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Abstract—In this work, a hybrid method which combines time
domain integral equation method (TDIE) with time domain physical
optics method (TDPO) is presented for the problem of TM transient
scattering from two-dimensional (2-D) combinative conducting targets.
The explicit solution of Marching-On-in-Time (MOT) is developed.
The high accuracy and efficiency of this hybrid method are
demonstrated by comparing the numerical results of this hybrid
method with those obtained by TDIE. To obtain 2-D transient far
scattered field, a concise algorithm about time-domain near-zone to
far-zone transformation without double Fourier transform is presented
for TDIE and hybrid method, and its numerical results are verified
by comparing with the results obtained from inverse discrete Fourier
transform (IDFT) techniques.

1. INTRODUCTION

Integral equation (IE) is widely used for the numerical analysis of
electromagnetic radiation and scattering [1–14]. Especially the time
domain integral equation (TDIE) has been receiving much interest in
studying many practical transient electromagnetic problems [15–19].
This is because there has been an increasing interest in short pulse
radar design for high resolution and target identification problems.
However, for electrically large objects, TDIE suffers great difficulties.
Thus, it is necessary to develop fast algorithm for TDIE. So far, there
are two kinds of fast algorithm based on TDIE: one is the plane
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wave time-domain algorithm (PWTD) [20–22] proposed by Shanker
et al., which is actually the time-domain version of fast multi-pole
method (FMM) [8–10]. This method could decrease computational
complexity significantly, but the method itself is very complex and not
easy to program. Another one is the hybrid method which combines
TDIE with time domain physical optics method (TDPO) [23–25].
The interactions of the currents in TDPO region are neglected in
this method. Therefore, computational complexity is reduced greatly.
Compared to PWTD the hybrid method of TDIE/TDPO is also very
accurate [24] and easy to program, hence is a very potential fast method
for transient EM scattering problems. However, all the published works
about this hybrid method only involved in 3-D structure [23–25] even
though the hybrid method for 2-D case is very different from that for
3-D case.

In this paper, the TDIE/TDPO hybrid method is extended to
the problem of transient scattering from 2-D combinative conducting
targets in TM case. The combinative targets consist of two cylinders:
electrically large but smooth one (modeled as TDPO region) and
electrically small but complicated one (modeled as TDIE region). The
field strength in TDIE is regarded as the contributions of the currents
in both TDIE and TDPO regions while the field strength in TDPO is
regarded only as the contributions of those on TDIE. The interactions
of the currents in TDPO region are neglected. Based on above
consideration, by using time-domain electric field integral equation
(EFIE), the explicit MOT is developed in detail. Numerical results
are compared with those obtained by TDIE, and a good agreement is
achieved.

Traditional method for computing 2-D transient far scattered field
needs double Fourier transform [30], which is very complex, and most
references about 2-D TDIE have not mentioned the calculations of
transient far scattered field [26–29]. In this paper, a concise time-
domain near-zone to far-zone transformation algorithm without double
Fourier transform is presented, and the numerical results are verified
by comparing with those obtained from IDFT.

2. THEORY AND FORMULATION

2.1. Time-domain Electric Field Integral Equation
(TD-EFIE)

Let infinite conducting cylinders parallel to the z-axis, and C denotes
the cross section of the cylinder. For TM incident case, the current is
only z directed and does not vary with z. Therefore, following TD-
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EFIE may be derived [29]:
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where subscript tan refers to the tangential component along the length
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where µ is the permeability of the surrounding medium, and c is the

velocity of propagation of electromagnetic wave. R =
√
|⇀ρ − ⇀

ρ
′|2 + z′2

is the distance from the field point ⇀
ρ to the source point (⇀

ρ
′
, z′) .

By integrating both sides of Eq. (1) with respect to time, we
obtain:

⇀
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inc

tan(
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ρ, t)dt (3)

2.2. Discretization Scheme for Combinative Cylinders

As discussed in Section 1, for combinative cylinders, electrically
large/smooth one is modeled as TDPO region, while electrically small
one is modeled as TDIE region, and two cylinders are separate, as
shown in Fig. 1.

