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Abstract—We propose a mode based approach for developing a
parametric model to characterize RF propagation in conduits. The
model considers a conduit as a lossy waveguide and defines the total
received power as the sum of powers excited in propagating modes. The
model’s parameters are estimated from both the physical properties of
the conduit material and an empirical data set. Underground conduits
have significant value as wireless communication channels for condition
based monitoring within the conduit. An enabler for this wireless
sensor network application is based on characterizing the expected
coverage range of wireless transceivers operating in the 2.4 GHz ISM
band. Previous studies on modeling RF propagation in underground
conduits have focused on conduits with diameters larger than 1.05 m.
This motivated our measurement campaign to collect empirical data
from underground conduits with varying diameters from 0.30 m to
1.37m. The empirical data is used to predict the mode coupled powers
which are model parameters that are analytically intractable. We
observe that the proposed model provides a good estimate of received
power in terms of contribution from dominant propagating modes.

1. INTRODUCTION

Radio frequency (RF) signal propagation in confined underground
ducts has been an important area of research driven primarily by
rapid developments in wireless communication technologies. Early
development was motivated by the cellular telephony industry based on
the need to understand cellular coverage within transportation tunnels.
More recently, with the advent of wireless sensor networks (WSN),
there is a need to extend the understanding to underground conduits
such as storm and waste water pipes.
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RF propagation characteristics, specifically the expected coverage
range, are an enabler for wireless communication applications.
Traditionally, RF propagation measurements are made within the
application environment to obtain this insight. Analytical models
derived based on the empirical data are useful to interpolate over the
bounds of the measured data. Obtaining a robust empirical data set
required to derive these analytical models is not always feasible. This
was the dilemma we faced when evaluating limited data sets based
on our measurement campaign to characterize RF propagation within
storm drain pipes. By exploiting the physical properties of buried
conduits in conjunction with our limited measurement data set we
propose a general and novel approach for modeling RF propagation
characteristics in underground conduits.

In order to develop the generalized modeling approach, we start
with an established physics-based analytical model which we use to
characterize the RF propagation in storm drain pipes (SDPs). The
model considers the SDP as a leaky waveguide and defines the total
received power at a distance from the transmitter as the sum of
powers excited in propagating modes. The Mode Based Model (MBM)
establishes an analytical relationship between received power versus
distance based on the physical properties of the conduit. In order
to complete the RF propagation analysis, the MBM is used with
the empirical measurement data to estimate the power coupled into
each mode (mode coupled power). Evaluating the mode coupled
power is, in general, analytically intractable and therefore needs to
be estimated based on the empirical data. As presented in the paper,
the MBM provides a general framework with which RF propagation
characteristics within a conduit can be estimated based on a limited
data set.

The principal motivation is to characterize the expected coverage
range corresponding to typical wireless transceivers operating in the
2.4GHz ISM band, especially the Wireless Sensor Networks (WSN)
deployed for condition monitoring of underground pipes. Based on this
goal, the MBM needs to reliably estimate received power characteristics
over an approximate 110 dB dynamic range. This requirement is based
on typical wireless transceivers in the 2.4GHz band with 0 dBm to
15 dBm transmit power and nominal −95 dBm to −105 dBm receiver
sensitivity thresholds.

Historical research conducted on communication through under-
ground structures focused on understanding radio frequency propaga-
tion in coal mines, railroad, auto, subway tunnels and heating, ventila-
tion and air conditioning (HVAC) ducts [1–5]. In [6] the authors have
proposed a Multimode model based on geometrical Optical (GO) ap-
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proach to analyze the electromagnetic field distribution inside the tun-
nel waveguide. In [7], an Alternate Direction Implicit (ADI) method
using a Parabolic Equation (PE) is employed to model radio wave
propagation in real tunnels at large distances where lower order modes
are dominant. More recently, a SewerSnort system has been proposed
in [8] that uses Wireless Sensor Networks (WSN) for in-sewer gas mon-
itoring. The SewerSnort system requires characterization of wireless
channel in the conduit for Received Signal Strength Indicator (RSSI)
based sensor localization.

The closest parallels to the present study are two investigations
into using hand-held RF devices within relatively large diameter
underground conduits. In [9], RF propagation was evaluated for
maintenance worker communication while inspecting, repairing and
cleaning water reclamation tunnels. In [10], 1.06 m diameter sewer-
lines were investigated for use as secure communication channels during
military operations in urban terrain.

