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Abstract—Most tunneling effects are investigated using a one-
dimensional model, but such an approach fails to explain the
phenomena of the propagation of wave in a system with geometric
discontinuities. This work studies the tunneling characteristics in a
waveguide system that consists of a middle section with a distinct cutoff
frequency, which is controlled by the cross-sectional geometry. Unlike
in the one-dimensional case, in which only the fundamental mode is
considered, in a virtually three-dimensional system, multiple modes
have to be taken into consideration. High-order modes (HOMs) modify
the amplitude and the phase of the fundamental mode (TE10), thus
subsequently affecting the transmission and group delay of a wave. The
effect of the high-order evanescent modes is calculated, and the results
are compared with the simulated ones using a full-wave solver. Both
oversized and undersized waveguides reveal the necessity of considering
the HOMs. The underlying physics is manifested using a multiple-
reflection model. This study indicates that the high-order evanescent
modes are essential to the explanation of the phenomena in a tunneling
system with geometrical discontinuities.

1. INTRODUCTION

How long a particle takes to tunnel through a classical forbidden
zone is still a controversial issue among physicists and has practical
importance to applications [1–3]. Many astonishing phenomena that
are related to the tunneling time are still under researching, such
as the superluminal effect [4, 5] and Hartman effect [6, 7]. Such
phenomena are observed in numerous systems, such as steep anomalous
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dispersion in optical gain/absorption mediums [8–10], birefringent
crystal systems [11], photonic systems [12, 13], electronic circuits [3],
and waveguide systems [14–22]. Of these, the waveguide system
shares many similar characteristics with its counterpart in quantum
mechanics. A waveguide system is ideal to exploring the intriguing
physics of the tunneling effect. Actually, in a one-dimensional
waveguide system [14, 15], the theoretical model is simple in
mathematics, but it cannot be applied to three-dimensional waveguide
systems. When a wave passes through a geometrically discontinuous
surface, however, it will excite multiple modes to satisfy the boundary
conditions. Numerous previous investigations have pointed out the
difficulties and the challenges of modal analysis [14, 15, 20, 21, 23, 24],
but none has yet studied it systematically.

This study provides a solution to and physical interpretations
of this long-standing but important problem. First, consider
the following one-dimensional time-independent Schrödinger and
Helmholtz equations:[

∂2

∂z2
− 2m

~2
V (z) +

2m

~2
E

]
ϕ(z) = 0 (1a)

[
∂2

∂z2
− εr

c2
ω2

c (z) +
εr

c2
ω2

]
Bz(z) = 0 (1b)

where ϕ, V, and E are the wave function, potential energy, and
free energy of the particle; Bz, ωc and ω are the wave component,
the cutoff frequency, and the frequency of a transverse electric (TE)
wave; m, ~, εr, and c are the mass of the particle, Plank constant,
relative permittivity, and the speed of light in vacuum. The relative
permeability is assumed to be unity (µr = 1). The one-dimensional
quantum system (1a) and the one-dimensional waveguide system (1b)
exhibit similar characteristics. However, a waveguide system with
geometrical discontinuities is a three-dimensional system. High-order
evanescent modes should be considered. Fig. 1(a) and Fig. 1(b)
schematically depict the passing of a wave through a potential well
and a barrier, respectively. High-order modes, each with sub-index n
(starting from 2 to∞), are shown. The cutoff frequency can be changed
by either alerting the cross-sectional geometry of the waveguide or
inserting a dielectric material inside the waveguide. The former is
achieved by using an oversized waveguide (Fig. 1(c), analogous to a
potential well) or an undersized waveguide (Fig. 1(d), analogous to
a potential barrier). The latter method can be made by assuming
a suitable dielectric material without changing the geometry of the
waveguide. Notably, a material with required dielectric properties may
be difficult to find in nature.



