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Abstract—The paper presents an analytical approach to treat
the problem of transient oscillations in a cavity uniformly filled
with nonstationary medium, which is characterized by time-varying
permittivity and conductivity. Closed-form solutions are found for
some transient excitations and medium parameters.

1. INTRODUCTION

Interaction of electromagnetic fields with media that have time varying
properties is of significant interest in different applications. Among
such phenomena we should mention propagation of electromagnetic
pulses in modulated dielectric waveguides, which finds applications in
a range of areas including pulse generation, compression, reshaping
and filtering, wavelength conversion and terahertz wave generation.
Analysis of such phenomena also provides useful insight onto behavior
of high speed switches, ultra-short pulse lasers etc. More generally,
these problems are of significant importance for understanding of
optical communications technology and quantum electronics [6–11].

The problem of interaction of transient electromagnetic fields
in a cavity with time-varying filling is the first step in studying
non-stationary media. Change in medium parameters significantly
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influences spectral, energetic, and temporal characteristics of
electromagnetic fields existing (free oscillations) and being excited
(forced oscillations) in such a cavity. Among examples of non-
stationary filling in a microwave cavity that requires for studying
transient processes, we can mention media with ultrafast chemical
reactions, light pumping (e.g., in masers). Another important example
is explosive destroying ferromagnetic and piezoelectric properties of
medium that leads to ultrafast change of electric and magnetic
properties and creates transient electromagnetic fields. Gas discharge
in high intensity fields can also be considered as a process with non-
stationary and dispersive medium. In general, the changes in medium
properties are described by some complicated dependences that are
typically close to some combination of exponentials. In our study, we
will take some specific time dependences that allow to obtain closed-
form solution and are at the same time rather representative.

Among the first publications on electromagnetic fields in a
cavity with nonstationary medium we should mention paper [2]
where the permittivity of the cavity filling is taken in a form
of Epshtein transition. The solution to this problem without
external currents was presented as combination of hypergeometric
functions. Cavity eigenfrequency is defined in the initial and stationary
moments, after changing its permittivity. The next relevant work
is [3]. By means of Integral Equation Method [1] the problem of
electromagnetic field in the rectangular resonator with time-varying
permittivity by harmonic law was solved. For full filling of the
cavity and small modulation amplitude the analytical expression for
electric field strength is obtained, but only numerical investigation of
electromagnetic field characteristics in the resonator with wide range
changing of nonstationary medium parameters is possible. In paper [3]
resonance frequencies and instability oscillation zones, depending
on permittivity parameters and fullness parameter, are found, but
transient processes in the cavity are not considered. Later work [12]
presents the evaluation of electromagnetic field in rectangular cavity
with cylindrical nonstationary obstacle. The cylindrical insert has got
harmonically changing permittivity and conductivity with time. For
small modulation amplitudes the characteristic equation for TE wave,
permitting to define electromagnetic field closely and in the area of
main parametric resonance, is obtained. By numeric analysis of the
obtained solution in [12] instability zones and characteristic index for
wide range of modulation frequencies are defined. Like [3], this work
allows to investigate parameters of the system only numerically and
does not give an overview of transient processes in the cavity.

The first attempts of applying evolutionary approach to studying
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transient processes in microwave cavities with non-stationary media
were made in [15], though consideration there was mainly aimed at
spatial field distribution in a cavity with some specific geometry.

In this paper, we present some temporal dependences of
parameters of media that fill the cavity. Resonance frequencies of the
cavity filled with time-varying medium are analytically obtained, and
transient processes are investigated.

The second part of the paper contains the general statement of the
problem of electromagnetic fields in the cavity filled with time-varying
medium in the frame of Evolutionary Approach to Electromagnetics in
Time Domain. Then, the periodic and pulse changes of the resonator
filling permittivity are presented in part three. Analytical solutions
for mode amplitudes and properties of electromagnetic fields behavior
for nonstationary conductivity of the cavity filling are obtained in part
four.

2. PROBLEM STATEMENT AND GOVERNING
EQUATIONS FOR TRANSIENT ELECTROMAGNETIC
FIELDS

The cavity under study is bounded with a singly-connected closed
PEC surface (Figure 1). Considered resonator is filled with linear
homogeneous medium. This problem is reduced to solving Maxwell
equations

∇×H(r, t) = ε0
∂

∂t
E(r, t) +

∂

∂t
P(r, t) + J σ (E, H) + J e(r, t),

∇× E(r, t) = µ0
∂

∂t
H(r, t) + µ0

∂

∂t
M(r, t) + J m(r, t),

(1)

with the constitutive relations for vectors of polarization and
magnetization, J e(r, t), J m(r, t) are given impressed electric and
magnetic currents. In (1) the expression for electric flux density
is D(r, t) = ε0E(r, t) + P(r, t), and for magnetic flux density the
expression is B(r, t) = µ0 (H(r, t) + M(r, t)).

