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Abstract—Holey fibers (HF) with their peculiar properties have been
used in fabrication of Erbium doped holey fiber amplifiers (EDHFA)
for third optical communication window. In this paper, by using scalar
effective index method, the analyses are presented to investigate the
effects of HF geometrical parameters on the gain performance of the
EDHFAs. The hierarchical variations of the parameters, including
the air-hole sizes (AHS), propagating modes of the core and cladding,
mode field diameter of the signal and pump, would cause alterations
in the maximum gain and the optimum lengths of the EDHFAs.
By determining the normalized frequency of the HF in wide range
variations of the air-hole diameter, air-hole spacing, and air-filling
factor (AFF), the single-mode regions for signal and pump wavelengths
are obtained, where the maximum gain and the optimum lengths are
evaluated. In addition, the influence of pump power and the dopant
concentration in terms of the AFF are investigated. It is shown that
by using suitable AHS and AFF, one can obtain a higher gain for a
shorter optimum length in the EDHFAs.

The obtained results can be a useful tool for design of HF-based
optical amplifiers with lesser effects of amplified spontaneous emission
and nonlinearities because of shorter optimized length.
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1. INTRODUCTION

In recent years photonic crystal fibers (PCFs) have emerged as an
attractive alternative to solve many problems of conventional optical
fibers. The PCFs can be classified in two categories according to their
wave-guiding principle. The first one, index-guiding micro structured
fibers (MF) or holey fibers (HF) which guide light in the same way as
standard optical fibers [1], based on total internal reflection (TIR) [2];
and the second one, photonic band gap fibers (PBF) where the
light propagation is confined through the band gap effect [3]. The
main parameter of these fibers, such as numerical aperture, mode
areas, group velocity dispersion (GVD), can change by altering the
holes structures and sizes in the cladding. The flexibility of main
parameters in the HF has led to the development of several applications
in the fields of optical communications [4, 5], nonlinear optics [6],
sensing [7], high power technology [8], dispersion tailored fibers [9],
optical metrology [10], optical filters [11], and active fibers [12].
Narrow-core HFs have been widely applied in nonlinear optics, e.g.,
in super continuum generation and parametric amplification due to
their enhanced nonlinearity [13, 14]. Large-core, endlessly single-mode
HFs with high numerical aperture have been developed for applications
in telecommunications and high optical power delivery [15].

Numerical simulations play an important role for the design and
modeling of optical components. To simulate optical component based
on HFs, the utilized HFs should be analyzed with one of the reported
techniques [16]. Combining effective index model with rate equation is
simple and fast model to analyze Erbium doped holey fiber amplifiers
(EDHFAs) [17]. In the reported works, hole-assisted Erbium-doped
amplifiers [18], honeycomb and cobweb photonic crystal fiber [19]
large-mode area double-cladding HFs [20], have been studied with
finite element method (FEM). Although FEM have more accuracy
to analyze the EDHFAs with different hole geometries, it is a more
time consuming method than other simple method such as effective
index method (EIM). In Ref. [18], the variations of refractive index
and hence the gain of EDHFAs at air-hole pitch Λ = 4µm for three
different air-filling factor (AFF) d/Λ are reported using FEM, where
d is the air-hole size (AHS).

The simulation results of the EDHFA using fundamental space
filling mode have good agreement with the experimental results [17, 21].
In the present paper, the effects of geometry on amplification property
of EDHFAs with periodic air-hole arrangement in the cladding
are analyzed using scalar effective index method (SEIM). A brief
introduction to the numerical model applied in this work is reported in
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the next section. In the simulation and analysis section, variations of
the effective index and mode-field diameter (MFD) by changing hole
geometry of a honeycomb lattice is determined. By using obtained
results, the single-mode region by AHS and AFF is obtained in the
EDHFA’s doped with 6% Germanium dopant.