Progress In Electromagnetics Research, PIER 101, 2010 293

LL

Region I Region II Region III

ω

 ωc
a

eik1z

A1e
−ik1z+Σ

n=2
Ane

κn z D1e
ik1z+

n=2
Dne

− n z

c
a

eik1z

A1e
−ik1z+

n=2
Ane n z D1e

ik1z+
n=2

Dne
− n z

z

z

x
y

z

x
y

z

I

II

III III

II

I

∞

Σ
∞

κ
Σ
∞

Σ
∞

κ κ

ω

ω

Region I Region II Region III

(a) (b)

(c) (d)

Figure 1. Schematic diagrams of the tunneling effect and the
corresponding waveguide structures: (a) a potential well, (b) a
potential barrier, (c) an oversized waveguide which models a potential
well, and (d) an undersized waveguide which models a potential
barrier. The corresponding coordinate system is shown in Fig. 1(c)
and Fig. 1(d).

All of the waveguide modes, including the propagating mode and
high-order evanescent modes shown in Fig. 1(a) and Fig. 1(b), have to
satisfy the boundary conditions. The effect of higher-order evanescent
modes must be taken into consideration unlike in one-dimensional
systems, because the excitation of these high-order evanescent modes
will affect the transmission and group delay of a wave.

This work introduces a general microwave technique, modal
analysis, to analyze the waveguide systems. Three-dimensional
boundary conditions and electromagnetic field components are
employed. The transmission of the fundamental mode is analogous
to the tunneling probability in quantum mechanics. The group delay
of the electromagnetic wave resembles the tunneling time of a matter
wave in quantum mechanics. Intensive numerical calculations are
conducted. The results are compared with those obtained using a
full-wave electromagnetic solver.
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2. MODAL ANALYSIS FOR SYMMETRIC H-PLANE
DISCONTINUITIES

When a wave with a specific mode hits a discontinuity, it excites extra
modes in addition to the original one. The incident mode, reflected
modes, and transmitted modes have to jointly satisfy the boundary
conditions at the discontinuity. This approach is called modal analysis,
which is usually employed in microwave engineering [25–27]. In
the following, a structure consisting of three rectangular waveguides
with an oversized waveguide in the middle, displayed in Fig. 1(c),
is analyzed. This system is analogous to a quantum potential well
(Fig. 1(a)).

Figure 2(a) shows the cross-sectional view of the discontinuity.
The input section (region I) and output section (region III) are
standard WR-284 waveguides. The height is 34.04mm (h = 1.34
inches), and the width is 72.14mm (a = 2.84 inches). Typically, the
cutoff frequency of WR-284 waveguide is 2.079GHz. The oversized
middle section (region II) has the same height with the waveguides in
regions I and III, but the width changes to 83.33 mm (b = 3.28 inches)
with the cutoff frequency of 1.8 GHz. Such configuration is called
symmetric H-plane discontinuities. Moreover, the following approach
can be applied to a discontinuity with arbitrary shape.

The incident mode is the fundamental TE10 mode. All of the
high-order modes are evanescent in the range of operating frequencies.

E
yI
, H

xI

x

(-)y

E
yII

, H
xII

E
yIII

, H
xIII

0
h a

b0 x'
x' = x −  (a−b)/2

(a) (b)

A

A'

A'A

x
y

z

I

III

II

Figure 2. (a) Cross-sectional view of the interface of the waveguide
discontinuity. To simplify the notations, there are two different
horizontal axes. (b) Schematic diagram of the boundary conditions
where the y-component of the electric field and the x-component of
the magnetic field are continuous at the interfaces.
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The electric fields in regions I and III are,

Region I:EyI=sin
(πx

a

)
eik1z+A1sin
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)
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)
eκnz

Region III:EyIII =D1 sin
(πx
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)
eik1z+

∞∑

n=2
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e−κnz

(2)

where k1 =
√

(ω2 − ω2
c,1)

/
c, κn =

√
(ω2

c,n − ω2)
/

c, and ωc,n are
the propagation constant of fundamental TE10 mode, the attenuation
constant of nth higher-order evanescent mode, and the cutoff frequency
of the nth mode, respectively. An and Dn are the reflection coefficient
and transmission coefficient of the nth mode.