Figure 1. Geometry of the cavity.
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Within the frame of Evolutionary Approach to Electromagnetics
in Time Domain (TD) [4, 5, 13] (Mode Expansion in TD) the sought
electromagnetic fields E(r, t), H(r, t) are expanded into series in terms
of cavity modes:

E(r, t) =
∞∑

n=1

en(t)En(r)−
∞∑

α=1

aα(t)∇Φα(r), (2)

H(r, t) =
∞∑

n=1

hn(t)Hn(r)−
∞∑

β=1

bβ(t)∇Ψβ(r), (3)

The solenoidal cavity modes can be found as solutions to the
following boundary eigenvalue problems

{ ∇×Hn(r) = −iωnε0En(r);
∇×En(r) = iωnµ0Hn(r);
n× En(r)|S = 0, or n · Hn(r)|S = 0.

(4)

Irrotational modes occurring in the expansions correspond to
transient Coulomb and Ampere fields in the bounded cavity that are
closely coupled with charges and currents. They are defined by the
following eigenvalue problems
(∇2+η2

α

)
Φα =0, Φα|S =0 and

(∇2+ν2
α

)
Ψβ =0,

∂

∂N
Ψβ

∣∣∣∣
S

= 0. (5)

Solution of boundary problems (4) and (5) is a completely separate
task that has been solved for a number of canonic geometries and can
be solved using numerous known computational techniques (like MoM,
FEM, etc.) for any arbitrary geometry. In this study, we assume that
this part of the whole problem is already solved by some method,
and the results (eigenvalues and eigenfunctions) are known. The main
focus is on the time evolution of the fields that is described by the
mode amplitudes. Time dependences of the fields are described by the
mode amplitudes en(t), hn(t), aα(t), bβ(t). In the same way, one can
expand the initial fields as well as the impressed electric and magnetic
currents J e(r, t) and J h(r, t)

E0(r) =
∞∑

n=1

e0
nEn(r)−

∞∑

α=1

a0
α∇Φα(r), (6)

H0(r) =
∞∑

n=1

h0
nHn(r)−

∞∑

β=1

b0
β∇Ψβ(r), (7)

ε−1
0 J e(r, t) =

∞∑

n=1

je
n(t)En(r)−

∞∑

α=1

je
α(t)∇Φα(r), (8)
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µ−1
0 J h(r, t) =

∞∑

n=1

jh
n(t)Hn(r)−

∞∑

β=1

jh
β(t)∇Ψβ(r). (9)

By substituting expansions (2), (3) and (6)–(9) into Maxwell equations
and further applying the orthogonality conditions

ε0

V

∫

V

En(r) ·E∗m(r)dV =
µ0

V

∫

V

Hn(r) ·H∗
m(r)dV = δnm, (10)

−ε0

V

∫

V

En(r) · ∇Φ∗α(r)dV = −µ0

V

∫

V

Hn(r) · ∇Ψ∗
β(r)dV = 0, (11)

one can obtain a second order system of integro-differential equations,
namely
d

dt
en(t)+iknhn(t)=−je

n(t)− 1
V

∫

V

{
∂

∂t
P(E)+J σ(E,H)

}
E∗n(r)dV ,(12)

d

dt
hn(t) + iknen(t)=−jh

n(t)− µ0

V

∫

V

{
∂

∂t
M(H)

}
H∗

n(r)dV , (13)

d

dt
aα(t) = −je

α(t)+
1
V

∫

V

{
∂

∂t
P(E)+J σ(E,H)

}
∇Φ∗α(r)dV , (14)

d

dt
bβ(t) = −jh

β(t) +
µ0

V

∫

V

{
∂

∂t
M(H)

}
∇Ψ∗

α(r)dV , (15)

with initial conditions

en(0)=
1
V

∫

V

E0(r)E∗n(r)dv, hn(t) =
1
V

∫

V

H0(r)H∗
n(r)dv, (16)

aα(0)=− 1
V

∫

V

E0(r)∇Φ∗α(r)dv, bβ(0) = − 1
V

∫

V

H0(r)∇Ψ∗
β(r)dv. (17)

Mode amplitudes of impressed currents are defined as

je
n(t)=

1
V

∫

V

J e(r, t)E∗n(r)dv, jh
n(t) =

1
V

∫

V

J m(r, t)H∗
n(r)dv, (18)

je
α(t)=− 1

V

∫

V

J e(r, t)∇Φ∗α(r)dv, jh
β(t)=− 1

V

∫

V

J m(r, t)∇Ψ∗
β(r)dv.(19)

Thus, to describe evolution of electromagnetic fields in the cavity
with linear, homogeneously filling it is necessary to find solution of
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equation system (12)–(15) with initial conditions (16), (17) for mode
amplitudes of electric and magnetic field strength. This approach is
very convenient for nonstationary question, because the separation
of temporal and spatial parts of the problem, taking into account
an arbitrary time dependence of the fields and dielectric medium
properties, is realized. This gives simple analytical solutions in many
cases.