The reports in [9, 10], however, do not address the scope of issues
associated with using WSNs for condition based monitoring within
underground conduits. A specific WSN application under investigation
addresses sanitary sewer overflows (SSO) which are a major concern
for municipal utility operators due to their resulting environmental
impact. A condition based monitoring system for detecting the onset
of SSOs as defined in [11] uses WSNs as an integral component. Hence,
there is a need to have a general evaluation of RF propagation in
underground conduits.

The remainder of the paper is organized as follows. Section 2
presents the development of Mode Based Model (MBM). Section 3
evaluates the MBM applied to RF propagation within SDPs. The
conclusions are presented in Section 4.

2. MODE BASED MODEL DEVELOPMENT

Various methods are available for characterizing wireless communi-
cation channels. The channel impulse response enables character-
ization of frequency response through classical transformation tech-
niques, e.g., FFT. Average path loss models have also been proposed
to predict the received power levels in indoor and urban area envi-
ronments [12, 13]. Another common empirical approach in channel
modeling involves curve fitting or determining analytical expressions
through regression/interpolation to estimate model parameters based
on measured data. For developing the MBM, we follow a circular leaky
waveguide model for the SDP and analyze the model by taking into
account the power contained in the propagating modes and their at-
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tenuation coefficients [14]. The detailed approach for developing the
MBM is given in the ensuing paragraphs.

We start the development using a well-established model for a
leaky circular waveguide [15], where the n-th mode’s attenuation
coefficient, αn, depends upon the mode’s cut-off frequency. For
imperfectly conducting walls [15]

αn = B RS

/(
η a

√
1− (fc/f)2

)
(1)

where B = (fc/f)2 +(n2/(p′2nm−n2) for TE modes and B = 1 for TM
modes; η is the magnitude of the intrinsic impedance of the waveguide
wall material; Rs is the real part of the intrinsic impedance of the
waveguide walls given by Rs =

√
πµf/σ, where µ is the permeability

and σ is the electrical conductivity of the wall material. In (1), αn

is expressed in nepers/m. It is often more effective to express αn in
dB/m by using α [dB/m] = 20 log10(e)× α [nepers/m].

The relationship for attenuation coefficient in (1) was derived
using perturbational method [15] and, as indicated by the author,
the model is valid for waveguides having imperfectly conducting
walls. The attenuation coefficient relationship given in (1) includes
power dissipated in the guide walls and does not take into account
power dissipation due to imperfect dielectric medium inside the guide.
Modeling the SDP as a leaky waveguide assumes losses associated with
the dielectric medium (air) which are negligibly small when compared
to power dissipation caused by the imperfectly conducting walls.

The MBM is based on considering the modal components of the
RF signal within the SDP. The power contained in a mode decays
exponentially with the product of the attenuation coefficient and the
distance. The total received power at a distance d from the source is
the summation of the exponentially decaying modal powers [14]

PR(d) =
N∑

n=1

Pne−2αnd (2)

where Pn is the mode coupled power representing the power in mode
n coupled into the medium from the transmit antenna.

In order to evaluate (2), {Pn, αn} ∀n needs to be estimated. The
attenuation coefficients, αn, can be estimated based on the physical
properties of the SDP using (1). Pn needs to incorporate n-th mode’s
coupling between the medium and antenna at both the transmit and
receive antennas. Deriving analytical or numerical estimates for Pn

are, in general, intractable except under specific conditions [5]. In
our proposed approach for deriving the MBM, an empirical data
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set [{di, PR(di)} ∀i = 1, . . . ,M ]Measued Data is used for estimating Pn.
The method for deriving the proposed MBM can be viewed as

P̂R(d) = f (d, {Pn} |{αn}) (3)

where the attenuation coefficients, αn, are estimated based on (1)
and the optimal values of mode coupled power, {Pn}∗ are optimized
based on empirical data. The optimization approach is presented
in Section 3.2 following a discussion of the measurement campaign
presented in Section 3.1.

3. MBM EVALUATION FOR THE SDP

3.1. Measurement Campaign

A measurement campaign was conducted at various locations in
Charlotte, NC to obtain RF propagation measurements within SDPs.
The details of the campaign are presented in [14, 16, 17]. The specific
objectives of the measurement campaign were to characterize RF
propagation over
• The 2.4GHz ISM band,
• Variations in the SDP diameters feasible for supporting RF

communications,
• Variations in SDP lengths consistent with wireless transceivers

operational range,
• Variations in the transmit and receive antennas placement within

the SDP pipe opening, e.g., middle versus top of the pipe.
All the objectives of the empirical measurement campaign were
not fully obtained. The details of the measurement campaign are

Table 1. Summary of the SDP empirical measurement campaign.