Unlike in quantum mechanics, in which the boundary conditions
require that the wave function and its first derivative are continuous, in
electrodynamics, the electric and magnetic fields must be continuous
at the boundary.

Appendix A presents the detailed arithmetic including the
complete three-dimensional boundary conditions and modal analysis.
Proper manipulations and considerations of the first N modes yield,

Pm =
N∑

n=1

QmnDn (3)

where Pm and Qmn are given in the Appendix A.
Equation (3) is a matrix format which is adopted to solve Dn.

From Dn, the transmission amplitude and the total phase change of
the nth mode can be calculated. The aforementioned equations are
developed for a potential well (Fig. 1(a) and Fig. 1(c)), while those for
a potential barrier (Fig. 1(b) and Fig. 1(d)) can be obtained similarly.

3. TRANSMISSION AND GROUP DELAY WITH
MODAL CORRECTION

To meet the boundary conditions of a discontinuity, extra modes
are generated in addition to the original incident mode. The high-
order modes function as an effective reactance, which changes the
electromagnetic field energy stored within the system [26]. The extra
energy stored in, or exchanged between, the electric fields and magnetic
fields mainly alters the amplitude and the phase of the operating
(propagating) mode. This phase change of the propagating mode
affects the interference conditions leading to an offset in the resonant
transmission and a variation in the group delay. The mechanism of
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phase control by the excitation of evanescent modes will be elucidated
in Section 4. In the following, the fundamental characteristics of
the tunneling phenomena, i.e., the transmission and group delay in
frequency domain are discussed.

The transmission T is defined as the transmitted power divided
by the input power of the fundamental mode. Since the characteristic
impedances of the input and output sections are identical, the
transmission of the TE10 mode is simply defined as T ≡ D∗

1 · D1.
According to the stationary phase approximation, the group delay is
correlated to the phase φ of the transmission coefficient, D1 = |D1|eiφ

and is generally defined [14, 15, 19, 22, 28] as,

τg =
dφ

dω
(4)

Group delay is associated with the time lag of a wave packet
passing through an obstacle. Therefore, group delay describes the
time difference between the time when the peak of the wave packet
enters the obstacle and the time when the peak leaves this section.
Normally, group delay is positive and greater than the limit imposed
by the special relativity (which is the length of the obstacle divided
by the speed of light in vacuum (c)). Notably, (4) is obtained from
a frequency domain result. The transmission and group delay for
an oversized waveguide and an undersized waveguide are examined
in Sections 3.1 and 3.2.

3.1. Oversized Waveguide: Analogy to Potential Well

A middle section of an oversized waveguide (Fig. 1(c)) in electromag-
netism is analogous to a potential well shown in Fig. 1(a). Fig. 3(a)
plots the transmission for L = 15 cm. The cutoff frequency of the
TE10 mode for the oversized waveguide is 1.8 GHz, while those for the
input and output sections (WR-284) are the same, 2.079 GHz. Modal
analysis suggests that the existence of the high-order modes must be
considered in the geometrically discontinuous system. N = 1 means
that only one mode is considered; N = 3 means that three modes
are considered and so on. As the number of considered modes in-
creases, the results become more accurate, but too many modes may
contribute more numerical errors. When 21 modes are considered, the
results agree very well with the simulated ones obtained by HFSS (High
Frequency Structure Simulator, Ansoft).

Figure 3(a) shows, as expected, that the modal correction is
vital for the low-frequency region. In this waveguide system, the
characteristic impedance changes dramatically, and the total phase
difference of transmitted wave varies rapidly when the operating
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Figure 3. (a) Transmission and (b) group delay as functions of
frequency for the potential well with geometry shown in Fig. 1(c).
In this case, L equals to 15 cm and the modal effects are displayed.

frequency is close to the cutoff, thus significantly affecting the
transmission behavior. This explains why modal effect is important
for transmission in low-frequency region. Even though the calculated
results converge slowly as the number of modes increase, it does remedy
the behavior of the wave in the near-cutoff region.