Let us define the constitutive relation as follows

P(r, t) = ε0χe(t)E(r, t), ε(t) = 1 + χe(t), (20)
M(r, t) = χm(t)H(r, t), µ(t) = 1 + χm(t), (21)
J σ(r, t) = σ(t)E(r, t), (22)

By substituting expansions for the electric and magnetic field strength
and taking into account orthogonality conditions of the basis vectors,
we write evolutionary equations for electromagnetic field mode
amplitudes in the resonator filled with arbitrary time-varying medium

d

dt
(ε(t)en(t)) + σ(t)en(t)/ε0 + iknhn(t) = −je

n(t), en(0) = e0
n, (23)

d

dt
(µ(t)hn(t)) + iknen(t) = −jh

n(t), hn(0) = h0
n, (24)

d

dt
(ε(t)aα(t)) + σ(t)aα(t)/ε0 = −je

α(t), aα(0) = a0
α, (25)

d

dt
(µ(t)bβ(t)) = −jh

β(t), bβ(0) = b0
β. (26)

After specifying time dependence of permittivity, permeability and
conductivity of the filling, the temporal electromagnetic process,
caused by the presence of time-varying medium, should be analyzed.

3. CAVITY WITH TIME-VARYING PERMITTIVITY

For presenting investigation of the electromagnetic fields in the
resonator, filled with the time-varying permittivity medium (but
permeability and conductivity of the medium are constant), let us write
the permittivity in the following general form

ε(t) =
εs

1− γη(t)
, |γ| < 1, (27)

where γ describes the deviation of the permittivity from the stationary
value εs, and function η(t) defines the time dependence of the
permittivity.
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After substituting these medium parameters, the system of
evolutionary Equations (23)–(26) is rewritten as

d

dt
xn(t) + 2ρxn(t) + i

kn

µ
yn(t) = −je

n(t) + 2ργη(t)xn(t),

xn(0) =
εs

1− γη(0)
e0
n (28)

d

dt
yn(t) + i

kn

εs
xn(t) = −jh

n(t) + i
knγ

εs
η(t)xn(t), yn(0) = µh0

n (29)

d

dt
zα(t) + 2ρ (1− γη(t)) zα(t) = −je

α(t), zα(0) =
εs

1− γη(0)
a0

α (30)

d

dt
µbβ(t) = −jh

β(t), bβ(0) = b0
β (31)

where ρ = σ/2εsε0, and xn(t) = ε(t)en(t), zα(t) = ε(t)aα(t), yn(t) =
µhn(t); e0

n, h0
n, a0

α, b0
β are initial conditions of the mode amplitudes.

The equations for irrotational mode amplitudes (30), (31) are
the first order linear ordinary differential equations with variable
coefficients. Their solution can be found by variable separation and
direct integration; the result can be presented in the following form:

zα(t)=e
−2ρ

t∫
0

(1−γη(t′))dt′

 εs

1−γη(0)
a0

α−
t∫

0

je
α(t′)e

2ρ
t∫
0

(1−γη(t′′))dt′′
dt′


(32)

bβ(t)=b0
β −

1
µ

t∫

0

jh
β(t′)dt′. (33)

The system of evolutionary equations for solenoidal electromagnetic
mode amplitudes can be written in a matrix form as follows:

d

dt
X(t) + Q0 ·X(t) = RHS (t,X) , X(0) = X0 (34)

where

RHS (t,X) = F(t) + γη(t)Q1 ·X(t), X(t) =
(

xn(t)
yn(t)

)
,

F(t) =
( −je

n(t)
−jh

n(t)

)
, X0 =

(
εse

0
n

µh0
n

)
,

Q0 =

(
2ρ ikn

µ

ikn
εs

0

)
, Q1 =

(
2ρ 0
ikn

εs
0

)
.
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This system of ordinary differential equations with constant coefficients
can be solved in a closed form [14]. Solenoidal mode amplitudes in new
designations xn(t), yn(t) are obtained as

xn(t) = re(t) +
knγ√
εsµ

t∫

0

e−ρ(t−t′)η(t′) sin ωn(t− t′)xn(t′)dt′, (35)

yn(t) = rh(t) + i
knγ

εs

t∫

0

e−ρ(t−t′)η(t′) cos ωn(t− t′)xn(t′)dt′, (36)

where ωn =
√

k2
n

εsµ − ρ2 is the eigenfrequency of the cavity filled
with medium that permittivity is εs, and the slowness of changing
permittivity with time is