TDIE region

TDPO region

Einc

Figure 1. Regions for TDIE and
TDPO.
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Figure 2. The grid scheme.
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For both TDIE and TDPO regions, we use the grid scheme
proposed in [26–29], in which square patches were used. As shown in
Fig. 2, we first approximate the contour C into straight-line segments,
each of length ∆τm. Then, we divide the whole mth column, i.e.,
from (−∞ < z < ∞) associated with linear segment m, into zones
with ∆z = ∆τm to obtain a square grid. Note that the patch heights
from one column to another may be different. Because the cylinders
are infinite along the z-axis, all the field quantities are invariant with
respect to the z variable. Hence, for simplicity, the currents observed
will be restricted at z = 0.

2.3. Explicit MOT Solution Procedure

A set of basis functions for expansion purposes is defined as follows [29]:

jm(⇀
ρ) =

{
1 ⇀

ρ ∈ mth segment
0 else (4)

Testing functions are similar to basis functions, and the inner
product is defined as:

〈
⇀
a,

⇀

b
〉

=
∫

S

⇀
a · ⇀

bds (5)

Let the number of the linear segments of TDIE and TDPO regions be
N,K respectively, and let

⇀
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where ẑ represents the unit vector along z-axis, and In(t), Ik(t) are
the unknown coefficients at the nth segment of TDIE region and the
kth segment of TDPO region, respectively. As described in Section 1,
for TDIE region, in each time step, we apply the method of moments
(MOM) to test Eq. (3) [29]:
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Approximately, assuming that
⇀

A(⇀
ρ, t) does not vary within the mth

segment, we obtain:
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where ⇀
ρm is the middle point of the mth segment of TDIE region.

Now we calculate
⇀

A(⇀
ρm, t), which is regarded as the contributions of

the currents both in TDIE and TDPO regions:
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where
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∫
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In Eqs. (10)–(13), ⇀
ρm,

⇀

ρ′n,
⇀

ρ′k represent the middle point of the mth,
nth segments of TDIE region and the kth segment of TDPO region,
respectively. ∆τn and ∆τk represent the lengths of the nth and kth
square patches, and p represents the ordinal number of the square
patch along the z-axis and from z = 0. ∆Snp represents the pth patch
of the nth segment in TDIE region along the z-axis. Similarly, ∆Skp

represents the patch in TDPO region.
For non-self terms, i.e., where ⇀

r and ⇀
r
′

do not belong to the
same patch, the 1/R integral may be approximated by the patch area
divided by the distance between the patch centers. For self terms, the
integration may be carried out analytically [29]. Then the values of
Fmnp can be given by:

Fmnp =
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m 6= 0 or p 6= 0

4∆τn ln(1 +
√
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(14)

It should be noted that the field point is only in TDIE region, and for
the source point of TDPO region, it is impossible that ⇀

r and ⇀
r
′
belong

to the same patch. Thus Fmkp can be given by:

Fmkp =
(∆τk)2√

|⇀ρm − ⇀

ρ′k|2 + (p∆τk)2
(15)
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Next, we deal with the calculation of Ik(t). As discussed in Section
1, for TDPO region, the interactions of the currents are neglected, and
the induced currents are produced in two ways: one is the contribution
of the incident wave, and the other is the contribution of the currents
of TDIE region. Thus

⇀

JTDPO can be given by [24]:
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H
inc
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where k̂ is the outward-directed unit vector normal to the contour C,

and
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HS is the scattered field produced by
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magnetic field and is defined as
⇀

H
inc

= (1/η)k̂inc × ⇀

E
inc

, where η is
the wave impedance of the surrounding medium, and k̂inc is the unit
vector in the direction of propagation of the incident wave.
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Noting that the right side of Eq. (17) is expressed as the rotation of the
product of a vector and a scalar, so by using the formula of rotation
operation ∇× (⇀

af) = f(∇× ⇀
a)− ⇀
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where R̂np represents the unit vector in the direction from the source
point (TDIE region) to the observation point (TDPO region), and
tR = t−Rnp/c. Combining Eqs. (19) and (20) gives:
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Combining Eqs. (7), (16) and (21) gives:
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where Ik(t) is the unknown coefficients at the kth segment in TDPO
region. The time derivative of the current is approximated with a
center finite difference as:

∂In(tR)
∂tR

=
In(t + 0.5∆t−Rknp/c)− In(t− 0.5∆t−Rknp/c)