The variations of maximum gain and optimum length are
determined in single-mode regions. This paper by using doped HF
presents design of an amplifier with improved properties. We will show
that when using the signal and the pump wavelengths in the single-
mode region of the EDHFA, one can enhance the maximum gain of the
amplifier with a lower pump powers.

Figure 1. Hexagonal unit cell in the cladding with air hole of radius
a and silica radius of b.

(a) (b) (c)

Figure 2. Development of equivalent step index fiber for the HF.
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2. ERBIUM DOPED HOLEY FIBER MODELING

In modeling HFs by EIM, effective refractive index of cladding is
replaced by average refractive index of fundamental space filling mode
nFSM = βFSM/k0 where βFSM is the space filling mode propagation
constant, k0 = 2π/λ0 wave number in free space, and λ0 is free space
wavelength. The value of nFSM is evaluated by solving the scalar wave
equation within a unit cell in the cladding of the HF in Fig. 1 as
follows [22, 23]:

Ψ = AI0(WR); R = r/a (within air-hole)
= BJ0(RU) + CY0(RU) (within silica region)

(1)

where a is air-hole radius, r is cylindrical parameter of the fiber, Y0,
J0, and I0 are Bessel functions. By inserting boundary condition in
fundamental mode we obtain the eigenvalue equation as:

BJ1(u) + CY1(u) = 0 (2)

Using Bessel functions I0, I1, J0, J1, Y0, and Y1, the constants A,
B, and C are determined by

AWI1(W ) = − A

J0(U)

[
I0(W )− C

A
Y0(U)

]
− CUY1(U)

C =
A [WI1(W )J0(U) + UJ1(U)I0(W )]

U [J1(U)Y0(U)− J0(U)Y1(U)]

B =
A

J0(U)

[
I0(W )− Y0(U) [WI1(W )J0(U) + UJ1(U)I0(W )]

U [J1(U)Y0(U)− J0(U)Y1(U)]

]
(3)

In Eq. (3) the parameters U , W , and u are defined as follows:

U = k0 a
√

n2
s − n2

FSM

W = k0 a
√

n2
FSM − n2

a

u = k0 b
√

n2
s − n2

FSM

(4)

where b = Λ(
√

3/2π)0.5 ≈ 0.525Λ is radius of hexagonal unit cell [24],
ns and na are refractive indices of pure silica and air, respectively.

Now to determine the parameters in Eq. (4), we replace the HF
with an equivalent step index fiber (ESIF) with core radius of ρ in three
steps (a), (b), and (c) as shown in Fig. 2. The solution of fundamental
mode for the equivalent structure of Fig. 2(c) from Eq. (1) is given as

Ψ = AI0(UeffR); R < 1
= BJ0(WeffR) R > 1

(5)



Progress In Electromagnetics Research B, Vol. 19, 2010 389

where the corresponding effective HF parameters are redefined as

Ueff = k0ρ
√

n2
core − n2

eff

Weff = k0 ρ
√

n2
eff − n2

FSM

Veff = k0 ρ
√

n2
core − n2

FSM

(6)

where ns is replaced by ncore for refractive index of the core.
We define an ESIF with the core radius ρ = 0.64Λ, and

corresponding core refractive index of ncore (for r ≤ ρ) and nFSM (for
r > ρ). The electric field component Ex of the fundamental mode in
the corresponding regions are [17, 25]:

Ex =





E0J0(Ueffr/ρ)
J0(Ueff)

r ≤ ρ

E0K0(Weffr/ρ)
K0(Weff)

r > ρ
(7)

The boundary condition is [26]:
J0(Ueff)

UeffJ1(Ueff)
=

K0(Weff)
WeffK1(Weff)

(8)

where K0 and K1 are zero and first order modified Bessel functions
respectively. Using nFSM in Eq. (8) the value of neff can be obtained
numerically. The refractive index of core ncore is obtained from
Sellemier equation for GeO2/SiO2 glass for whole wavelength region
as [18]:

n2
s = 1 +

3∑

i=1

[SAi + x (GAi − SAi)]λ2
0

λ2
0 − [SLi + x (GLi − SLi)]

2 (9)

where x is molar fraction of GeO2 and SAi, SLi, GAi, and GLi

are coefficients of Sellemier equation for SiO2 and GeO2 glasses,
respectively [18], λ0 is free space wavelength in micrometer. In the
following calculations, for the proper mode guidance and optimized
operation of the EDHF with better dependency on fiber geometry, the
value of x is taken as 6% [18].

