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Abstract—Waves arise in many physical phenomena which have
applications such as describing the voltage along a transmission
line and medical imaging modality of elastography. In this paper,
estimating the parameters for two forms of lossy wave equations,
which correspond to multi-mode and multi-dimensional waves, are
tackled. By exploiting the linear prediction property of the noise-free
signals, an iterative quadratic maximum likelihood (IQML) approach
is devised for accurate parameter estimation. Simulation results show
that the estimation performance of the proposed IQML algorithms can
attain the optimal benchmark, namely, Cramér-Rao lower bound, at
sufficiently high signal-to-noise ratio and/or large data size conditions.

1. INTRODUCTION

Consider the electromagnetic wave equation for a homogeneous and
isotropic medium at a fixed frequency:

VU (2,y,2) + KU (2,y,2) = 0 (1)
where U(z,y, z) is the complex field amplitude, k is the propagation
constant, 172 is the Laplacian operator of the form

0? 0? 0?
2
=—+=—+ = 2
v oxr? = Oy? + 072 2)
The solution can be expressed as a linear combination of plane

waves, that is [1]
o0

Uz, y,2) = Y [Amexp(f(keme + kymy + kzm?2))

m=1
+Bm eXP(_j(km,mw + kymy + kz,mz))] (3)
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where [kzm Fym k..m])" is the wave number vector of the mth wave
and A,, and B,, are the associated forward and backward complex
amplitudes, respectively.

When the wave equation is applied to a channel waveguide,
the propagation direction is confined to one-dimension (1-D), say, z,
the guided field measured along the propagation direction z can be
described by reducing (3) to

M
Uz) = Z (A, exp(jkzmz) + B exp(—jk. mz)] (4)

m=1
where M is the number of nondegenerate modes supported. Examples
of channel waveguide include optical fibers, ridge waveguides, and
coaxial cables. As (4) is a realistic model of the physical phenomenon in
many scenarios [2] such as describing the voltage along a transmission
line and medical imaging modality of elastography, it is of interest to
find the complex-valued parameters, namely, {A,,}, {Bm} and {k }.

To the best of our knowledge, Oliphant [2] was the first to tackle
this parameter estimation problem with the use of a nonlinear least
squares (NLS) algorithm. Although the NLS estimator can attain the
maximum likelihood (ML) performance under white Gaussian noise
environment, it is hard to implement in practice as its objective
function is multi-modal. Recently, So etal [3] have devised an
iterative quadratic maximum likelihood (IQML) [4-6] algorithm for
the 1-D wave equation in white Gaussian noise by making use of
the linear prediction (LP) property [7,8] in U(z). Apart from more
computationally attractive, it is demonstrated in [3] that the IQML
scheme can provide optimum accuracy even with a smaller threshold
signal-to-noise ratio (SNR) than that of the NLS estimator. However,
both [2,3] only address the simplest scenario of M = 1 in (4) which
corresponds to the 1-D single-mode waveguide. For M > 1, the
waveguide is multi-mode and a generalized treatment is required, which
will be discussed in detail in this work. Moreover, when the wave
equation is applied to planar waveguides or free-space, the propagation
direction is no longer confined to 1-D. That is, the field is expressed
by (3) without further simplification and its parameter estimation will
also be investigated.

The rest of the paper is organized as follows. In Section 2, we
develop an IQML-based parameter estimator for the wave equation
of (4) in the presence of white Gaussian noise, which can be considered
as an extension of [3]. The basic idea is to solve for {k,,,} in an
iterative manner first and then estimate {A,,} and {B,,} according
to linear least squares (LLS). In Section 3, we generalize (3) to the
P-dimensional (P-D) model with P > 2. Prior to employing the
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IQML approach, we exploit the subspace technique [9] to use the
principal singular vectors as the inputs to the algorithm. Cramér-
Rao lower bound (CRLB) [10] computation for the investigated signal
models, which gives a lower bound on the variance attainable by any
unbiased estimator using the same input data, is provided in Section 4.
Simulation results are included in Section 5 to evaluate the estimation
performance of the proposed approach by comparing with the CRLB.
Finally, conclusions are drawn in Section 6. A list of mathematical
symbols that are used in the paper is given in Table 1.