∆t
(23)

Equation (22) shows that Ik(t) in TDPO region is determined
by the incident fields and scattered fields from the currents in TDIE
region. Now we consider the calculation of In(t) in TDIE region. If
the time step ∆t meets Courant criterion, c∆t < ∆Rmin/

√
2, where

Rmin is the minimum distance between patch centers. It is obvious
that ti −R/c < ti−1 unless m = n and p = 0, then we obtain:
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Let B(⇀
ρm, ti) denote the second term of the right-hand side in Eq. (24)

and C(⇀
ρm, ti) the third term, and by combining Eqs. (24) and (9) we

can obtain:
µ

4π
Fmm0Im(ti) =

∫ ti

0
Einc(⇀

ρ, τ)dτ −B(⇀
ρm, ti)− C(⇀

ρm, ti) (25)

Obviously, the left-hand side in Eq. (25) involves term only at t = ti,
whereas the right-hand side contains the terms for t ≤ ti−1. Hence, all
Im(ti) in TDIE region can be obtained from Eq. (25) by using I(ti−1)
and all previous currents of both TDIE and TDPO regions. Then,
Ik(ti) of TDPO region can be obtained from Eq. (22) by using Im(ti)
in TDIE region as well as the incident field. This method needs no
matrix inversion and is an explicit method.

In order to avoid the late time instability, a three-step averaging
technique is adopted [29], which simply approximates the averaged
values Ĩm(ti) as:

Ĩm(ti) = 0.25× [Im(ti+1) + 2Im(ti) + Ĩm(ti−1)] (26)
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where Ĩm stands for the averaged currents whereas Im stands for the
currents without average. Although it is well known that the averaging
scheme (26) is not possible to stabilize the MOT scheme for all cases,
it seems to work well in this MOT scheme, and the later numerical
examples show that the accuracy loss brought by this averaging scheme
can be neglected.

3. 2-D TRANSIENT FAR SCATTERED FIELD

For the 2-D TM case, the scattered field may be expressed as:

⇀

E(⇀
ρ, t) = −∂

⇀

A(⇀
ρ, t)

∂t
(27)

Using 2-D time-domain Green function, the magnetic vector potentials
may be written as [31]:
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where η is the wave impedance of the surrounding medium, and ⇀
ρ and

⇀

ρ′ are the field point and source point respectively and τ = |⇀ρ −
⇀

ρ′|/c.

For far-field case, |⇀ρ| À |
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ρ′|, and |⇀ρ −
⇀
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ρ
′
, where ρ̂ is

the unit vector, and ρ = |⇀ρ|. Then Eq. (28) can be rewritten as:
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Also for far field case, ρ can be large enough to give

ρ À ρ̂ · ⇀
ρ
′

(30)
For numerical calculations, the maxim time step t′max which can be
computed is limited. So if ρ is large enough there must be

ρ À ct′max (31)
Furthermore, in Eq. (29) the integral upper limit of t′ is t′max =
t− |⇀ρ − ⇀

ρ
′|/c, which leads to

ct = ρ + ct′max − ρ̂ · ⇀
ρ
′

(32)
Dividing both sides of Eq. (32) by ρ gives

ct

ρ
≈ 1 (33)
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Thus, the following equation may be derived, given by:
1

ct− ct′ + ρ− ρ̂ · ⇀
ρ
′ ≈

1
2ρ

(34)

Substituting Eq. (34) into Eq. (29) gives:
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where symbol f in
⇀

Af refers to far-field. Approximating the contour
C into straight-line segments, Eq. (35) can be written as
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where ∆ln is the length of the nth straight-line segment, and ⇀
ρ
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n

represents the middle point of nth segment, and τ = |⇀ρ −
⇀

ρ′n|/c.
Moreover, Eq. (36) can be carried out analytically on the assumption
that the current in a segment does not vary with time:
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ρ
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n. Finally, we rewrite

Eq. (27) and replace the time derivative with a central difference as:
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4. NUMERICAL EXAMPLES

In this section, two numerical examples are presented. Because the
TDPO method is only valid in high frequency case, a TM modulated
Gaussian plane wave is used, which is defined as [32]

⇀

E
inc(⇀

ρ, t
)

= −⇀

E
inc

0 cos

[
2πf0

(
t−

⇀
ρ · k̂inc

c

)]
4.0√
πT

e
−

[
4.0
T

(ct−ct0−⇀
ρ ·k̂inc)

]2

(39)
where k̂inc is the unit vector in the direction of propagation of the
incident wave, and f0 is the modulation frequency. All results shown
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here are obtained with
⇀

E0inc = ẑ120π, T = 4 LM, ct0 = 6 LM, k̂ = −x̂,
and f0 = 900 MHz.