ρ

kn
,

ρ

ωn
¿ 1. (37)

Electric and magnetic auxiliary function, re(t) and rh(t), are free
functions of integral equation system (35), (36) and equal to

re(t) = e−ρt

(
x0

n cosωnt− i

√
εe

µ
y0

n sinωnt

)

−
t∫

0

e−ρ(t−t′)
(

je
n(t′) cos ωn(t−t′)−i

√
εs

µ
jh
n(t′) sin ωn(t− t′)

)
dt′,(38)

rh(t) = e−ρt

(
y0

n cosωnt− i

√
µ

εe
x0

n sinωnt

)

−
t∫

0

e−ρ(t−t′)
(

jh
n(t′) cosωn(t−t′)−i

√
µ

εs
je
n(t′) sin ωn(t−t′)

)
dt′. (39)

These functions define behavior of the mode amplitudes (in new
designations) of electric and magnetic fields in the cavity, filled with
the medium that permittivity is εs.

3.1. Double Exponential Pulse Change of Permittivity

Let us consider the evolution of electromagnetic fields in the cavity
with double exponential pulse medium permittivity, written as follows

η(t) =
(
e−αt−e−βt

)
, ⇒ ε(t)=εexp 2(t)=

εs

1−γ(e−αt−e−βt)
, α < β.

(40)
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Before investigating of solenoidal mode amplitudes, we write the
irrotational mode amplitude of electric field (32), taking into account
the given time dependence of permittivity:

zα(t) = e−2ρt exp
[
−2ργ

(
e−αt

α
− e−βt

β

)]

×


εea

0
α−

t∫

0

je
α(t′) exp

(
2ρ

[
t′+γ

(
e−αt′

α
− e−βt′

β

)])
dt′



. (41)

The magnetic irrotational mode amplitude is defined in (33). In the
absence of field sources, the irrotational part of magnetic field exists
as static field, but the irrotational part of electric field decreases by
exponent function from its initial value to zero.

Taking into account the permittivity (40) for solenoidal part of
electromagnetic field the resolvent of integral Equation (35) is obtained
as

Rexp 2(t, t′) =
knγ√
µεs

e−ρ(t−t′)
(
e−αt′ − e−βt′

)

× sin

(
ωn(t−t′)+

knγ

2
√

µεs

(
e−αt

α
− e−βt

β
− e−αt′

α
+

e−βt′

β

))
, (42)

with the following convergence condition

knγ(β − α)
2αβ

√
µεe

≤ 1. (43)

Thus, sought amplitudes should be written in quadratures

xn(t) = re(t) +

t∫

0

Rexp 2(t, t′)re(t′)dt′, (44)

yn(t) = rh(t) + i
kn

εs

t∫

0

e−ρ(t−t′)
(
e−αt′ − e−βt′

)
cosωn(t− t′)

×


re(t) +

t∫

0

Rexp 2(t, t′)re(t′)dt′



 dt′, (45)

functions re(t) and rh(t) are described in (38), (39).
We consider two cases of excitation currents. One of them

has mode amplitudes in form of prompt pulse; the other has mode
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amplitudes which are a harmonic signal. We write prompt pulse mode
amplitudes as

je
n(t) = Anδ(t− t0), je

α(t) = Aαδ(t− t0), jh
n(t) = 0, jh

β(t) = 0. (46)

With these mode amplitudes of excitation currents electric and
magnetic auxiliary functions (35) become

re(t) = −Ane−ρ(t−t0) cosωn(t− t0)

rh(t) = iAn

√
µ

εs
e−ρ(t−t0) sinωn(t− t0),

and the system (44), (45) is transformed to

xn(t) = −Ane−ρ(t−t0) cosωn(t− t0)

−An

t∫

0

Rexp 2(t, t′)e−ρ(t′−t0) cosωn(t′ − t0)dt′, (47)

yn(t) = iAn

√
µ

εs
e−ρ(t−t0) sinωn(t− t0)

+i
kn

εs

t∫

0

e−ρ(t−t′)
(
e−αt′ − e−βt′

)
cosωn(t− t′)xn(t′)dt′. (48)

So, mode amplitudes of electromagnetic field in the cavity, excited by
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Figure 2. Permittivity time dependence.
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currents with mode amplitudes (46), are

en(t) = −An

εs
e−ρ(t−t0)

(
1− γ

(
e−αt − e−βt

))

× cos
(

ωn(t− t0)− knγ

2
√

µεs

(
1− e−αt

α
− 1− e−βt

β

))
(49)

hn(t) = i
An√
µεs

e−ρ(t−t0)
(
1− γ

(
e−αt−e−βt

))