Table 1. List of symbols.

Symbol Meaning
CMxN set of M X N complex matrices
T transpose
H conjugate transpose
* complex conjugate
-1 inverse
vec vectorization
® Kronecker product
E expectation
I; i X 1 identity matrix
0;x; 1 X j zero matrix
R(a) real part of a
S(a) imaginary part of a
a estimate of a
[a], ith element of a
[A], (,7) entry of A
A’ derivative of A
diag (-) diagonal matrix
Toeplitz (a,b”) | Toeplitz matrix with first column a and first row b”

2. ESTIMATION FOR MULTI-MODE SCENARIOS

In this Section, we develop the parameter estimation algorithm for
lossy wave equation corresponding to 1-D multi-mode waveguide.
Based on uniformly sampling a noisy version of (4), the observed signal
model is

R(n) = U(n) + Q(n) ()
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where
M
U(n) = Z [Ap exp(jkmn) + By exp(—jkmn)], n=1,2,...,N (6)
m=1

The k,, represents the wave number where we drop the subscript , for
notation simplicity, while A,, and B,, are the associated amplitudes
determined by the auxiliary or boundary conditions, of the mth wave.
All k,, Ay and By, m = 1,2,..., M, are unknown complex-valued
constants to be estimated, while the number of modes, M, is assumed
known. The additive noises {Q(n)} are complex uncorrelated white
Gaussian processes with variances o2. The task is to find all unknown
parameters given the N measurements of {R(n)}. Our methodology
is first to find the nonlinear parameters of wave numbers. The linear
{A;,} and {B,,} are then estimated using an LLS [10] fit.
We notice that each mode of U(n) can be expressed as

Ay exp(jkmn) + By exp(—jkmn)
= 0.5(4Ay, + B + A — Bin) exp(§kmn)
+0.5(By + Ay — Ay + Bp) exp(—jkmn)
=(Ap+Bn) cos(kmn)+j(Apm — Bp) sin(kpmn) = am, cos(kmn+ém) (7)
where
= 2/ A B, (8)
(B — Ap,
Gm = tan~! <‘](Am B, )> (9)

From (7), it is clear that U(n) is a sum of M sinusoids with complex-
valued frequencies. Making use of the sinusoidal LP relationship that
U(n) can be expressed as a linear combination of its past 2M samples,
we have [8]:

2M

> XU —2M) =0, Ay = dops—n, do=1, n=2M+1,...,N (10)
n=0

where {\,} are called the LP coefficients. The wave numbers {k,,} are
related to the following polynomial constructed from {\,}:

2M
> AN =0 (11)
n=0

whose roots are z = exp(%jky,), m =1,2,..., M [8]. With the use of
An = Aan—n, (10) is expressed in matrix form as

u="UX (12)
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where
u=—p — Mapi1 (13)
U=[po+pon p3+pon—1 - Brmi2+py paryi] (14)
A= X o]t (15)
pn=[UM) Un+1) ... UN-2M—1+n)" (16)

As {U(n)} are not available, we have to perform estimation from
{R(n)}. Let R and r be the noisy versions of U and u constructed
from {R(n)}. According to (12), we now have:

r ~ R\ (17)
Employing the weighted least squares (WLS) technique, the estimate
of A, denoted by A, is [10]

A= argmin (RA- r)H W (RA-r) = (R"WR) ' R¥Wr (18)

where W is the weighting matrix. To achieve the best accuracy, we
employ the Markov estimate [10] of W and its inverse is derived as:

wWl=g {(R)\ “ 1) (RA — r)H} — E{ArrfI AT
=AE{(u+q)(u+ q)H} A" = AE {qu} AT = 2AAT (19)

where

. T
A = Toephtz( [1 01><(N72M—1)} ;

LR D Y VDY VSN SRS | olx(NQMl)]>(2o)

r = [R(1) RE2) ... RN)" (21)

w=[UQ1) UQ2) ... UN) (22)

¢ =[Q1) Q2 ... Q) (23)
2

Note that Au = Oy_zp/—1)x1 and it is unnecessary to know o* as
it will be canceled out in (18), that is, we only need (19) up to a
multiplying scalar. As W is parameterized by the unknown parameter
A, we estimate A in an iterative manner and the estimation procedure
is summarized as follows.