The intensity pattern Ψ(r, Ω), proportional to |Ex|2 can be
approximated as a Gaussian envelop function as:

ψ (r,Ω) =
e−r2/Ω2

πΩ2
(10)

where the effective MFD (Ω) for core mode LP01, is defined as [17, 27]:

Ωeff = ρ J0 (Ueff)
Veff

Ueff

K1 (Weff)
K0 (Weff)

(11)



390 Karimi and Seraji

Assuming a homogenous radial distribution of dopant in the core and
the presence of background loss in the EDHFA the rate equation for
two level system changes as follows [28]:

dPP (z)
dz

= −2πσP
a N0

×
ρ∫

0


 1 + ηs

1+ηs

PS(z)ψS(r)
ISO

1 + PP (z)ψP (r)
IPO

+ PS(z)ψS(r)
ISO

+
αP

2πσP
a N0


PP (z) ψP (r) rdr (12)

dPS (z)
dz

= 2πσS
a N0

×
ρ∫

0

(
ηs

PP (z)ψP (r)
IPO

− 1

1 + PP (z)ψP (r)
IPO

+ PS(z)ψS(r)
ISO

− αS

2πσs
aN0

)
PS (z) ψS (r) rdr (13)

where Pp and Ps are pump and signal powers along the propagation
length, σs

a, σp
a, and σs

e are absorption cross-sections of signal and
pump, and emission cross-section of signal respectively, τ is steady-
state lifetime, Ψp, Ψs are the qualitative patterns of the pumping
and signal propagations, considered as Gaussian envelopes, αp and
αs are background loss coefficients at pump and signal wavelengths,
respectively, η = σs

e/σs
a, and N0 is Erbium concentration in ion/m3

The signal Is0 and pumping Ip 0 saturation intensities are defined as:

IS0 =
hνs

σs
aτ (1 + ηs)

, IP 0 =
hνp

σp
aτ

(14)

where νs and νp are signal and pump frequencies respectively, h is
Planck’s constant. By numerical solution of Eqs. (12) and (13) the
variations of pump and signal along the EDHFA is obtained. In the
present paper to solve Eqs. (12) and (13), we have used Runge-Kutta
method [29].

3. SIMULATION RESULTS AND DISCUSSIONS

The refractive index of glass at 1530 and 980 nm for x = 0, using
Eq. (9) are 1.4534 and 1.4487, respectively and for glass doped with
6% mole GeO2, are 1.4524 and 1.4575 respectively. Meanwhile, we
assume that the Erbium ions do not alter the refractive index of the
core. Using Eq. (2) the value of nFSM or refractive index of cladding is
obtained. The simulation results of nFSM (S) and nFSM (P ) in terms of
AFF d/Λ are depicted in Figs. 3(a) and 3(b) for different Λ at signal
and pump wavelengths, respectively As depicted in Fig. 3, for larger
AFF with constant pitch size, the value of nFSM is smaller, because in
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larger AHS the cladding has lager area of air filling and the refractive
index of cladding is closer to refractive index of air. At a given AFF, if
the space between air-hole becomes larger, area of cladding has more
silica material so the refractive index of cladding must be closer to the
silica refractive index. As shown in Fig. 3, when Λ increases, the value
of nFSM will increase to a constant value of 1.45 and at lower values
of Λ, the slope of nFSM variations increases. This case occurs at both
the wavelengths.