× sin
(

ωn (t− t0)− knγ

2
√

µεs

(
1−e−αt

α
− 1−e−βt

β

))
, (50)

zα(t) = − Aα

εexp 2 (t)
exp

[
−2ρ

(
t + γ

(
e−αt

α
− e−βt

β

))]

× exp
(

2ρ

(
t0 + γ

(
e−αt0

α
− e−βt0

β

)))
, (51)

bβ (t) = 0. (52)

In addition, these analytical expressions correspond to free
oscillations in the cavity with initial conditions x0

n = −A, y0
n = 0,

at the moment t = t0. Thus, inherent solenoidal field in the resonator
filled with double exponent pulse medium permittivity (40) decreases
by exponent function with the frequency, which change flips time
dependence of permittivity (Figure 3).

If mode amplitudes of excitation currents have harmonic time
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Figure 3. Time dependence of envelope amplitude and instantaneous
frequency of en(t). A = 10, kn/2π = 10.599GHz, t0 = 0, σ/2ε0εs =
2× 107s−1.



188 Antyufeyeva and Tretyakov

dependence, such as

je
n(t) = An cosΩnt, je

α(t) = Aα cos Ωαt, jh
n(t) = 0, jh

β(t) = 0 (53)

the integral Equation (35) is modified to

xn(t) =
An

(
sin (Ωnt− ξ)− e−ρt sin (ωnt− ξ)

)

2
√

ρ2 + ∆ω2

+

t∫

0

Rexp 2(t, t′)
An

(
sin (Ωnt′−ξ)−e−ρt′ sin(ωnt′−ξ)

)

2
√

ρ2 + ∆ω2
dt′, (54)

where ∆ω = ωn − Ωn and ξ = arctan (ρ/∆ω). Therefore,
electromagnetic field mode amplitudes in quadratures are obtained as

en(t) =
1

εexp 2(t)



re(t) +

t∫

0

Rexp 2(t, t′)re(t′)dt′



 , (55)

hn(t) = rh(t) + i
kn

µεs

t∫

0

e−ρ(t−t′)
(
e−αt′ − e−βt′

)
cosωn(t− t′)

×


re(t′) +

t′∫

0

Rexp 2(t′, t′′)re(t′′)dt′′



 dt′, (56)

aα(t) =
1

εexp 1(t)
e−2ρt exp

(
−2ργTe−t/T

)

×


εsa

0
α −

t∫

0

Ae
α exp

[
2ρ

(
t′+γTe−t′/T

)]
cosΩαt′dt′



, (57)

with auxiliary functions

re(t) =
An

2
√

ρ2 + ∆ω2

(
sin(Ωnt− ξ)− e−ρt sin(ωnt− ξ)

)
(58)

rh(t) = i
Ae

n

2
√

∆ω2 + ρ2

√
µ

εs

(
cos(Ωnt− ξ)− e−ρt cos(ωnt− ξ)

)
(59)

Irrotational mode amplitude of magnetic field strength is zero, as
in previous case. Figure 4 presents solenoidal mode amplitude
of electric field strength with numerically calculated quadratures
of (55). As expected, we obtain complicated amplitude-phase
modulation agreed by permittivity time dependence, difference of
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Figure 4. Solenoidal mode amplitude of electric field strength,
σ/2ε0εs = 2× 107 s−1.

steady eigenfrequency and external signal frequency ∆ω and difference
of unsteady eigenfrequency and external signal frequency. At the
time interval presented on Figure 4, the change of the oscillation
amplitude is made under influence of function εexp 2(t); the change
of the oscillation frequency is made under influence of difference of
time-dependent eigenfrequency, changing with εexp 2(t), and frequency
of mode amplitudes of excitation currents.

3.2. Periodic Permittivity Alternating

Let us investigate the behavior electromagnetic fields in the cavity that
filling has the following periodic time dependence

η(t) = sin(ωεt), ⇒ ε(t) = εsin(t) = εs/ (1− γ sin(ωεt)) . (60)

The irrotational mode amplitude of electric field strength (32) yields

zα(t) = exp
[
−2ρ

(
t +

γ

ωε
cosωεt

)]

×


εea

0
α −

t∫

0

je
α(t′) exp

(
2ρ

(
t′+

γ

ωε
cosωεt

))
dt′



, (61)
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The magnetic irrotational mode amplitude is defined in (33). In the
absence of field sources, the irrotational part of magnetic field exists as
static field, but the irrotational part of electric field has the appearance
of oscillations with frequency ωε relative to the damped exponential
curve, conditioned by losses in the dielectric.