(i) Set W = IN_QM
(ii) Calculate A using (18)
(iii) Compute an updated version of W using (19) with A = X
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(iv) Repeat Steps (ii)—(iii) until a stopping criterion is reached
(v) Solve the roots of (11) with A = A to obtain the estimate of kn,
namely, k,,, m=1,2,.... M

Upon convergence of ;\, the bias of (18) can be investigated by
premultiplying both sides by R¥ WR. to construct:

f) =RIW(RA - 1) = 0(y_211)x1 (24)

where W is a function of A. For sufficiently large SNR and/or data size,
A will be located at a reasonable proximity of A. Denoting AXA = A—A
and using Taylor’s series to expand f(A) around A yields:

Onv_oanyx1 ~ f(A) + (R¥W' Iy @ (RA —1)) + RYWR) AX
~(U+ Q"W (U+QA—(u+aq))

~(U+Q)W'(Iyy ® (U+Q)A~u—q))+(U+Q) W(U+Q)) AX
(25)

where Q and q are the noise components of R and r, respectively. With
the use of UA —u = O(y_3p7)x1 and ignoring the second-order terms

whose values are much smaller than those of the first-order terms, we
obtain:

~U"W (QX — q) = (UYW' (I ® (UX — u)) + UTWU) AX

= AX =—{(UFW’ (I; ® (Urx—u))+ UFWU)} " UFW (QA—q)

(26)
where W' = [W) W) ... W} ]and W) = %TVY As all elements
in Q and q are of zero-mean, we have E{AA} =~ 0p7x;1. That is, A is
an asymptotically unbiased estimate of A.

Employing {k,,} and (5)-(6), the LLS estimates of {4,,} and
{Bn.}, denoted by {A,,} and {B,,}, are [10]:

[A, By ... Ay By]=r"G*(GTG")"" (27)
where [ exp(j];‘l) exp(j2l%1) exp(leAﬁ) 17
exp(—jk1) exp(—2jk1) ... exp(—jNki)
G= : : : (28)
exp(jl%M) exp(j2l§:z\4) exp(le%M)
Lexp(—jkn) exp(—j2kn) ... exp(—jNka)]

which are optimum for independent and identically distributed (IID)
{Q(n)}. Note that when there is numerical instability in computing
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(18) or (27), we can use singular value decomposition (SVD) to
calculate the matrix inverse or add a small number to the diagonal
elements in case of rank deficiency.

3. ESTIMATION FOR MULTI-DIMENSIONAL
SCENARIOS

In this Section, the multi-dimensional wave equation is addressed.
Based on uniformly sampling a generalized version of (3), the signal
model is:

R(ni,n2,...,np) =U(ni,ne,...,np)+ Q(ni,nz,...,np),
ny=1,2... N, (29)

where

P P
U(ni,ng,...,np) = Aexp jz kynp | + Bexp [ —J kanp (30)

p=1 p=1
Here, the single-mode is considered for simplicity. The noise-free
signal U(ny,na,...,np) corresponds to a P-D lossy wave with P > 2,
where k, represents the pth dimension wave number while A and B
are unknown complex constants, and we drop the subscript ,, for
notation simplicity. The size in the pth dimension is denoted by
Ny, p=1,2...,P. The {Q(n1,n2,...,np)} are P-D additive white
Gaussian noises with identical variance of o and the powers of all P

dimensions are the same. The task is to find k1, ko, ..., kp, A and B,
given the Ny x Ny x ... X Np measurements in {R(ni,ns,...,np)}.
Following (7)-(9), we rewrite U(n1, ng,...,np) as
P
U(ni,ng,...,np) = acos kanp—i—d) (31)
p=1
where

a=2VAB (32)

and
4 (j(B—=A)
=tan ! [ L —— 33
o=t (11 (33)
Let
&'nl,...,TL7,L,1,nm+1,...,TLp = |:U(n17 e 7nm*11 15 nm+17 e 7nP)

