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Abstract—In this work, we present an inverse scattering approach to
address the timely detection of damage and leakage from pipelines via
multi-bistatic ground penetrating radar (GPR) surveys. The approach
belongs to the class of linearized distorted wave models and explicitly
accounts for the available knowledge on the investigated scenario in
terms of pipe position and size. The inversion is regularized by
studying the properties of the relevant linear operator in such a way
to guarantee an early warning capability. The approach has been
tested by means of synthetic data generated via a finite-difference time-
domain forward solver capable of accurately and realistically modeling
GPR experiments. The achieved results show that it is possible to
detect the presence of leakage even in its first stages of development.

1. INTRODUCTION

Over the past decade, the costs of servicing underground water, sewage
and fuel services has raised dramatically, pushing the demand for
improved utility location, inspection, characterization and monitoring
technologies that are able to give reliable and accurate images of the
investigated region [1, 2]. Amongst the other geophysical investigation
methods [1, 3–5], ground penetrating radar (GPR) appears to be a
promising candidate, as it allows non-invasive, cost-effective, flexible

Corresponding author: L. Crocco (crocco.l@irea.cnr.it).



308 Crocco et al.

surveys to be undertaken. In fact, several examples of its application
to the detection and monitoring of buried pipelines can be found in
the literature [6–12].

With respect to this framework, the increasing interest towards
the adoption of microwave tomographic approaches in GPR applica-
tions [13–19] is worth to be mentioned. As a matter of fact, as com-
pared to standard GPR processing techniques, microwave tomographic
approaches can improve the “data interpretability”, by making use of
suitable models of the electromagnetic scattering and well-proved tools
to achieve stability against the uncertainties on data.

This work deals with the problem of detecting, possibly in its
early stage, the leakage from a water pipeline and imaging its temporal
evolution. To this aim, a tomographic inversion approach is specifically
designed to tackle the problem at hand. The approach takes advantage
of the assumed knowledge of the monitored scenario by exploiting in
the model the location, size and electric characteristics of the pipeline.
This approach has been already applied to a single-fold/multi-receiver
GPR configuration [11]; here, we consider the conventional multi-
bistatic configuration usually exploited in utility surveys. As the other
main topic of the work, we discuss about the choice of the regularization
parameter in the inversion. While in [11] the regularization parameter
needed in the inversion was determined only by taking into account
the expected noise level, here we also constrain it to the features of
the scenario. The reconstruction performances of the tomographic
algorithm are assessed against synthetic data generated by a finite-
difference time-domain (FDTD) forward modeling scheme that is able
to simulate realistic GPR experiments [20, 21].

2. A DISTORTED WAVE MODEL FOR THE
SCATTERING FROM A LEAKING PIPELINE

Distorted wave models [22] are often adopted in inverse scattering
with the aim of reducing the complexity of the problem and improving
the reliability and stability of the solution approaches, thanks to the
exploitation of a priori information on the scenario under investigation.
In the particular case at hand, one can take advantage of the available
knowledge on the pipe’s position and size to overcome the fact
the field backscattered by the pipeline in most cases overwhelms
the one scattered by the leakage, unless this latter is large, thus
precluding timely detection. Hence, rather than considering the
“conventional” homogeneous half-space reference scenario adopted in
standard microwave tomographic techniques for GPR applications,
one can formulate the inverse scattering problem within the scenario
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depicted in Fig. 1, wherein the pipe features are assumed to be known
and included in the background scenario, while the leak represents the
only “anomaly”.

As a further simplification, the targets are assumed to be invariant
along the y-axis, which is consistent with the geometry of the modeled
environment. Moreover, since one aims at the qualitative and
computationally effective characterization of the anomaly, it proves
convenient to adopt a linearized scattering model arising from the Born
approximation (BA) [22]. Throughout the paper a time factor exp(jωt)
is assumed and dropped.