Using Eq. (8), the value of neff is obtained. The result of
simulation for neff at signal and pump wavelengths by varying AFF
and the space between air-holes are depicted in Figs. 4(a) and 2(b),
respectively. The value of neff for Λ from 3 to 8µm is almost

(a) (b)

Figure 3. Variation of (a) nFSM(S) at signal wavelength and (b)
nFSM(P ) at pump wavelength 980 nm versus AFF d/Λ for different Λ.

(a) (b)

Figure 4. Variations of (a) nFSM(S) at signal wavelength 1530 nm
and (b) nFSM(P ) pump wavelength 980 nm versus d/Λ.
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independent of AHS variations. At 1530 nm for Λ = 1µm, when AFF
changes from 0.1 to 0.8, the value of neff decreases from 1.44 to 1.33.
Same as the nFSM, the neff values at 980 nm are larger than that at
1530 nm.

The numerical value of the refractive index using SEIM is higher
than the value obtained by FEM [22]. For instance, using SEIM at
1530 nm and d/Λ = 0.1 and 0.3, the values are 1.4550 and 1.4546,
respectively, while FEM yields the respective values as 1.4460 and
1.4447 [18]. For these values of d/Λ, the relative refractive index
difference between the core and cladding using SEIM and FEM are
0.004 and 0.0013, respectively.

The single-mode region in an SIF is determined by its normalized
frequency V = k0ρ(n2

co − n2
cl)

0.5 limited to a value of 2.4048. In case
of HF, different values of V for the cutoff of single-mode operation
depend on definition of core radius ρ, refractive indices of the core nco

and cladding ncl, and the HF description method [30]. To model the
HF, for the effective refractive index of the guided principal mode nco,
with core radii of ρ = Λ/2, ρ = Λ, and ρ = Λ/

√
3, the effective cutoff

values of Veff are obtained as 2.5, π, and 2.405, using full-vectorial
plane-wave expansion method [31], effective-index method [32], and
classical optical fiber theories [33]. Although all these methods are
shown to be capable of properly describing the behavior of the HFs
for at least the simplest cases, they result in different values of the
single-mode cutoff values of Veff. In all the reported results, the values
of Veff depends on Λ/λ and the HFs stand single-mode in wide range
of wavelength.

The variation of Veff with respect to the AFF at signal wavelength
for different Λ size is illustrated in Fig. 5. For Veff -SM < 2.4048, the
HF at 1530 nm for about Λ < 5µm can act as single-mode, as shown
in Fig. 5(a) by solid line and in Fig. 5(b) by constant plane P. As
reported in Ref. [16], the HF made from pure silica without doping of
core region with Λ = 2.3µm and core radius ρ = Λ/

√
3, the maximum

value of d/Λ, for which HF remains single-mode, equals to 0.424 for
all wavelengths. Increase in core radius shifts the single-mode region
to shorter d/Λ values [34]. Simulation shows increasing 6% Ge in the
core region with the same Λ = 2.3µm causes the maximum value of
d/Λ increase to 0.536 for which HF remains single-mode.

In the single-mode region of the HF for Veff < 2.4048, the
maximum value of the pitch Λ varies with AFF d/Λ at signal and
pump wavelengths, as plotted in Fig. 6. For drawing this variation
at every value of d/Λ, the pitch size from Fig. 5(a) is calculated
to get Veff = 2.4048 for a HF with core radius ρ = 0.64Λ. The
areas under two curves (regions I and II) in Fig. 6 are single-mode
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regions for both signal and pump wavelengths. At signal wavelength
for d/Λ = 0.1, pitch Λ can grow up to the maximum value of 5.3µm,
where the EDHFA remain single-mode. At larger AFFs, the maximum
value of pitch, at which the EDHFA remains single-mode, becomes
smaller. Meanwhile, at pump wavelength for d/Λ = 0.1, for single-
mode operation of the EDHFA, pitch attains a maximum value of
2.75µm. To achieve maximum efficiency of pump and signal, the
EDHFA should be single-mode for both the wavelengths. The region
common to both the curves (region III) is single-mode region for
both signal and pump wavelengths. If the HF used for a design
of amplifier or laser for a wideband applications such as wavelength
division multiplexers (WDMs), it should remain single-mode for higher
gain at all signal wavelengths.