T
U(nly--~7nm—17Nm7nm+1a---anP):| (34)
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Furthermore, we construct U,, € CNn*N-m by stacking
Uny,.onm—1mstseonpy Tp = 1,2,y Npyp=1,2,...om—=1,m+1,..., P

where N_,,, = [[~ ny. From (30), any column of U,, can be ex-

p=1,p#m
pressed as
'&nl,...,nmfl,nm+1,...,np - ‘I’mrlm (35)
where
. ) . T
T — exp(]/.sm) exp(g?km) exp(]Nmkm) (36)
™ exp(—jkm) exp(—j2km) ... exp(—jNmkm)

Nm = [A exp (j Zle’p;ém kpnp> Bexp (—j Z]];:Lp#m kpnp)} ! (37)

As a result, U,, is of rank 2. On the other hand, factorizing U,, with
SVD yields

H H
Um - um’SSm’svmVS +um,n8m,nvm,n (38)
where S, s = diag(sm,1,5m,2) and Sy, = diag(sm,3, Sma, - - - Sm, Ny )
with singular values s,,1 > spm2 > sSm3 = ... = Sp.N,, = 0 while
Ups = Ui Wpo]l € CV2 and YV, s = D1 Oma] € CN-mx2

are orthonormal matrices whose columns are the corresponding left
and right singular vectors of the signal subspace, respectively. In
addition, Uy, = Mm3 Wma ... Uy N, ] € CNm>x(Nm=2) and Vs =
O3 Oma ... O N, ]| € CN-m*x(N-m=2) are orthonormal matrices
whose columns are the corresponding left and right singular vectors
of the noise subspace, respectively. As U,, s and ¥, span the same
subspace, we have [9]

Ups =90, (39)
where Q,, € C?*? is unknown. It can be deduced from (39) that
Ui, is U(l) in (6) with M = 1, A = [Q,];; and B = [Q,],,,
i = 1,2. Nevertheless, in the presence of noise, U(ni,ng,...,np) is

replaced by R(ny,ns,...,np) and the equal sign in (39) is replaced by
approximately equal sign, leading to

U Ao, = Uy, (40)
where
V.-, UL, (41)
Ui = [Mnaly Wiy - Mmaly, 1] (42)
y = ["Janl uﬁz]T (43)
Wi = — Wiy +ils Mimily + )y - - ["mvi]Nm—2+[um”'}Nm]T(M)
Am = —2cos(ky,) (45)
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As a result, the WLS estimate of A, denoted by Ap,, is
« o H v
Am = arg min <%m)\m — um> W,, (%m/\m — um)
Am

= (ZEW, % ) Y EW o, (46)

In the Appendix A, we have derived the optimal weighting matrix W,
as

W, = [dl&g( Sy S >®A AH} o (47)

where
Am:Toeplitz([l le(Nm_g)]T,[l Am 1 01><(Nm—3)]) (48)

which is parameterized by the unknown parameter \,,. As (47) is block
diagonal, (46) can be simplified to

2 H
kN Zz 1 mz% Wm%l

Am = 49

" Zz 1 znz%H W % ( )

where W,, = (AmAg) (50)
Similar to Section 2, we estimate A,,, m = 1,2,..., P, in a separable

and iterative manner as follows:

(i) Set Wy, =1In,,—2

(ii) Calculate ), using (49)

(iii) Compute an updated version of W,, using (50) with A, = Ay,

(iv) Repeat Steps (ii)—(iii) until a stopping criterion is reached

(v) Use the Aﬁnalized ;\m to compute the estimate of k,, as l%m =
cos (= Am/2)

After all {l;:Am} are available, the optimal estimates of A and B, denoted

by A and B, are then computed using LLS as

[A B] =1"g" (G"G") " (51)

where

. T . T T
exp(jnfk)  exp(jnlk) ... exp(jnH N,

(52)

k)
exp(— ]nlk) exp(—jnfk) ... exp(—jnnp Npl;:)

~ ~ ~ A P
Here, k= [k1 ko ... k‘p]T, r € ClI=1 M denotes the vector containing
all elements in {R(ny,ns,...,np)} and n; € Z contains the indices
with [ny], equals ny, in [r];.
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For the case of a multi-mode multi-dimensional wave, we can
combine the previous developments for (6) and (30) to achieve
parameter estimation. When the number of modes is M, the rank
of Uy, in (38) becomes 2M and we need to utilize the first 2M left
singular vectors and singular values for estimating the wave numbers
where each column of U, s now corresponds to a M-mode 1-D wave. It
is worthy to point out that the major difficulty lies in pairing the wave
numbers in the P-dimension [11]. Using P = 3 as an illustration, we
have to determine the triplets of (kg m, ky m, k. m) after independently
obtaining kg m, kym and &k, m=1,2,..., M.