The investigation domain wherein the leakage is assumed to lie
is D = {[−XM , XM ] × [zmin, zmin + ∆z] − C}, C being the circular
cross-section of the metallic pipe. All the media are assumed to be
non-magnetic (i.e., the magnetic permeability is everywhere that of
free space, µo), whilst εb and σb are the soil relative permittivity and
conductivity, respectively. By denoting the leak’s permittivity and
conductivity with εlk and σlk, respectively, one can define the frequency
dependent contrast function χ defined over D as:

χ(r̄, ω) = ε̃lk(r̄, ω)/εb(ω)− 1, (1)
where ε̃lk(r̄, ω) = εlk(r̄) − jσlk(r̄)/ωεo and ε̃b(ω) = εb − jσb/ωεo are
the equivalent permittivities of the leak and the soil, respectively, and
εo is the free space dielectric permittivity.

The incident field source is a time-harmonic filamentary y-directed
electric current (TM-polarization) of infinite extent and invariant along
the y-axis, whereas the ideal receiving probe is at a fixed offset ∆.
The antennae system is moved at NM locations x1, . . . , xNM

along the
rectilinear domain Γ = [−Xo, Xo] located at the interface (z = 0) and
radiates at NF evenly spaced frequencies in the band WΩ.

Figure 1. Geometrical parameters and investigated domain. The pipe
is assumed to be a part of the background scenario.
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In these conditions, the relationship between the contrast and the
scattered field, as measured at the generic receiver location xm + ∆
for the frequency ω̂, is expressed under the BA through the integral
equation [22]:

Es(r̄m, ω̂) = k2
b

∫

D
G(r̄, r̄m + ∆, ω̂)Eb(r̄, r̄m, ω̂)χ(r̄)dr̄, (2)

where, considering that the inversion only aims at localizing the
anomaly, we have assumed that the unknown contrast is frequency
independent. In (2), k2

b = ω̂2ε̃bεoµo is the wavenumber in the soil,
r̄m = (xm, 0), r̄ = (x, z) and Eb and G denote the background field
and the Green’s function, respectively, which model the fields when
the pipe is intact.

By making the additional simplification of neglecting the presence
of the air soil interface, thus considering the scattering phenomenon
as occurring in a homogeneous medium with the same properties as
the soil, the background field Eb and the Green’s function G can be
expressed in a closed-form. This is performed in Appendix A by
taking advantage of the Fourier-Bessel analytical representations of
the fields scattered from a metallic circular cylinder when illuminated
by a filamentary current [11, 23].

3. REGULARIZED INVERSION

Given the above relationship between the unknown contrast and the
multi-frequency, multi-bistatic scattered field data, the inverse problem
is cast into an operator formalism as:

Es = ADBx, (3)

where ADB : x ∈ L∞(D) → Es ∈ L2(Γ) × L2(WΩ) is a linear and
compact operator whose kernel is given by the product of the Green’s
function times the background field, see Eq. (2). This kind of linear
inverse problem is conveniently solved by exploiting the SVD of ADB,
which provides the explicit inversion formula [13, 14, 24]:

x =
∞∑

n=0

1
σn
〈Es, vn〉un. (4)

In (4), σn are the singular values, whose magnitude decreases and
accumulates to zero for n → ∞, un and vn denotes the left and right
singular functions, respectively. In particular, the functions un provide
a basis for the retrievable functions within the investigated domain D.

As well known, in order to defeat the ill-posedness of the problem,
a regularization has to be enforced. This can be accomplished by
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truncating the summation (4) at an index N̄ . By doing so, the resulting
Truncated Singular Value Decomposition (TSVD) restricts the solution
space to that spanned by the first N̄ + 1 un singular functions [24].

Usually, the choice of N̄ is performed as the trade-off between
the accuracy of the solution and its stability with respect to
uncertainties [13, 14]. These latter may arise from the presence of
noise on data and from the limited vallidity of the assumed linear
approximation (model mismatch). In the application at hand, the
model mismatch is definitely the most important cause of inaccuracy,
owing to the presence of significant mutual interactions between the
leak and the pipe and to the strong scattering nature of the leak itself,
related to the large dielectric permittivity.

To obtain a realible qualitative reconstruction, i.e., stable with
respect to model mismatch, one can take advantage of the peculiar
features of the considered scenario. In particular, in the case at hand,
a satisfying reconstruction is the one that provides information on the
presence and the extent of the leakage. Since this latter is located
beneath the pipe, it is natural to relate the choice of threshold N̄ to
this circumstance.