Taking into account the permittivity time dependence (60), the
resolvent of integral Equation (35), determining solenoidal mode
amplitudes, is obtained as

Rsin(t, t′) =
knγ√
µεs

e−ρ(t−t′) sinωεt
′

× sin
(

ωn(t− t′) +
knγ

2
√

µεs

cosωεt− cosωεt
′

ωε

)
, (62)

with the following convergence condition
knγ/2ωε

√
µεs ≤ 1. (63)

The expressions for finding the required functions should be written in
quadratures

xn(t) = re(t) +

t∫

0

Rsin(t, t′)re(t′)dt′ (64)

yn(t) = rh(t) + i
kn

εs

t∫

0

e−ρ(t−t′) sin(ωεt
′) cos ωn(t− t′)

×


re(t′) +

t′∫

0

Rsin(t′, t′′)re(t′′)dt′′



 dt′ (65)

where electric re(t) and magnetic rh(t) auxiliary functions are defined
in (38) and (39) respectively.

Let us consider free oscillations in the resonator, filled with such
medium. Free oscillations in the cavity give an idea of oscillation
process change introduced by exactly nonstationary dielectric. For
this, the mode amplitudes are easily found analytically

en(t) = e0
ne−ρt (1− γ sin(ωεt)) cos

(
ωnt +

knγ

2
√

µεs

cosωεt

ωε

)
, (66)

hn(t) = e0
ne−ρt

{
−i

√
εs

µ
sinωnt

+i
knγ

µ

t∫

0

sin(ωεt
′) cos ωn(t−t′) cos

(
ωnt′+

knγ

2
√

µεs

cosωεt
′

ωε

)
dt′

}
, (67)
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aα(t) = a0
α (1− γ sinωεt) exp

[
−2ρ

(
t +

γ

ωε
cosωεt

)]
. (68)

bβ(t) = b0
β. (69)

Thus, free electromagnetic field in the cavity filled with periodic
medium permittivity (60) has amplitude-frequency modulation of
oscillations; the modulation frequency is equal to ωε; the deviation
from steady-state level is determined by parameter γ.

For investigation of the forced oscillations, the initial conditions
of the electromagnetic field are given zero, and the external currents
have the following harmonic mode amplitudes

je
n(t) = An cosΩnt, je

α(t) = Aα cosΩαt, jh
n(t) = 0, jh

β(t) = 0. (70)
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Figure 5. Permittivity time dependence.
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The integral Equation (35) is transformed to

xn(t) =
An

(
sin (Ωt− ξ)− e−ρt sin (ωnt− ξ)

)

2
√

ρ2 + ∆ω2

+

t∫

0

Rsin(t, t′)
An

(
sin (Ωt′−ξ)− e−ρt′ sin (ωnt′−ξ)

)

2
√

ρ2 + ∆ω2
dt′. (71)

where ∆ω = ωn − Ωn and ξ = arctan ρ
∆ω .

Irrotational mode amplitudes become

aα(t) =
−Aα

εs
(1− γ sinωεt) exp

[
−2ρ

(
t +

γ

ωε
cosωεt

)]

×
t∫

0

cos(Ωαt′) exp
(

2ρ

(
t′ +

γ

ωε
cosωεt

))
dt′, (72)

bβ(t) = 0. (73)

Expressions (71) and (65) are easy-to-use as direct formulas for numeric
calculation of time dependence of solenoidal mode amplitudes of
electromagnetic field.

Temporal process of solenoidal electric field strength mode
amplitude is presented in Figures 7–9. On this graphs one can
see the amplitude-frequency modulation of oscillations, which form
depends on the behavior of permittivity with time. The periodic
amplitude modulation is conditioned by periodic time dependence
of dielectric permittivity. The excitation frequency is chosen equal
to eigenfrequency of the resonator, filled with the medium that
permittivity has steady value εs, but eigenfrequency of the cavity with
time-varying medium fluctuates with varying of ε(t). Accordingly,
the frequency modulation is determined by the difference of these
frequencies.

During the previous consideration of time-varying permittivity the
velocity of establishment of oscillation process was defined by losses in
the medium and exponential varying of dielectric parameters. In this
case, the velocity of establishment of field frequency is determined only
by medium losses. The periodic variation of the oscillation amplitude
has constant character, because it is supported by undamped periodic
change of ε.

Figure 10 presents time dependence of envelope amplitude and
instantaneous frequency of solenoidal mode amplitude of electric field
strength, corresponding to oscillating process in Figure 8.
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Figure 7. Solenoidal mode amplitude of electric field strength (solid
line), permittivity (dotted line). A = 109, kn/2π = 10.599GHz,
ωn/2π = 1.935GHz, σ/2ε0εs = 2× 107s−1.