SDP
Diameter

(m)

No. of
Measurement

Points

Max.
Dist.
(m)

No. of
Modes at
f = 2.5
GHz

Min.
cut-off
freq.

(MHz)

Min.
Atten.
Coef.

(dB/m)
0.30 5 13.0 17 577 12.63
0.46 4 23.3 40 385 3.22
0.76 5 67.3 104 231 0.70
1.07 7 28.5 196 165 0.24
1.37 3 27.4 278 128 0.11
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summarized in Table 1. Principally, the goal of acquiring a data set,
{di, PR(di)} i = 1, . . . , M , over the 110 dB wireless receiver dynamic
range was not consistently achieved. This goal was complicated due to
the lack of accessibility to SDPs. This limitation motivated the MBM
approach proposed in this paper, i.e., the ability to derive the MBM
based on a limited empirical data set.

From Table 1, for SDPs with pipe diameters < 0.76m, the
minimum attenuation coefficient suggests wireless transceivers would
have limited transmission ranges and they are of less interest for
wireless communication applications. Therefore, our study focused
on the data collected for the 0.76 m and 1.07m SDPs. Scatter plots
of the empirical data collected for these SDPs are graphed in Fig. 1.
The measurements are based on the Tx and Rx antennas located in
the center of the SDPs.

For each {di, PR(di)}, the received power is based on averaging
over measurements taken at eleven frequencies, {2.4, 2.41,. . . ,
2.5GHz}. A typical frequency response is graphed in Fig. 2 for 1.07 m
SDP with di ≈ 20m. As discussed in [4], the {2.4, 2.41,. . . , 2.5 GHz}
measurements span multiple coherence bandwidths. This is exhibited
in Fig. 2 by the variation in the received power over the band. To
mitigate the effects of the received power variation due to frequency
dependency, the data sets used to derive the MBM are based on the
average received power over the frequency band.
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3.2. MBM Evaluation

As expressed in (2), the MBM can be used to estimate PR (d) given
{Pn, αn} ∀n. As indicated in Section 2, the proposed method for
estimating the parameters is based on (3). This approach exploits
the individual mode propagation characteristics. Specifically, the cut-
off frequencies of the excited modes determine their propagating or
evanescent nature. The propagating modes, with cut-off frequencies
closest to the operating frequency, have the highest attenuation and
highest initial energy. In contrast, the lower order modes have lower
coupled power; but, due to their smaller attenuation coefficients,
they are dominant at greater distances. The variation in the modes
contribution to the total power as a function of distance is key in
devising the MBM for estimating the received power.

The general approach for deriving the MBM based on empirical
data set {di, PR(di)} i = 1, . . . , M , for an SDP with radius a is:

1. Use (1) to estimate αn based on the SDP radius and the SDP’s
physical properties given by the intrinsic impedance ratio Rs/η,

2. Use (2) in conjunction with the empirical data set to determine
the optimal {Pn}∗ in the mean squared error (MSE) sense,

{Pn}∗ = arg min
{Pn}

{
M∑

i=1

(
PR (di)− P̂R (di)

)2
}

with 0 ≤ Pn ≤ Pmax∀n,

(4)

3. Using the solution in (4), the MBM’s root mean square error
(RMSE) is

ε̄ =

{
1
M

M∑

i=1

(
PR (di)− P̂R (di)

)2
}1/2

. (5)

The following three issues arise when the procedure is applied
to a limited empirical data set where the number of data points is
significantly less than the number of modes (M ¿ N)
• Selecting the modes used in deriving {Pn, αn} and to evaluate (2),
• Uncertainty associated with the SDP’s physical construction

which governs Rs/η,
• Optimizing {Pn}.

Each of these issues is addressed in the following three subsections.
The empirical data set used in the evaluation is from the 1.07 m SDP
measurement consisting of seven measurements, M = 7. In this
section, MBM is also compared with a standard regression modeling
method. The empirical data from both the 0.76m and 1.07 m SDPs
are used in this comparison.
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3.2.1. Mode Selection

The objective function, J ({Pn} |{αn}), underlying (4) is an ellipsoid
obtained by using (2)

J ({Pn} |{αn}) =
M∑

i=1

(
PR (di)−

[
N∑

n=1

CinPn

]) 2

(6)

where Cin = e−2αndi . The objective function in (6) is a monotonically
decreasing convex function, mapping <N → <. The solution space
for the optimization of (6) is the intersection of J(·) with the
N -dimensional hypercube, {0 ≤ Pn ≤ Pmax}, n = 1, . . . , N . The
intersection between J(·) and the optimization constraint is also
convex [18] with a unique minimum residing either within the
hypercube or on its edge.