On the other hand, Fig. 3(b) shows the group delays for the system
which is identical to that in Fig. 3(a). The group delay is calculated
using (4). In the low-frequency region, the total phase change of the
transmitted wave is sensitive to the effect of the high-order evanescent
modes. Consequently, the excitation of high-order modes alters the
total phase change and interference conditions. The change of the
interference conditions leads to the large variation of group delay.
Therefore, the group delay is corrected when the modal analysis is
employed in the low-frequency region.

3.2. Undersized Waveguide: Analogy to Potential Barrier

Figure 4(a) shows the transmission response of the undersized
waveguide for L = 15 cm. The cutoff frequency of the TE10 mode
for the undersized waveguide is 2.8GHz, as shown in Fig. 1(b) and
Fig. 1(d). Other parameters are exactly the same as those in the
oversized case. When the input wave has frequency less than 2.8GHz,
the fundamental mode is also evanescent in the middle section.

Figure 4(b) displays the group delay for the undersized waveguide.
The calculated results converge very fast as the number of modes,
N , increases. When N = 9, the calculated results (solid lines) agree
well with the simulated ones (solid dots). The group delay should be
generally greater than the lowest limit (L/c), but a superluminal zone
exists in the frequency range from 2.3 GHz to 2.7GHz as shown in
Fig. 4(b). The group delay is independent of the frequency and the
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Figure 4. (a) Transmission and (b) group delay verse the frequency
for the potential barrier case with geometry shown in Fig. 1(d). The
length of the middle section is still 15 cm.

length of the middle section, which effect is known as the Hartman
effect [6] and has been clearly explained elsewhere [7].

The previous section discusses about the modal effect when
discontinuities are encountered. However, the modal effect is not
necessary in the uniform waveguide. In other words, there is no
excitation of high-order modes in that kind of system. For a dielectric
loaded waveguide, the measured transmission and group delay agree
perfectly with the one-dimensional theory, as expected [14, 15].

4. MULTIPLE RELFECTIONS WITH MODAL EFFECT:
ALTERNATIVE EXPLANATION

Since high-order modes are evanescent waves, they decay quickly.
The existence of HOMs modifies the amplitude and phase of the
transmission and reflection coefficients of the fundamental mode.
Multiple reflections are constructed based on two discontinuities, as
shown in Fig. 5(a) and Fig. 5(b). Modal analysis is considered, but
only the components of the fundamental mode are extracted. The
reflection and transmission coefficients of the fundamental TE10 mode
at the two discontinuities are,

{
A1 = |A1| eiφa

B1 = |B1| eiφb
and

{
A′1 =

∣∣A′1
∣∣ eiφ′a

B′
1 =

∣∣B′
1

∣∣ eiφ′b
(5)

These two single-step systems can be used to constitute a
potential well (Fig. 1(a)) or a potential barrier (Fig. 1(b)). The
complex transmission and reflection coefficients contain the effect of
the excitation of higher-order modes. The frequency responses of
these two sets of coefficients are depicted in Fig. 5(c) and Fig. 5(d).
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The amplitude of the reflection coefficients (A1 and A′1) are almost
the same, as expected, but B1 and B′

1 differ in amplitude and phase
because of the different characteristic impedances of the two sides of a
single step.

When multiple reflections are considered, the transmission
coefficient is,

D1 = |B1|
∣∣B′

1

∣∣ eikc
1Lei(φb+φ′b)

∞∑

n=0

(∣∣A′1
∣∣2

)n
e2ni(kc

1L+φ′a)

=
|B1| |B′

1| eikc
1Lei(φb+φ′b)

1− |A′1|2 e2i(kc
1L+φ′a)

(6)

The format of the transmission coefficient is very similar to that in
the single mode case. In this case, however, the modal effect is
considered. Fig. 6(a) and Fig. 6(b) present the frequency responses
of the transmission and the group delay in the case of the potential
well. Ten modes are taken into consideration in the calculation. The
calculated results match the simulated ones from HFSS. Fig. 6(c) and
Fig. 6(d) plot the results for the potential barrier. Again, the results
from the multiple-reflections mechanism are consistent with the results
obtained using HFSS.