(a) (b)

Figure 5. Variation of Veff with AFF d/Λ for different Λ at 1530 nm.

Figure 6. Single-mode region of the EDHF for pump and signal
wavelengths.
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Another parameter, which is influenced by the HF geometry at
signal and pump wavelengths, is the effective MFD Ωeff of the principle
mode LP01 based on Eq. (11). The variations of Ωeff at signal Ωs and
pump Ωp wavelengths as functions of the AFF at different values of
the pitch, are shown in Figs. 7(a) and 7(b), respectively. For any pitch
value when AFF increases, the values of Ωs and Ωp will decrease. At a
constant AFF, growth in air-hole spacing Λ causes the MFD to increase
both at signal and pump wavelengths. The values of Ωp for Λ > 3µm
are slightly greater than that of Ωs values. The slope of signal MFD
reduction for Λ < 3 µm becomes steeper as d/Λ increases.

(a) (b)

Figure 7. Variation of mode field diameter with respect to d/Λ
for different pitch values at (a) signal wavelength and (b) pump
wavelength.

(a) (b)

Figure 8. Gain variations of EDHFA with respect to amplifier length
at different values of d/Λ for (a) Λ = 1 and (b) Λ = 2.
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Table 1. Parameters values used in simulation of EDHFAs and
EDFAs.

Parameters Values

Core diameter of the HF ρ = 0.64Λ

Signal wavelength λs = 1530 nm

Pump wavelength λp = 980 nm

Steady-state lifetime T = 10ms

Dopant concentration Nt = 2× 1024 ion/m3

Pump absorption cross section [35] σa
p = 1.6400× 10−25 m2

Signal absorption cross section [35] σa
s = 2.4249× 10−25 m2

Signal emission cross section [35] σe
s = 2.4097× 10−25 m2

Input pump power Pp = 6mW

Input signal power Ps = 1mW

Signal background loss αS = 0.41 dB/km [18]

Pump background loss αP = 2 dB/km [18]

By numerically solving Eqs. (12) and (13) in single-mode region of
Fig. 6, using Runge-Kutta method, the gain variation along the length
of EDHFA is obtained as shown in Figs. 8(a) and 8(b) for Λ = 1µm
and 2 µm at different AFF, respectively. It is noted that in both values
of Λ, increase in the AFF will make the maximum gain increase and the
optimum length of EDHFA decrease. In these simulations, we used the
values of main parameters such as dopant concentration, steady-state
lifetime, cross-sections, signal and pump values from Table 1 [35]. As
shown in Fig. 8(b) the optimum length is shorter for when Λ = 2µm,
so the use of Λ = 2µm to achieve shorter amplifier length is preferred.
For instance, in [18], at Λ = 4µm and d/Λ = 0.25 for signal power
of 1mW and pump power of 10 mW, the gain at the length of 13 m is
7.6 dB whereas in the present result at Λ = 2µm and d/Λ = 0.1 for
signal power of 1 mW and pump power of 6 mW, we obtained a gain of
9.1 dB with the same length. The higher gain in the later case could
be due to the use of pumping wavelength within single-mode region of
the EDHFA.

To visualize the maximum gain variations and the optimum length
of the amplifier with respect to the AFF and Λ as a parameter, we
have illustrated their variations in Figs. 9(a) and 9(b) for the pump
and the signal wavelengths of 980µm and 1530µm, respectively. The
maximum gain of the amplifier in the single-mode region of the HF
down-shifts to lower values in terms of Λ and for d/Λ up to 0.2, and
the slope of the maximum gain variation for both values of Λ remains
the same. When d/Λ > 0.2, effect of Λ becomes more prominent.
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When the AFF increases, the maximum gain will also increase while
the optimum length will decrease. It is obvious to see the reduction
of optimum length of about 75% when Λ increases. So by choice of
proper HF geometry we can achieve higher gain at shorter amplifier
length.