The dimensionality of the ellipsoid described by J(·) is based on
the number of modes N . To illustrate, for the 1.07 m SDP, there are 197
modes at 2.5 GHz resulting in J(·) mapping <197 → <. The modes for
this SDP are comprised of 104 TE and 93 TM modes. The minimum
TM attenuation coefficient is 13 dB/m, indicating that TM modes,
as a whole, become evanescent over a short distance. Therefore, the
coefficients Cin corresponding to the TM modes are relatively small,
resulting in the ellipsoid collapsing or nearly collapsing to a line in the
TM mode dimensions. In a similar fashion, the majority of the TE
modes have relatively large attenuation coefficients. This again results
in an additional dimensionality reduction in J(·).

Table 2 provides a rank ordered list of the modes with the ten
smallest attenuation coefficients for the 1.07 m SDP. In the last three
columns of the table, a comparison is provided to evaluate the relative
attenuation between the ten modes with the minimum ranked mode,
TE01. This evaluation is provided at three of the distances measured
for the 1.07m SDP. As noted in the table, within twelve meters the
magnitude of the attenuation between the first rank and sixth rank
mode is over two orders of magnitude. At d7 = 28.5m, the TE01 mode’s
attenuation is at least 1/50 the other modes and is the dominant mode
in governing the received power at sufficiently large distances. Based
on these results, the approach followed in selecting the modes used for
deriving the MBM is to use the M modes with the smallest attenuation
coefficient. For the 1.07 m SDP study, this corresponds to the first
seven modes in Table 2. Using the number of modes consistent with the
number of measurements assists in numerical stability in optimizing the
objective function. As illustrated in Table 2, M needs to be sufficiently
large to incorporate the dominant modes contributing to defining the
ellipsoid over the range of the data measurements.
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Table 2. Modal attenuation coefficients for 1.07 m SDP with Rs/η =
0.8 and relative attenuation at di.

Rank Mode
αn

(dB/m)
Relative Attenuation (α1 − αn)di (dB)
d1 = 3.6m d3 = 12.0m d7 = 28.5 m

1 TE01 0.24 0 0 0
2 TE02 0.84 2.2 7.2 17.1
3 TE12 0.96 2.6 8.6 20.5
4 TE13 1.46 4.4 14.6 34.8
5 TE03 1.85 5.9 19.3 45.9
6 TE22 2.08 6.7 22.0 52.4
7 TE23 2.36 7.7 25.4 60.4
8 TE14 2.62 8.7 28.5 67.8
9 TE42 3.33 11.3 37.0 88.0
10 TE04 3.37 11.4 37.4 89.1

3.2.2. Sensitivity of MBM Solution to Variation in Rs/η

As illustrated previously, the attenuation coefficients, αn, plays a
pivotal role in deriving the MBM. From (3), the intrinsic impedance
ratio Rs/η is required to evaluate αn. The ratio varies between
0.7 for a good conductor to 1.0 for a perfect dielectric [15]. The
intrinsic impedance ratio models the physical nature of the material
used to construct the SDP. Research on electrical properties of concrete
indicates that dry concrete can be an insulator or a semiconductor [19].
Its electrical conductivity is strongly influenced by the presence of
local moisture content as well as the penetration of ionic content of
chlorides through the surface pores [20]. These factors tend to increase
the conductivity of concrete. Hence, it is reasonable to assume that
the concrete SDPs having a thin layer of water with impurities (e.g.,
NaCl/other chlorides), as observed during our measurement campaign,
are most likely to act as semiconductor with 0.7 < Rs/η < 1.0.
The values of αn in Table 2 are evaluated using Rs/.η = 0.8. To
illustrate the intrinsic impedance ratio’s impact, the TE01 attenuation
coefficient varies between 0.22 dB/m to 0.28 dB/m over 0.7 ≤ Rs/η ≤
0.9. Due to the uncertainty associated with the value of the intrinsic
impedance ratio, the sensitivity of the MBM to variation in Rs/η is
evaluated using the 1.07 m SDP data measurements. This sensitivity
is assessed by evaluating αn using Rs/η = 0.7, 0.725, 0.75, . . . , 0.9.
These values of αn are, in turn, used to determine {Pn}∗, using (6).
As discussed in Section 3.2.1, the objective function was evaluated
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Table 3. Estimated mode coupled powers over variation in the
intrinsic impedance ratio for 1.07 m SDP.