We first consider a straight strip with a 90◦ bent strip on the right
side of it. As shown in Fig. 3, the combinative cylinders are located
symmetrically along the ŷ axis, and the straight strip is divided into
100 segments, while the bent strip is divided into a total of 10 segments.
In this case, the straight strip is modeled as TDPO region while the
bent strip as TDIE region, and the time step is 0.015 LM. Fig. 5(a)
shows the result of the current response at point A (the midpoint
in the upper side of the bent strip) by our hybrid method, and the

x̂

o

s
30θ =

ŷ

x̂
z

E
o

45

Figure 3. Combinative cylinders
composed by straight strip and bent
strip.
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Figure 4. Combinative cylin-
ders composed by straight strip
and circular cylinder.
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Figure 5. (a) Current response at the point A (refers to Fig. 3)
illuminated by a TM modulated Gaussian plane wave. (b) Far
scattered electric field response of combinative cylinders (refers to
Fig. 3).
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result is compared with that by TDIE. Fig. 5(b) shows the result of
far scattered electric field response calculated by hybrid method with
the scattering angle 30◦ from x̂ axis (θs = 30◦), and this is compared
with the results by TDIE and IDFT, respectively. It is easy for us to
observe that the results by hybrid method agree well with those by
TDIE in Figs. 5(a) and 5(b), but still some small discrepancies appear
in later time. This is caused by the fact that TDPO is an asymptotic
method, and the diffraction at edges is neglected here, while TDIE is
a full wave method. As far as computing time is concerned, the ratio
of TDIE and hybrid method is about 5 : 1 for each time step.

In addition, it is worthwhile to note that the results of far scattered
electric field by TDIE are perfectly in accordance with those by IDFT
in Fig. 5(b), which verifies the validity of the 2-D transient far-field
computation method proposed in this paper.

As the second example, we consider the case of a straight strip
with a circular cylinder on the right side of it, which is shown in
Fig. 4. The combinative cylinders are also located symmetrically along
the ŷ axis. The straight strip is divided into 100 segments while the
circular cylinder is divided into 20 segments. Similarly, the straight
strip is modeled as TDPO region and the circular cylinder as TDIE
region. The time step is 0.015 LM. Fig. 6(a) shows the results of the
current response at point A by hybrid method and TDIE, respectively.
Fig. 6(b) shows the results of the far scattered electric field response
by hybrid method (θs = 30◦) which is compared with those by TDIE
and IDFT, respectively. It is obvious that the conclusions gotten from
Fig. 6 are the same as those in the previous numerical example. For
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-1.0

-0.5

0.0

0.5

1.0

t   (LM)

Jz
(A

m
p

s
/m

)

2 3 4 5 6 7 8 9 10 11

t-ρ/c   (LM)

 hybrid method

 TDIE

 hybrid method

 TDIE

 IDFT

-80

-60

-40

-20

0

20

40

60

80

ρ
1
/2
E

z
(V

/m
)

(a) (b)

Figure 6. (a) Current response at the point A (refers to Fig. 4)
illuminated by a TM modulated Gaussian plane wave. (b) The far
scattered electric field response of combinative cylinders (refers to
Fig. 4).
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this numerical example, at each time step the ratio of the computing
time of TDIE method and hybrid method is about 2.5 : 1.

5. CONCLUSION

A hybrid method which combines TDIE and TDPO is proposed
for the problem of TM transient scattering from 2-D combinative
conducting cylinders. The explicit solution procedure is developed in
detail, and a concise time-domain near-zone to far-zone transformation
algorithm without double Fourier transform is presented. Numerical
results are compared with those obtain by TDIE and IDFT methods,
and demonstrate the accuracy and high efficiency of our hybrid
method, as well as the validity of 2-D transient near-zone to far-zone
transformation algorithm.
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