The variations of maximum gain and optimum length with respect
to pump power at Λ = 2µm and Nt = 2.0× 1024 ion/m3 for different
values of d/Λ are depicted in Figs. 10(a) and 10(b), respectively. The
variations of both the parameters have ascending order as that of
Ref. [18].

(a) (b)

Figure 9. (a) Maximum gain variation and (b) optimum length with
respect to AFF at Λ = 1µm and 2µm in single-mode region of the
HF.

(a) (b)

Figure 10. (a) Maximum gain, (b) optimum length variation with
respect to pump power at Λ = 2µm and different AFF.
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Similar to conventional EDFA, when pump power increases,
the maximum gain and optimum length will increase, as shown in
Fig. 10(a). For 25mW pump power, the variance between maximum
gain at d/Λ = 0.1 and 0.4 is about 5 dB and the difference between
optimum length for the same AFF is about 29 m. We note that in
Fig. 10(b), when d/Λ increases, the optimum length will decrease, and
the gain will increase, especially at higher pump powers. So using
higher value of AFF in designing amplifier at high pump power will be
more detrimental issue. Further another feature of shorter amplifier
lengths is the less effect of amplified spontaneous emission (ASE) on its
performance [36, 37]. In a comparison of the EDHFA with conventional
EDFA, the variation of pump power or signal power or distribution
of dopant concentration has similar effect on the performance of the
amplifiers. In other words, increase of the pump power or dopant
concentration and/or decrease of the signal power cause an increase of
the gain of the EDHFA along a constant length of the amplifier [18],
as similar to EDFA [27].

The variations of maximum gain and optimum length with respect
to dopant concentration are depicted in Fig. 11. As shown in Fig. 11(a),
increases in dopant concentration gradually causes increases in the
maximum gain. Similar to Fig. (9), the values of maximum gain at
a larger AFF is higher. The dopant concentration in a fixed amplifier
length in excess of 2.0 × 1024 ion/m3 will lower down the gain [38]
because higher Er3+ concentration worsens the amplifier performance
due to pair-induced quenching (PIQ) which appears in a conventional
EDFA [39]. So by changing hole geometry rather than increasing
the dopant concentration, we can get higher gain value and omit the
undesirable effects such as PIQ.

(a) (b)

Figure 11. Variations of (a) maximum gain and (b) optimum length
with respect to dopant concentration at Λ = 2µm and different AFFs.
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As shown in Fig. 11(b) when the dopant concentration is 1.0 ×
1024 ion/m3, the optimum length changes from 30 m to 55 m for
different AFFs. By increase of the dopant concentration up to
7.0×1024 ion/m3, the optimum length decreases to 7.3–13.3 m. Similar
to Ref. [18], we note in Fig. 11(b) that the length of EDHF has a
reduction trend when the dopant concentration increases.

As shown in Fig. 9(b), using hole geometry with Λ = 1µm causes
the optimum length shifts to higher length. So use of Λ = 1µm is
not preferred. As shown in Fig. 11(b), the optimum lengths after
Nt = 3.0 × 1024 ion/m3 for different d/Λ have mild slope change. In
addition, from Fig. 11(a), we observe that the maximum gains for
this case vary with negligible change. So the best value for dopant
concentration could be about 3.0 × 1024 ion/m3 which gives a benefit
of avoiding the upconversion and QIP effects in the amplifier of the
kind under consideration.

In the following, we analytically compare the result of amplifier
gain using FEM and SEIM methods.

In Ref. [25], the effective indices obtained by FEM and SEIM at
1500 and 1000 nm are presented. Using Eqs. (6) and (11) and Figs. 4
and 5 of Ref. [25], the MFD can be obtained approximately at given
wavelengths.