RS /η P1 P2 P3 P4 P5 P6 P7

RMS Error 

(dB)

0.7 −38.6 −99.5 −99.9 −29.8 −12.2 −87.7 −95.6 5.12

0.725 −38.7 −108.1 −83.9 −16.5 −17.4 −76.5 −79.2 5.14

0.75 −38.5 −97.9 −86.0 −14.7 −69.1 −109.3 −109.0 5.12

0.775 −38.2 −106.5 −76.7 −14.2 −60.3 −105.8 −108.0 5.11

0.8 −38.0 −107.9 −73.3 −13.7 −92.8 −94.6 −94.1 5.11

0.825 −37.7 −108.3 −79.5 −13.2 −75.2 −108.6 −102.7 5.12

0.85 −37.5 −94.4 −86.8 −12.7 −92.5 −105.6 −97.0 5.13

0.875 −37.2 −95.5 −98.3 −12.3 −109.4 −108.2 −109.0 5.16

0.9 −37.0 −84.2 −88.4 −11.8 −109.0 −109.0 −109.0 5.19

using the seven modes with the smallest attenuation coefficients.
Additional details concerning the optimization procedure are presented
in Section 3.2.3. Fig. 3 depicts the resulting graph of the RMS error
versus Rs/η. As indicated in the figure, the minimum RMS error
occurs at approximately Rs/η = 0.8. The results show the RMS
error only varies slightly around the minimum. Table 3 provides
{Pn}∗ for each of the Rs/η values evaluated. The values of {Pn}∗
remain consistent for perturbations of Rs/η around the minimum with
significant deviation in the mode coupled power when the intrinsic
impedance ratio approaches a good conductor. Fig. 4 depicts graphs
of three MBM models based on Rs/η = 0.7, 0.8, 0.9. These results
suggest small variations in Rs/η will have minimal impact on the
derivation of the MBM for the SDP. In the remainder of the paper
Rs/η = 0.8 is assumed.

3.2.3. Optimizing the MBM Mode Coupled Power

The optimization problem posed in (4) could be solved directly using
linear least square optimization with non-negativity constraint in order
to estimate {Pn}∗. The difficulty with this approach is the numerical
instability caused by both the dynamic range for the values of Cin

and Pn as suggested by the values in Tables 3 and 4. Based on this
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Table 4. Mode coupled powers illustrating variation in local optimal
solutions (1.07 m SDP).

Solution 

Number
P1 P2 P3 P4 P5 P6 P7

RMS 

Error 

(dB)

Distance

(dB)

1 −38.0 −107.9 −73.3 −13.7 −92.8 −94.6 −94.1 5.11

2 −38.0 −108.7 −106.1 −13.7 −109.5 −109.5 −109.5 5.11 −80.2

3 −38.0 −108.0 −47.2 −13.7 −76.1 −91.0 −82.2 −71.7

4 −38.0 −56.1 −108.8 −13.7 −40.9 −98.0 −84.1 −67.4

5 −38.0 −106.9 −62.2 −13.7 −37.0 −91.8 −84.6 −63.7

6 −38.0 −107.5 −108.2 −13.7 −30.9 −57.3 −85.9 −57.6

7 −38.0 −108.7 −108.0 −13.7 −29.2 −92.2 −83.1 −55.9

8 −38.0 −107.2 −109.2 −13.9 −23.6 −90.3 −82.6 −50.3

-

5.11

5.11

5.11

5.11

5.12

5.12

observation, the optimization was formulated based on the logarithmic
error. Using this formulation, a non-linear least square curve fitting
optimization algorithm, lsqcurvefit, provided in Mathwork’s Matlab,
was used to estimate the optimal mode coupled powers. The lsqcurvefit
algorithm requires an initial estimate for {Pn} from which it estimates
the local optimal minimum {Pn}∗Local. In order to enhance the
likelihood of estimating the global minimum, a multi-start approach
was employed where the initial {Pn} was a permutation on a grid, i.e.,

{Pn}∗j = lsqcurvefit
(
{Pn}j

)
(7)

where Pn = {−70,−60, . . . ,−30}dBm. Using (7), the corresponding
RMS error for the local optimal solution {Pn}∗j is ε̄j . The estimate for
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the global optimal solution is then

{Pn}∗Global = arg min
{Pn}∗j

{ε̄j} . (8)

Table 4 provides eight examples of the local optimal solutions for the
mode coupled powers. The first row in the table is an estimate of the
global solution. The other examples were selected to illustrate variation
in the local optimal solution and the solutions are rank ordered based
on the minimum RMS error. The RMS error for each solution is given
as well as the Euclidean distance between the global optimal solution
{Pn}∗Global and the corresponding local optimal solution {Pn}∗j . For
consistency the indexing of the mode coupled power Pn in Table 4 is
the same as the index of the corresponding attenuation coefficients and
modes in Table 2.