4. CAVITY WITH TIME-VARYING CONDUCTIVITY

In this part of the paper we investigate the properties of
electromagnetic fields in the cavity, filled with medium that
conductivity depends upon time as

σ(t) = σ0

(
1− e−t/T

)
. (74)

Permittivity and permeability of the medium are supposed to be
invariable, that is ε(t) ≡ ε, µ(t) ≡ µ.
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Figure 8. Solenoidal mode amplitude of electric field strength (solid
line), permittivity (dotted line). A = 109, kn/2π = 10.599GHz,
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The system of evolutionary Equations (23)–(26) is rewritten to

d

dt
xn(t) + 2ρxn(t) + i

kn

µ
yn(t) = −je

n(t) + 2ρη(t)xn(t); (75)

d

dt
yn(t) + i

kn

ε
xn(t) = −jh

n(t); (76)

d

dt
z(t) + 2ρ(1− η(t))z(t) = −je

α(t); (77)

d

dt
(µbβ(t)) = −jh

β(t). (78)
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for new convenient sought and given function and values xn(t) =
εen(t), yn(t) = µhn(t), z(t) = εaα(t), η(t) = e−t/T , ρ = σ0/2ε0εe.
The initial conditions of these new designations are

xn(0) = εe0
n = x0

n, yn(0) = µh0
n = y0

n, (79)
zα(0) = εa0

α = z0
α, bβ(0) = b0

β. (80)
Firstly, we write the irrotational mode amplitudes of electromag-
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netic field. Similar to (30), (31), Equations (77), (78) are the first
order linear ordinary differential equation with variable coefficients,
and their solution can be found by separating variables and directly
integrating as:

zα (t)=exp
[
−2ρ

(
t+e−t/T

)]

εa0

α−
t∫

0

je
α

(
t′
)
exp

[
2ρ

(
t+e−t′/T

)]
dt′


.(81)

bβ (t)=− 1
µ

t∫

0

jh
β

(
t′
)
dt′ + b0

β, (82)

Thus, in the absence of excitation the irrotational part of magnetic field
exists as static field, but the irrotational part of electric field decreases
from its initial value to zero by exponent.

The solenoidal problem should be formulated in matrix form

d

dt
X(t) + Q0 ·X(t) = RHS (t,X) , X(0) = X0 (83)

where

RHS (t,X) = F(t) + η(t)Q1 ·X(t), X(t) =
(

xn(t)
yn(t)

)
,

F(t) =
( −je

n(t)
−jh

n(t)

)
, X0 =

(
εe0

n

µh0
n

)
,

Q0 =
(

2ρ ikn
µ

ikn
ε 0

)
, Q1 =

(
2ρ 0
0 0

)

The solution of the matrix ordinary differential Equation (83) with
constant coefficients is

X(t) = X0e
−tQ0 +

t∫

0

e−(t−t′)Q0RHS(t′)dt′. (84)

The function e−tQ0 may be calculated as presented in [14], and integral
equations are obtained

xn(t) = e−ρt

(
x0

n cosωnt− i

√
ε

µ
y0

n sinωnt

)

−
t∫

0

e−ρ(t−t′)
(
je
n(t′) cos ωn(t−t′)−i

√
ε

µ
jh
n(t′) sinωn(t−t′)

)
dt′
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+2ρ

t∫

0

e−ρ(t−t′)η(t′) cosωn(t− t′)xn(t′)dt′ (85)

yn(t) = e−ρt

(
y0

n cosωnt− i

√
µ

ε
x0

n sinωnt

)

−
t∫

0

e−ρ(t−t′)
(
jh
n(t′) cos ωn(t−t′)−i

√
µ

ε
je
n(t′) sin ωn(t−t′)

)
dt′

−2ρ i

√
µ

ε

t∫

0

e−ρ(t−t′)η(t′) sin ωn(t− t′)xn(t′)dt′ (86)

where ωn =
√

k2
n

εµ − ρ2 and the following convergence condition is used

ρ

kn
,

ρ

ωn
¿ 1. (87)

The resolvent of integral Equation (85) is found as

Rσ(t, t′) = 2ρe−ρ(t−t′)e−t′/T cosωn(t− t′)

× exp
[
−ρT

(
e−t/T − e−t′/T

)]
, (88)

and expressions (85), (86) are transformed to

xn(t) = re (t) +

t∫

0

Rσ(t, t′)re(t′)dt′,

re(t) = e−ρt

(
x0

n cosωnt− i

√
ε

µ
y0

n sinωnt

)

−
t∫

0

e−ρ(t−t′)
(

je
n(t′) cos ωn(t− t′)− i

√
ε

µ
jh
n(t′) sinωn(t− t′)