4. DERIVATION OF CRAMER-RAO LOWER BOUND

In this Section, the CRLBs for parameters in (5)—(6) and (29)—(30)
are derived. We first address the 1-D multiple waves. As Q(n),
n=12,...,N are IID, the CRLB, denoted by H, is computed from
the inverse of the corresponding Fisher information matrix (FIM):

_ 2
H' = —% (FF) (53)
where the columns of F contain 6%211) and 0 = [0,{ 0£ OE]T with
O = R(k) S(ky) ... Rlka) SCka]”, 04 = [R(A1) S(Ay)
R(Ar) S(Au)T and 6, = [R(B1) S(B1) ... R(Bu) S(Bu)].
The values of 8%‘(9") are calculated as:
oU(n ) ) ) .
85&(5@ )) = jnAm exp(jkmn) — jnBy, exp(—jkm,n) (54)
oU (n ) .
83(; )) = —nA; exp(jkmn) + nB;exp(—jkm,n) (55)
oU (n )
8?)?(1(4)) = exp(jkmn) (56)
oU (n . )
8%(1(4)) = jexp(jkmn) (57)
oU(n )
8?)?(1(3)) = exp(—jkmn) (58)
oU(n . .
83‘(;)) = jexp(—jkmn) (59)

The CRLB of k‘m, Am, B,, are [H]mel,mel + [H]ngm,

Hlor1om—120+2m—1 + [Hlomtomon+om, [H|zmom—13042m—1 +
H]3042m,3M+2m, m = 1,2,..., M, respectively.



Progress In Electromagnetics Research, PIER 102, 2010 41

For the signal model of (29)—(30), the expression of FIM is equal
to (53) except that the elements in F are now modified as W
with @ = [R(k1) S(k1) ... R(kp) S(kp) R(A) I(A4) R(B) 3(B)|T,
np =1,2,...,Np, p=1,2,...,P. The values for %&'”’m are
computed as:

oU(ni,n np) F P
1,762y ..., LP . . . .
= jnpAexp|j g kEpnp | — jnpBexp |- g kpnyp

OR(k,) 2 <
(60)
P P
8U(n17227 ...,np) = —npAexp|J Z kpng | +npBexp|—j Z kpnyp
a‘s(k;p) p=1 p=1
(61)
oU(ni,n np) F
1, 27 ceey P .
=exp | J ky,n 62
OR(Am) p; pep (62)
oU(n1,n np) &
1,N2,...,0p) _ . :
93 (An) =jexp | Jj pz:l kpny, (63)
8U(n 9 ’rlp) P
1, P .
=exp | —J kpn 64
OR(Bm,) pz_; PP (64)
oU(ny,n np) &
15782y« ¢ oy . .
93(B,) =jexp | —J pz:; kpn, (65)

The CRLB of k, is [H],, + Hlprpprp, p = 1,2,..., P, and those
of A and B are [H|opy1op41 + [Hl2pi22p12 and [Hlopysopys +
[H]2p44,2p+4, respectively.

5. SIMULATION RESULTS

Computer simulations have been conducted to evaluate the lossy
wave parameter estimation performance of the proposed approach for
1-D dual waves and 3-D single wave in zero-mean white complex
Gaussian noise, that is M = 2 and P = 3. The stopping criterion
of the proposed methodology is a fixed number of iterations. In
both scenarios, we iterate the algorithms for 3 times as no obvious
improvement is observed for more iterations. To illustrate the
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comparative performance, we include the results of the NLS estimators
which are realized by the Newton’s method with the true values as
initial estimates. We scale Q(n) and @Q(n1,n2,n3) to produce different
SNR conditions where SNR = Y™ |U(n)[?/(No?) and SNR =
S SN SN U (n1,m2, ns)|?/ (N1 N2 N3o?) in the former and
latter cases, respectively. All results provided are averages of 1000
independent runs.