Although the multiple reflections are constructed with two single-
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Figure 5. Schematic diagrams of the single discontinuity (a) from
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mode when ten high-order modes are considered.
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Figure 6. Transmission and group delay for the potential well (a)
and (b), and the potential barrier (c) and (d). Solid lines represent the
results of multiple-reflection method; dashed lines are the single-mode
case; and solid dots are the results obtained using HFSS.

step discontinuities, the results are strongly consistent with the full
modal analysis as shown in Fig. 6. The properties of a wave packet
can be adjusted by the extra phase which is originated from the effect
of high-order evanescent modes. By controlling the extra phase, an
apparent superluminal group delay or ultra slow wave can be achieved.

5. CONCLUSION

Modal analysis is conducted to analyze the effect of evanescent modes
on the frequency/time domain characteristics of a wave. In the cases
of the waveguide discontinuity, the calculated results agree very well
with those obtained from HFSS when high-order evanescent modes
are considered to satisfy the three-dimensional boundary conditions.
The oversized/undersized waveguide is easy to fabricate and can be
employed to model its counterpart in quantum mechanics, provided the
effects of evanescent modes are considered. Furthermore, controlling
the excitation of evanescent modes can manipulate the tunneling
characteristics. It is important for numerous applications.
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The modal effect is demonstrated to be important. It suggests
the necessity to apply the modal analysis to other systems as quantum
mechanical system with the geometric discontinuities. The presented
theory, however, is based on the frequency domain. To obtain the
group delay of a single wave packet, time-domain analysis must be
performed, and this part of research is currently under theoretical
and experimental investigation. Time-domain analysis may slightly
modify the results, but the conclusions are nevertheless valid: high-
order modes should be considered. Such an approach is important not
only for electromagnetic systems, but also for other tunneling systems
with geometric discontinuities.
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APPENDIX A.

The following modal analysis is applied to analyze a structure
consisting of three rectangular waveguides with an oversized or
undersized waveguide in the middle, as displayed in Fig. 1(a) or
Fig. 1(b). The electric and magnetic fields in the three regions, defined
in Fig. 2(b), are as follows.

Region I





EyI = sin
(πx

a

)
eika

1z+
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n=1

An sin
(nπx

a

)
e−ika

nz

HxI = − 1
Za

1

sin
(πx

a

)
eika

1z+
∞∑

n=1

1
Za

n

An sin
(nπx

a

)
e−ika

nz

(A1)

where ka
n =

√
(ω2 − ω2

c,na)
/

c and Za
n = ωη0/ka

nc. ka
n, Za

n, and ωc,na

are the propagation constant, the characteristic impedance, and the
cutoff frequency of the nth mode with the waveguide broadside of
a, respectively. The other parameters, ω, η0, and c, are frequency,
the characteristic impedance of free space, and the speed of light in
vacuum, respectively. An is the complex coefficient of the reflected
wave of the nth mode. Notably, (A1) is identical to (2). The first term
(n = 1) in the summation of (A1) is singled out in (2) to express that
this term is the only propagation wave (the propagation constant k1
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is real), and the others (n ≥ 2) are evanescent waves (the propagation
constant kn = iκn which is pure imaginary).

The field components in region II are,

Region II





EyII =
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where kb
n, Zb

n, and ωc,nb are the propagation constant, characteristic
impedance, and cutoff frequency of the nth mode with a broadside of b,
respectively. Bn is the forward wave coefficient of the nth mode, and
Cn, likewise, is the coefficient of nth mode of backward wave which
x′ ≡ x− (a− b) /2. The field components in region III are:

Region III
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where Dn is the transmitted coefficient of the nth mode
Unlike the boundary conditions of quantum mechanics where

the wave function and its first derivative are continuous, in
electrodynamics, the electric and magnetic field must be continuous.
The four boundary conditions in the range 0 ≤ x ≤ a are,
(I) Tangential electric field is continuous at z = 0, EyI |z=0 = EyII |z=0