Using the obtained MFDs in Eqs. (12) and (13), the gain values
can be calculated. The gain variations with respect to amplifier length
at 1500, 1530 and 1550 nm are depicted in Fig. 12 using the values
of amplifier parameters from Table 1. We note that the difference
between maximum gain at 1550 nm, 1530 nm, and 1500 nm are 0.54 dB,
0.17 dB and 2.67 dB, respectively. The corresponding optimum lengths
are 7.8 m, 11.3 m, and more than 23 m.

Figure 12. Variation of amplifier gain with respect to amplifier length
at 1500, 1530 and 1550 nm.
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Figure 13. Maximum gain difference obtained by FEM and SEIM as
a function of pump power.

The difference between amplifier parameters from FEM and SEIM
depends on the pump and signal input powers. The maximum
gain difference between two methods as ∆Gmax(= Gmax(SEIM ) −
Gmax(FEM)) is shown in Figs. 13(a) and 13(b), respectively, for pump
and input powers at wavelengths 1500 nm, 1530 nm, and 1550 nm,
Λ = 2.3µm, and d = 1µm. We note that when the pump power
increases, the ∆Gmax value also increases. However, when the input
signal power decreases, the value of ∆Gmax would increase.

4. CONCLUSION

In this paper, Erbium doped holey fiber amplifiers are analyzed using
scalar effective index method. The variations of neff, nFSM, for different
values of AHSs and AFFs are obtained. Simulation shows that both
the refractive indices neff and nFSM are functions of d/Λ and the pitch Λ
at signal and pump wavelengths. At the both wavelengths, the indices
for higher Λ have higher values in terms of d/Λ.

It is shown that with variations of AHS and AFF, one can design
an amplifier in such a way that for both signal and pump wavelengths
the single-mode operation is maintained for enhancement of the gain.

It is shown that single-mode region of the HF increases almost
linearly with respect to d/Λ and Λ. For a single-mode operation of
EDHFA, when d/Λ = 0.1, the pitch Λ can reach to a maximum value
of 5.3µm at signal wavelength with 6% Ge doped core. At larger d/Λ,
the maximum value of pitch, at which the EDHFA remains single-
mode, becomes smaller. In case of pump wavelength, the maximum
value of Λ is about 2.75µm for the same value of d/Λ. To achieve
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maximum efficiency the EDHFA must be single-moded at signal and
pump wavelengths.

The mode field diameter of the EDHFA is another parameter that
is influenced by d/Λ and Λ. At pump wavelength, the effect on the
MFD is more at higher values of Λ while for signal wavelength, the
effect is more prominent at lower Λ.

The maximum gain and the optimum length of EDHFA at single-
mode region at 6mW pump power and 1 mW signal power, are
depicted. It is shown that for larger d/Λ the value of maximum gain
is greater and the optimum length becomes shorter. So use of larger
d/Λ in designing amplifier is recommended. When d/Λ increases, the
gain also increases with decrease of the pitch Λ.

Simulation shows by increasing dopant concentration, the value of
maximum gain increases whereas the optimum length decreases. The
gain has higher value at larger AFF. So using larger AFF can yield
shorter amplifier length with higher gain without requiring of increase
in dopant concentration. So using HF to design fiber amplifier can
decrease undesired effects such as nonlinear effect and PIQ.

Increase in pump power causes increase in both maximum gain and
optimum length. For 25 mW pump power the difference between the
maximum gain at d/Λ = 0.1 and 0.4 is about 5 dB, and the difference
between optimum length with the same AFF is about 29 m. Therefore,
use of larger AFF at high pump power can reduce the amplifier length.

A qualitative comparison shows that at wavelength 1500 nm,
among other two wavelengths 1530 nm, and 1550 nm, the gain of the
amplifier obtained by FEM and SEIM has more difference. In addition,
it is shown that the differences in results of two methods would increase
by pump and input powers.

Although the analysis via FEM is more accurate, it is a time-
consuming method for analysis of geometrical effects on amplification
characteristics of the EDHFA. Meanwhile, it is shown that the SEIM
analysis can predict suitably the effects of wide range of geometrical
changes of the HF on the amplifier performance.
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