To achieve this purpose, we have carried out an analysis of the
“spatial” behaviour of the singular functions un. From the observation
of these functions, it follows that the deeper parts of the region
under test are “imaged” by the large index singular functions. As
a consequence, a too small truncation index N̄ would lead to a
reconstruction that is confined to the shallow part of the investigated
domain. Owing to the aforementioned circumstance, it is clear that this
would preclude the possibility of detecting and localizing the leakage,
especially in its early phases.

For a given scenario, one can achieve a relationship between
the truncation index N̄ and the spatial domain imaged by the
corresponding singular functions’ subset, u0, . . . , uN̄ , through the
function:

η(N̄ , r̄) =
N̄∑

n=0

|un(r̄)|2 . (5)

As a matter of fact, as shown in Appendix B, this function measures
the energy of the regularized reconstruction of a point-like scatterer
located at r̄. As a consequence, the evaluation of the function η for
all r̄ ∈ D and for different values of N̄ , allows one to understand how
to fix the threshold by simply observing the function’s behavior. In
particular, such a choice will result in a trade off between the wish of
providing information on the region underneath the pipe and stability
of the reconstruction.
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Figure 2. The “quantized” plot of η. The considered threshold indices
indicate the area imaged by the corresponding singular functions
subset.

Table 1. Parameters of the distorted wave model.

εb σb XM zmin ∆z

3 0.02 S/m 1 m 0.2m 0.6 m
NM ∆ WΩ NF

51 0.18m 400–1300MHz 19

The practical tool to perform the choice of N̄ is simply given by a
plot of η(N̄ , r̄) as “quantized” to a set of threshold indices. For each N̄ ,
this plot indicates the subregions of the investigated domain wherein
η(N̄ , r̄) is not negligible†.

As an example, we have illustrated in Fig. 2 the “quantized”
energy plot resulting from a typical case, whose specific information
corresponds to that of the numerical example given in the next section
(and summarized in Table 1). In such a plot, the contour lines delimit
the areas in which the function η is meaningful and are labeled with the
corresponding value of N̄ . In contrast, the black solid area represents
the “non accessible” region, i.e., the part of the domain which cannot
be imaged in a stable way. As can be seen, an incorrect choice of the
truncation index (for instance, less than 150) prevents from achieving
any information at all on the leak. Conversely, a proper choice of the
threshold (N̄ = 240 in this specific case) allows some information to be
extracted from the region behind the pipe, therefore making it possible
to detect the presence of the incipient leakage. From the singular values
† These regions are easily discriminated owing to the abrupt decay of η.
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curve depicted in Fig. 3, one can notice that the chosen threshold N̄
corresponds to neglect the terms in (4) corresponding to singular values
lower than −30 dB with respect to the leading one (i.e., σ0).

4. NUMERICAL EXAMPLES

In this section, the capability of the imaging approach is assessed by
applying it to three situations, each describing an incipient (small),
advanced (medium) and late (large) leak, respectively (see Fig. 4). The
GPR data have been obtained using the 3D FDTD method developed
in [20, 21], which incorporates air-soil interface and realistic antenna
configurations, accurate source wavelets, truthful material property
descriptions to provide reliable numerical simulations of GPR surveys.
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Figure 3. Singular value spectrum of ADB.

Figure 4. The FDTD model geometry with the form of the spatially
expanding water leak.
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The simulations consist of a shielded dipole antenna, having a
central frequency of 900 MHz, which radiates over a 0.12m diameter,
circular, water-filled metal pipe buried to a depth of 0.5m in a dry, low-
to-medium loss, uniform sandy soil of relative permittivity εb ≈ 3.0 and
a static conductivity of σb = 10mS/m. The temporally and spatially
varying water leakage has been modeled as an incipient, low-flow, low-
pressure, gravity-fed leak that emanates from the base of the pipe and
soaks the surrounding sands in an expanding saturation front that
moves both laterally and vertically downwards across the modeled
volume. The saturated soils have frequency-dependent dielectric
properties with a relative dielectric permittivity of approximately
εr ≈ 22 at 900 MHz. The synthetic data have been corrupted with
an additive Gaussian noise with a signal-to-noise ratio of 20 dB.