In the first test, the mean square error (MSE) performance of
wave numbers versus SNR for 1-D multiple lossy waves is examined.
The parameters of U(n) are ki1 = 1 4 j0.02, ks = 2 — j0.01,
A = 1+ j0.6, Ay = 0.8 + j0.65, By = —0.6 + j0.8 and By =
0.9 + 50.6 while a data length of N = 10 is assigned. Figures 1 to
6 plot E{|ky — k1]*}, E{lks — k2|*}, E{|A1 — A1*}, E{|B1 — B1[*},

b A NLS °
sl : : O Proposed| | o -
15k 6 CRLB 15 A5

A NLS
O Proposed
CRLB

Mean Square Error of k4 (dB)
Mean Square Error of k 2 (dB;

D

0% 5 10 15 20 25 30 0 5 10 15 20 25 30
SNR (dB) SNR (dB)

Figure 1. Mean square error for
k1 versus SNR with 1-D multiple
waves.

5 . . . . :

A NLS
O Proposed
CRLB 1

o

TN .
=] o o a

Mean Square Error of A (dB)
o X \ .
[4)]

D
10 15 20 25 30
SNR (dB)

)
S

o
o

Figure 3. Mean square error for
Aj versus SNR with 1-D multiple
waves.

Figure 2. Mean square error for
ko versus SNR with 1-D multiple
waves.

5

[ A NS
6 O Proposed
N N CRLB

Mean Square Error of B1(dB)

0 5 10 15 20 25 30
SNR (dB)

Figure 4. Mean square error for
By versus SNR with 1-D multiple
waves.
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A NLS
O Proposed
CRLB

-20)

-25

-30

Mean Square Error of A, (dB)
P

-35 L i i i L
0 5 10 15 20 25 30
SNR (dB)

Figure 5. Mean square error for
Ag versus SNR with 1-D multiple
waves.

0.05 =
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0.04 o
0.0351 &
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0.025 o
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0.015 o

0.01 A NLS
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Figure 7. Mean attenuation
coefficient estimate for k; versus
SNR with 1-D multiple waves.

5 - - - - -

b A NLS
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SNR (dB)

Figure 6. Mean square error for
By versus SNR with 1-D multiple
waves.
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-0.022
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Figure 8.  Mean attenuation

coefficient estimate for ko versus
SNR with 1-D multiple waves.

E{|A; — A3|?} and E{|By — By|?}, respectively. It is seen that the
accuracy of both approaches attains the CRLB for SNR > 8dB. The
proposed and NLS methods have almost the same performance except
in the estimation of ko and A; at SNR < 6dB. It is worthy to note
that in practice, the NLS method will give poorer performance when
its initial estimates are not sufficiently close to the global solution.
Regarding computational complexity, the average computation times
of the proposed and NLS algorithms for a single trial are measured as
9.23 x 107*s and 6.83 x 10~ 2s, respectively, indicating the former is
more computatipnally attractive. The mean attenuation coefficients
obtained from ki and ko are plotted in Figures 7 and 8. We see
that both algorithms give nearly unbiased estimates when the SNR
is sufficiently high and the proposed method exhibits a larger bias
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in Figure 7 when SNR < 6dB. Comparing Figures 1, 2, 7 and 8,
we deduce that the variance in the IQML estimator is smaller than
that in the NLS method. This test is repeated with white uniform
noise to investigate the algorithm robustness and the MSE results for
k1 and ko are plotted in Figures 9 and 10. It is observed that the
performance of the both algorithms in uniform noise is comparable
with that of the Gaussian noise case. We have also repeated the first
experiment with N = 30 to study the effect of larger data length and
the MSEs for k1 and ko are shown in Figures 11 and 12. We see that
the performance of both schemes improves and their threshold SNR
is reduced to 4 dB. Combining the findings, the proposed estimator is
able to achieve optimum performance for sufficiently high SNRs and/or
large data lengths.