)
dt′

(89)

yn(t) = rh(t)− 2ρ · i
√

µ

ε

t∫

0

e−ρ(t−t′)η(t′) sin ωn(t− t′)

×


re(t′) +

t′∫

0

Rσ(t′, t′′)re(t′′)dt′′



 dt′
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rh(t) = e−ρt

(
y0

n cosωnt− i

√
µ

ε
x0

n sinωnt

)

−
t∫

0

e−ρ(t−t′)
(
jh
n(t′) cos ωn(t−t′)−i

√
µ

ε
je
n(t′) sin ωn(t− t′)

)
dt′

(90)

It is obvious that the electric and magnetic auxiliary functions re(t) and
rh(t) define behavior of the mode amplitudes of electric and magnetic
fields in the cavity, filled with medium that conductivity has constant
value σ0.

Let us consider free oscillations of electromagnetic fields in a cavity
with time-varying conductivity medium. With h0

n = 0, b0
β = 0 the

mode amplitudes of electromagnetic field yield

en(t) = e0
ne−ρ(t−T(e−t/T−1)) cosωnt, (91)

hn(t) = −ie0
n

{√
ε

µ
e−ρt sinωnt + 2ρe−ρt

√
ε

µ
t∫

0

eρT (e−t′/T−1)e−t′/T cos(ωnt′) sin ωn(t− t′)dt′
}

. (92)

aα(t) = a0
α exp

[
−2ρ

(
t + e−t/T

)]
, bβ(t) = 0 (93)

In general case in a cavity filled with transient conductivity medium
the eigenfrequency changes in time with the conductivity, but for
this specific example (74) we obtain the case of simple amplitude
modulation with constant carrier frequency. In Figure 12, light curves
correspond to time dependence of oscillation envelope in the cavity
filled with medium, which has constant conductivity σ0. With time-
varying conductivity of the filling, the free oscillations decay rapidly.

For forced oscillations the mode amplitudes of external currents
are given as

je
n(t) = An sinΩnt, je

α(t) = Aα sinΩαt, jh
n(t) = 0, jh

n(t) = 0, (94)

initial conditions are zero. At this (89) is transformed to

en(t) =
−An

(
cos (Ωt− ξ)− e−ρt cos (ωnt− ξ)

)

2ε
√

ρ2 + ∆ω2

−An

t∫

0

Rσ(t, t′)

(
cos (Ωt′ − ξ)−e−ρt′ cos (ωnt′−ξ)

)

2ε
√

ρ2 + ∆ω2
dt′. (95)
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Figure 12. Time-dependence of free oscillations.
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Figure 13. Solenoidal mode amplitude of electric field strength.

where ∆ω = ωn − Ωn, ξ = arctan ρ
∆ω .

The irrotational mode amplitudes are as follows

aα (t) =
−Aα

ε
exp

[
−2ρ

(
t + e−t/T

)]

×
t∫

0

sin
(
Ωαt′

)
exp

[
2ρ

(
t + e−t′/T

)]
dt′, (96)

bβ (t) = 0. (97)

The expressions (95) and (90) are easy-to-use as direct formulas
for numeric calculation of time dependence of mode amplitudes of
electromagnetic field.

Figures 13 and 14 present evolution of solenoidal mode amplitude
of electric field strength, excited by harmonic external electric current,
for different parameters of conductivity time dependence. As free
oscillations in the cavity show, varying of frequency and phase
of oscillations does not occur, but alterations to time dependence
of oscillations amplitude are introduced. Figure 14 demonstrates
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Figure 14. Solenoidal mode amplitude of electric field strength.

oscillations which have the same varying speed of conductivity with
time, but different end values ρ.

For big ρ the oscillations steady rapidly. With increase of
conductivity varying speed (see Figure 13) the oscillation establishment
slows down.

5. CONCLUSION

Transient electromagnetic fields in a cavity filled with time-varying
medium have been studied analytically in the time domain. Both time-
varying permittivity and conductivity were considered.

For double exponent pulse change of permittivity the amplitude-
frequency modulation has temporal character. Rate of forced
oscillations steadying in the cavity depends on medium losses and
rate of change of ε. Instant frequency change of the transient process
is governed by difference of exciting currents frequency and steady
and unsteady eigenfrequencies of the filled cavity. For periodic time
dependence of permittivity the rate of steadying of wave processes
depends on the losses in the medium. Periodic amplitude modulation
of electromagnetic oscillations has constant character because it is
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supported by undamped periodic varying of ε.
A solution has been obtained in a closed-form for mode amplitudes

of electromagnetic fields in a cavity filled with medium that has smooth
transition of conductivity from some initial to the final value. In this
case, the amplitude modulation has temporal character, and frequency
change depends on difference between the constant eigenfrequency and
the frequency of excitation currents.
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