This can provide efficient information
for removing phase trends from the unwrapped interferogram and
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solving low coherence problems. High-accuracy DEM can then be
reconstructed even without any ground control points (GCPs).

This study has tested three different simulation models by using
sample data. The phases in low coherent area are further replaced by
using simulated ones. Experiments indicate that the quadric model has
a lower error. It is more adaptive for the phase trend removal than the
conventional linear model. The derived DEM can have higher spatial
spacing than SRTM within low coherent areas, although the accuracy
is approximated to that of SRTM.
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