∞∑

n=1

Bn sin
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(II) Tangential magnetic field is continuous at z = 0, HxI |z=0 =
HxII |z=0
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(III) Tangential electric field is continuous at z = L, EyII |z=L =
EyIII |z=L
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(IV) Tangential magnetic field is continuous at z = L, HxII |z=L =
HxIII |z=L
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Note here,
{

EyI |z=0 = EyIII |z=L = 0
HxI |z=0 = HxIII |z=L = 0

for
{

(a− b) /2 ≤ x ≤ 0
a ≤ x ≤ (a + b) /2

(A5)

Actually, (A4a) to (A4d) and (A5) are the three-dimensional boundary
conditions. The three-dimensional electric fields and magnetic fields
( ~E (x, z) and ~H (x, z)) containing the fundamental mode and
some high-order modes are employed to satisfy those conditions.
Consequently, this method is called modal analysis which is important
for three-dimensional geometrically discontinuous systems.

To calculate the transmission and group delay, we have to solve the
coefficient Dn, unlike most literature solving An only. Orthogonality
and trigonometric identities yields,





∫ a

0
sin

(mπx

a

)
sin

(nπx

a

)
dx =

a

2
δmn

∫ b

0
sin

(
mπx′

b

)
sin

(
nπx′

b

)
dx′ =

b

2
δmn

(A6)

and
∫ b

0
sin

(nπx

a

)
sin

(
mπx′

b

)
dx′ =

∫ a

0
sin

(nπx

a

)
sin

(
mπx′

b

)
dx

≡ Iba
mn = Iab

nm (A7)
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First, multiplying (A4a) by sin(mπx/a) and integrating x from 0 to a,
gives,

a

2
δm1 +

a

2
Am =

∞∑

n=1

BnIba
nm +

∞∑

n=1

CnIba
nm (A8a)

Then, multiplying (A4b), (A4c), and (A4d) by sin(mπx′/b) and
integrating x′ from 0 to b, yields,

ka
1Iab

1m −
∞∑

n=1

Anka
nIab

nm =
b

2
kb

mBm − b

2
kb

mCm (A8b)

b

2
Bmeikb

mL +
b

2
Cme−ikb

mL =
∞∑

n=1

Iab
nmDneika

nL (A8c)

b

2
Bmkb

meikb
mL − b

2
Cmkb

me−ikb
mL =

∞∑

n=1

Iab
nmDnka

neika
nL (A8d)

Proper manipulation of (A8c) and (A8d) gives,



Bm =
1
b
e−ikb

mL
∞∑

n=1

Iab
nm

(
1 +

ka
n

kb
m

)
Dneika

nL

Cm =
1
b
eikb

mL
∞∑

n=1

Iab
nm

(
1− ka

n

kb
m

)
Dneika

nL

(A9)

Substituting Bn and Cn into (A8a) and (A8b) and eliminating An

yields,
aka

1Iab
1m

=
∞∑

n=1





2
c

∞∑

p=1

∞∑

q=1

ka
q Iab

npI
ba
pqIab

qm

[
cos

(
kb

pL
)
−i

ka
n

kb
p

sin
(
kb

pL
)]

+
a

2
kb

mIab
nm

[
−i sin

(
kb

mL
)

+
ka

n

kb
m

cos
(
kb

mL
)]





Dn eika
nL (A10)

In consideration of the first N modes, (A10) can be rewritten as:

Pm =
N∑

n=1

QmnDn (A11)

where Pm = aka
1Iab

1m and

Qmn =





2
b

N∑

p=1

N∑

q=1

ka
q Iab

npI
ba
pqIab

qm

[
cos

(
kb

pL
)
− i

ka
n

kb
p

sin
(
kb

pL
)]

+
a

2
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mIab
nm

[
−i sin

(
kb
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)

+
ka

n

kb
m

cos
(
kb

mL
)]





eika
nL
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