The parameters exploited in the distorted wave model are given
in Table 1. It is worth to note that in order to apply the inversion
algorithm, one has to convert the (synthetic) raw-data radargram (i.e.,
the total field data in the time-domain) into the desired scattered field
data in frequency domain. To achieve this, the total field data is
subtracted from the background field in the absence of the leak‡ and
then the resulting time-domain field is Fourier transformed in order
to obtain the scattered field data needed by the inversion procedure.
According to the discussion in the previous section, the regularized
reconstruction x is achieved by truncating the SVD to N̄ = 240. As it
can be observed from Fig. 3, where the singular values spectrum has
been reported, this corresponds to restricting the summation (4) to the
terms weighted by singular values not lower than −30 dB with respect
to the leading one (i.e., σ0).

The results of the inversion algorithm in the three cases are
reported in Fig. 5. As can be seen, despite the approximations inherent
in the scattering model adopted in the inversion (i.e., ideal probes, 2D
geometry, homogeneous background, frequency independent unknown
and so on), the approach is able to detect/localize the leak and
estimate its extent for both the large and medium leakage examples,
(Fig. 5(a) and Fig. 5(b)). By observing Figs. 5(a) and (b), one can
notice that some differences arise, revealing the evolving (actually
growing) nature of the leak. In particular, a different position of
the reconstructed spot is observed. In both cases, the reconstructed
spots account for the location of the upper part of the leaks. This
latter circumstance is consistent with the fact that the leak almost
behaves as a non-penetrable target. Accordingly, only the upper part
(directly illuminated by the probing wave) can be imaged. Remarkably,
‡ This latter can be either measured at a different time or spatial location along the pipe
or computed by means of the forward solver itself.
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(a)

(c)

(b)

Figure 5. Normalized modulus of the reconstructed contrast achieved
through the distorted wave tomographic approach in the three cases
of a (a) large; (b) medium, and (c) small leak. In all cases, N̄ = 240.

as shown in Fig. 5(c), even in the small leak case, where the leak is
almost completely masked by the pipe, the presence of an anomaly is
clearly detected, thus illustrating the early-time warning capability of
the method and its ability to track the evolving leak from its inception.
It is worth to note that the features of the reconstruction obtained in
the small leak case are consistent with the properties of the spatial
function η shown in Fig. 2 and can be explained according to them.
As a matter of fact, the region where the leak lies belongs to the non-
accessible zone in Fig. 2. Accordingly, a correct localization of the
leakage at this stage is not possible. Nevertheless, the algorithm can
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help to reveal the presence of the leakage by providing a reconstructed
contrast whose modulus is remarkably different from zero in that part
of the “accessible” zone which is closer to the leakage. It is also worth to
note that the features of such a reconstruction are indeed different from
those achieved in the case when there is no leak at all. These results
are not shown for the sake of brevity, but the reader is addressed to [11]
to appraise the features of the reconstruction when no leak is present,
as well as the stability of the proposed inversion method against an
incorrect assumption on the pipe’s position.

(c)

(a)

(b)

Figure 6. The effect of SVD truncation on the reconstruction achieved
in the small leak case. (a) N̄ = 75; (b) N̄ = 150; (c) N̄ = 325.
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To point out the effect of SVD truncation index on the trade-off
between the stability of the solution and the capability of imaging
beneath the pipe, in Fig. 6 we have reported the reconstructions
achieved in the small leak case for three different values of N̄ . First,
let us observe Fig. 6(a) which shows the result achieved when a too low
number of terms (N̄ = 75, corresponding to 20 log 10(σ0/σN̄ ) = 10 dB
in Fig. 3) is considered. In this case, one can notice how, the inversion
algorithm is not able to image the deeper part of the investigation
domain where the leak is actually located, as predicted from Fig. 2).
In particular, the reconstructed contrast is erroneously localized in
the shallower zone and no reliable information can be achieved on
the presence and actual position of the leak. Fig. 6(b) shows how
the reconstruction slightly improves when taking N̄ = 150 (that
corresponds to a 20 dB threshold in Fig. 3). As can be seen, the
reconstructed contrast is now located in a deeper zone, as compared to
the previous case, but yet the leak is not properly localized. Finally,
the result corresponding to N̄ = 325 (40 dB) is reported in Fig. 6(c).
This last case gives a clear example of the instabilities resulting from
retaining a number of singular values larger the optimal one in the
TSVD expansion. As a matter of fact, the amplification of errors (both
model errors and noise on data) entails that the information about the
leak location is completely overwhelmed by artifacts.