-10 . . . . . 10
g T
@ sfos : ropose @ 150 2 O Proposed||
= 8 o o
< 20 a &o20b 8
ks) [ 5 2
5 25 6 2 25 a
= o o o
w .30 e w -30t+ e
(0] o [}
5 o o o
S 35 o S 351 o
(%' ) g 0o
- [+) - L Ja
< 40 . c 40 4
[} o o
S 45 7y § -45 : : o
QD
_50 i i i i i _50 i i i i i
0 5 10 15 20 25 30 0 5 10 15 20 25 30

SNR (dB) SNR (dB)

Figure 9. Mean square error for
k1 versus SNR in uniform noise.

Figure 10. Mean square error for
ko versus SNR in uniform noise.
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Figure 11. Mean square error for
k1 versus SNR at N = 30.

Figure 12. Mean square error for
ko versus SNR at N = 30.
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In the second test, the wave number estimation performance of
the proposed approach for 3-D single-mode is evaluated. Now the
parameter settings are k1 = 1+ 50.02, ko = 2 —50.01, k3 = 1.5+ 50.01,
A=1+30.6, B=-0.6430.8 and Ny = Ny = N3 = 10. Figures 13 to
15 show the MSEs of the wave numbers in the three dimensions. We
observe that the wave number estimation performance achieves CRLB
for SNR > 4 dB. Note that the results for A and B are not included as
similar findings are obtained.

6. CONCLUSION

An iterative parameter estimation approach for two forms of lossy wave
equations, which correspond to multi-mode and multi-dimensional
waves, has been devised. In the algorithm development, linear
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prediction and weighted least squares techniques are utilized in both
scenarios. Furthermore, we make use of the subspace methodology
to achieve parameter estimation from the principal singular vectors of
the multi-dimensional data. It is demonstrated that the estimation
performance of the proposed algorithms attains Cramér-Rao lower
bound for sufficiently high signal-to-noise ratio (SNR) and/or large
data size conditions. As an illustration, for a one-dimensional dual-
mode wave with an observation length of 10, the threshold SNR is
10dB.
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APPENDIX A.

In this Appendix, the derivation of W, in (47) is provided. Let u,, 12

. . T
and Au,, 12 be the noise-free version of u,, 12 = [u%l “71;;,,2] and
the corresponding perturbation, respectively. Using (In @ Ap,) U, 12 =

02n,,—4, we first show that the inverse of W, is

W =E{ (@ ndn =) (% A — 0n)" |
=E{(I, ® A,) (1.2 Al 19) (B 1 2+ Aty 12)7 (L ® Aﬁ)}
=E{(I ® A) Aty 1 2Au]) 5 (I @ AlD)} (A1)

As E{Aum7172Au£’172} in (Al) involve perturbations of singular
vectors, we need to relate it with the noise Q(ni,ne,...,np). Let

Q.. be the noise counterpart of U,,. The first-order perturbation of
Au,, ; is [12]

H H H
Aum,i = um,st,ium,st”m,iSm,i +um,st,iSm,svm,stum,i

3
AUl QP isys = D i (A2)
=1
where
tm,i,l = Sm,i (”?n,i ®um,8Dm,iug,s) VeC(Qm) (A?’)

tmiz = (Wh; @ U sDimiSm VI ) vec (QL) (A4)
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tmia = Sy (Op i OUmald iy ) vec (Qum)

= s;;i (”Zm‘ ® INm) vec(Qm) — sr_r:i (vfm ®um,su£7s) vec(Qm)

(A5)
Here, D,,; is a diagonal matrix with the (7,7) entry being zero and
the other diagonal entry equals 1/(s? Sim3—i — sfm) Note that ¢, ;,

j =1,2,3, are obtained by the formula vec(ABC) = (C” ® A)vec(B).
Using (A ® B)(C® D) = AC® BD and Ayld iy s = O, —2)x2, (A1)
becomes

1
(1 4 [0 & 1)) e @uvec( @)

X [anll 51 @1In,) S50 @ In,)] (T2 @ A7)

1
-omenn [0

X [3;}1 (”;kn,l ®1In,.) S o ( m,2 & INmﬂ (12 ® A,’i)
= o2 (Io® Ap) (dl&g( Sm10 S ) ®1Nm> (Iz@Afé)
= lea‘g ( m 17 m2> ® A AH (AG)

which corresponds to (47).
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