From the results given in Table 4, the local optimal solution
for the MBM varies from 2 to 4 dominant modes. Modes 1 and 4
(TE01 and TE13, respectively) remain dominant for all of the solutions,
with variations in the relative importance of modes 2, 3 and 5. The
histogram in Fig. 5 shows the distribution of the distance measures
between the estimated global optimal solution and the local optimal
solutions for all {Pn}∗j obtained over the multi-start grid. Distance
locations annotated on the histogram correspond to solutions given
in Table 4. The histogram suggests that the 2 mode solution (e.g.,
solutions 1 and 2) are common where as the 3 and 4 mode solutions
are less common. In Fig. 6, a histogram of the normalized RMS Error
((ε̄Global/ε̄j)× 100) evaluated over all local optimal solutions is given.
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The variation in the RMS error between the local optimal solutions
and global solution is essentially insignificant. From this, it is inferred
that even if the solution for {Pn}∗j has distinct differences, as indicated
by the results in Table 4, the RMS error between the measured data
and the MBM models is consistent at approximately 5.11 dB.

3.2.4. Comparison of MBM with a Log Linear Model

In Fig. 7, models of the received power versus distance are graphed
based on MBMs’ derived for the 0.76 m and 1.07 m SDPs. The
derivation of the MBM for the 0.76 m SDP followed the same procedure
as outlined in the paper for the 1.07 m SDP, using the five empirical
data points in Fig. 1. The estimates for optimal parameters for the
0.76m SDP MBM are given in Table 5.

For comparison purposes, log-linear models [12] based on the
0.76m and 1.07m SDP empirical data sets are graphed in Fig. 7.
The log-linear model minimizes the MSE between the data points
and a linear model where the received power is expressed in dB.
The MBM predicted coverage distance, given 110 dB dynamic range,
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Figure 7. Comparison of the received power MBM models and the
log linear models for 1.07 m and 0.76m SDPs.

Table 5. Mode based model parameters for 0.76 m SDP.

Mode n Pn (dBm) αn (dBm)
TE01 1 −23.7 0.7
TE12 2 −42.0 2.0
TE02 3 −45.6 2.4
TE13 4 −54.6 3.9
TE22 5 −70.4 4.0
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is approximately 110 m and 240 m for the 0.76 m and 1.07m SDPs,
respectively. From the graph in Fig. 7, it is evident that the
empirical data sets are inadequate for estimating the received power
characteristics over the desired dynamic range. The log-linear model
is highly influenced by the distribution of the limited data set. As
an example, for the 1.07 m SDP, the measurements are clustered at
relatively short distances; hence, the log-linear model captures the
effect of the modes with higher attenuation coefficients. The log-linear
models provide poor estimates over the desired coverage distance due
to the need to extrapolate the solution beyond the range of the limited
data sets. The MBM does not have the same limitation since the data
set is not used directly to fit the graph to the data points.

4. CONCLUSION

The MBM approach to characterize RF propagation within under-
ground conduits is developed. The motivation for this work is derived
from WSN application for condition based monitoring within conduits
using typical wireless transceivers operating in the 2.4GHz ISM band.
The modeling approach is general and can be applied to conduits with
varying diameters and different wall materials. The model addresses
the difficulty associated with collecting empirical data from under-
ground conduits and the requirement for obtaining a data set which
covers the wireless transceiver’s dynamic range. Unlike log-linear mod-
eling approach, the minimum number of data points required for the
MBM is governed by the number of dominant modes. Based on the
SDP analysis, the number of dominant modes over the operational
range of interest is less than five. In addition, the MBM requires esti-
mating Rs/η that depends on physical properties of conduit walls. It is
shown for the SDPs that the MBM is not sensitive to the uncertainty
associated with estimating Rs/η. We conclude, from our findings that
the MBM approach provides a more reliable method for estimating the
received power as compared to the log-linear model. This is especially
evident when the model is required to estimate received power outside
the range of the empirical data set.
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