5. CONCLUSION

In this paper, we have presented a microwave tomographic approach
specifically designed for the detection, localization and imaging of an
incipient water leak from a metallic buried pipe from bistatic GPR
data. To this aim, the underlying inverse scattering problem has been
cast within a distorted wave model in which the pipe position and size
are accounted for and the leak is the only anomaly. The resulting linear
inverse problem is then solved via TSVD and the threshold index is
properly fixed by inspecting the properties of the singular functions
that span the unknowns’ space. This analysis is necessary in order to
allow the inversion algorithm to achieve the positive results obtained
against synthetic data simulated under realistic conditions. Let us
remark that similar results would not be possible by using standard
GPR processing or microwave tomographic approaches based on a non-
distorted model. Both theoretical and experimental developments will
be considered in the continuation of this research activity. As far as
the first are concerned, we will aim at determining the minimum size of
a detectable leak by the inversion approach as well as the effect of the
inaccuracies in the knowledge of the background medium. In addition,
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an experimental validation is also in order, possibly carried out with
similar methodologies as those considered in [12].
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APPENDIX A.

Under the assumption that the scattering phenomenon occurs in
a homogeneous medium with the same properties of the soil, the
background field Eb and the Green’s function G are given by the
closed-form expressions arising from the Fourier-Bessel analytical
representations of the fields scattered from a metallic circular cylinder
under the incidence of the field radiated by a filamentary current [23].

In particular, the background field is given by:

Eb(r̄, r̄m, ω̂)

= − ω̂µo

4

[
H

(2)
0 (kb|r̄ − r̄m|)−

∞∑
n=−∞

Jn(kbR)

H
(2)
n (kbR)

ejn[∠(r̄−r̄c)−∠(r̄m−r̄c)]

×H(2)
n (kb|r̄ − r̄c|)H(2)

n (kb|r̄m − r̄c|)
]
, (A1)

while the Green’s function:

G(r̄, r̄m + ∆, ω̂)

= − j

4

[
H

(2)
0 (kb|r̄m+∆−r̄|)−

∞∑
n=−∞

Jn(kbR)

H
(2)
n (kbR)

ejn[∠(r̄m+∆−r̄c)−∠(r̄−r̄c)]

×H(2)
n (kb|r̄m + ∆− r̄c|)H(2)

n (kb|r̄ − r̄c|)
]
. (A2)

In Eqs. (A1), (A2), R is the pipe radius, r̄c its center, Jn the Bessel
function of first kind, H

(2)
n the Hankel function of second kind and n-th

order and ∠ the angle between two vectors.

APPENDIX B.

In order to provide an interpretation of the function η(N̄ , r̄) introduced
in (5), let us first consider the regularized reconstruction of a contrast
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function given by a Dirac pulse located at r̄′. From the SVD
properties [24] and from (2) and (4), this latter is given by:

Rδ(r̄; r̄′) =
N̄∑

n=0

u∗n(r̄′)un(r̄). (B1)

Then, let us evaluate the energy E ofRδ(r̄; r̄′), meant as a function
of the spatial variable r̄′. This latter is given by:

E =
∫

D

N∑

n=0

u∗n(r̄′)un(r̄)
N∑

m=0

um(r̄′)u∗m(r̄)dr̄

=
N∑

n=0

N∑

m=0

u∗n(r̄′)um(r̄′)
∫

D
un(r̄)u∗m(r̄)dr̄

=
N∑

n=0

N∑

m=0

u∗n(r̄′)um(r̄′)δ(n−m) =
N∑

n=0

∣∣un(r̄′)
∣∣2 (B2)

where we have exploited the orthonormality of the singular functions
in D.

By comparing (B2) and (5), it follows that, for a given location
r̄′ ∈ D and a given regularization index N̄ , the function η corresponds
to the energy of the regularized reconstruction of a point-like scatterer
located r̄′. Therefore, if η attains a low level in a generic point r̄′, this
indicates that it is not possible to achieve a meaningful reconstruction
in that location. Accordingly, the plot of the function η gives an
indication of the regions that, for a fixed truncation index, cannot
be imaged by a regularized inversion scheme.
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