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Abstract—In this paper, the backscattering properties of a perfect
electric conducting sphere coated with layered anisotropic media whose
constitutive parameters are close to nihility are investigated. We show
that the backscattering is more sensitive to the radial constitutive
parameters than to the tangential ones. Compared with isotropic case,
the anisotropic media with small axial parameters have the potential to
yield more reduction of backscattering magnitude on coated perfectly
conducting spheres.

1. INTRODUCTION

Cloaking an object with suitable electromagnetic materials has
attracted attention for many years [1, 2, 3, 4, 5, 6]. One of the cloaking
techniques utilizes low-positive, near-zero permittivity covers to induce
“invisibility”, which has been suggested in the quasistatic (Rayleigh)
limit for spherical and cylindrical objects, i.e., the radius of a scatter
being small compared with the operating wavelength [1]. To cloak
larger objects comparable to or larger than the operating wavelength,
coordinate transformation method has been proposed, which requires
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the cloak to be an anisotropic inhomogeneous media with every
permittivity and permeability element independently controlled [2].
Unlike bistatic observation (transmitter and receiver in different
locations) from 0◦ to 360◦ angle, in a monostatic radar detection
(transmitter and receiver in the same location), only the backscattering
is the key in hiding objects. Therefore, we can achieve much simpler
electromagnetic parameters for the coating media, compared with the
cloaking media.

In [7] the scattering properties of a nihility [8, 9, 10] sphere have
been studied, and it is discovered that the backscattering efficiency
of a nihility sphere is identically zero with a cost that its extinction
and forward-scattering are higher than those of a perfectly conducting
sphere. Soon the similar phenomena have been reported [11] through
a different visual angle and draw our attention to uniaxial anisotropic
medium whose axial permittivity and permeability parameter values
tend to zero [12].

Since the medium with strict zero permittivity and zero
permeability does not exist [10, 13], instead of ideal nihility, in
this paper, we investigate the backscattering effect of a PEC sphere
coated by media with small permittivity and permeability parameters,
which can be possibly realized within the recent advancement of
metamaterials [14, 15]. In view of the present metamaterial designing
and fabricating technique [16, 17], this anisotropic metamaterial with
small parameter values can be more easily realized than the materials
for cloak.

In the following Section 2, we firstly present the theoretical
formulation for a general scattering problem of a sphere wrapped
by multi-layer radially uniaxial media. Based on the formulation,
the backscattering properties of a PEC sphere coated with one-layer
anisotropic medium are analyzed and discussed in Section 3. It is
demonstrated that the coating has the potential to behave better as
a backscattering eliminator when its radial constitutive parameters’
(εr and µr) values are carefully chosen. The numerical results are
provided for one-layer system. However, any finite number of layers
can be solved in like manner. Such multi-layered nihility scheme is
useful to gain a maximal drop of the backscattering amplitude.

2. FORMULATION

In this section, vector potential formulation for electromagnetic
scattering problem of an isotropic sphere (not confined to PEC) coated
with multilayered rotationally uniaxial media is investigated. As shown
in Fig. 1, an isotropic sphere (ε1, µ1) of radius R1 is located at the origin
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of the coordinate system, and the spherical region R1 < r < R2 is
occupied by the multilayered rotationally symmetric anisotropic media,
which in the j-th layer is characterized by

ε = (ε(j)r − ε
(j)
t )r̂r̂ + ε

(j)
t I,

µ = (µ(j)
r − µ

(j)
t )r̂r̂ + µ

(j)
t I,

(1)

where I = r̂r̂ + θ̂θ̂ + φ̂φ̂, ε
(j)
t and µ

(j)
t are the permittivity and

permeability along the θ̂ and φ̂ directions (parallel to the sphere
surface), ε

(j)
r and µ

(j)
r along the r̂ direction (perpendicular to the sphere

surface) for the j-th layer. The incident plane wave is taken to be
linearly polarized in x direction, traveling along the z axis. The time
dependence of e−iωt is suppressed.
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Figure 1. Configuration of scattering of plane wave by a sphere coated
with a L-layer shell. Each layer within r(j) < r < r(j+1) is a radially
uniaxial homogeneous medium with permittivity tensor ε = ε

(j)
r r̂r̂ +

ε
(j)
t θ̂θ̂ + ε

(j)
t φ̂φ̂ and permeability tensor µ = µ

(j)
r r̂r̂ + µ

(j)
t θ̂θ̂ + µ

(j)
t φ̂φ̂.

r(1) = R1, r(L+1) = R2, j (1 ≤ j ≤ L) represents the layer number.
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Since the electromagnetic fields can be deduced from the
corresponding scalar potentials, which are composed of a superposition
of Bessel functions, associated Legendre polynomials, and harmonic
functions [18, 19, 20], the scalar potentials for the incident fields
(r > R2), scattered fields (r > R2), and the fields inside the isotropic
sphere (r < R1) can be expressed by the same notations as those
in [19], while the fields for each coating layer of the multilayered
anisotropic shell (within r(j) < r < r(j+1)) are given by the fractional-
order Riccati-Bessel functions of the first and third kinds as shown in
Eq. (5):

Φi
TM =

cosφ

ω

∑
n

anψn(k0r)P 1
n(cos θ),

Φi
TE =

sinφ

ωη0

∑
n

anψn(k0r)P 1
n(cos θ),

(2)

Φs
TM =

cosφ

ω

∑
n

anT (M)
n ζn(k0r)P 1

n(cos θ),

Φs
TE =

sinφ

ωη0

∑
n

anT (N)
n ζn(k0r)P 1

n(cos θ),
(3)

Φint
TM =

cosφ

ω

∑
n

c(M)
n ψn(k1r)P 1

n(cos θ),

Φint
TE =

sinφ

ωη0

∑
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c(N)
n ψn(k1r)P 1

n(cos θ),
(4)
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ω

∑
n

[a(M)
jn ψν1(k

(j)
t r) + a

(M)
jn R

(M)
jn ζν1(k
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n(cos θ),

Φ(j)
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sinφ
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(j)
t r) + a

(N)
jn R

(N)
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(5)

where an =
(−i)−n(2n + 1)

n(n + 1)
, n refers to the mode numbers which

are integers, η0 =
√

µ0

ε0
, k0 = ω

√
µ0ε0, k1 = ω

√
µ1ε1, and k

(j)
t =

ω

√
µ

(j)
t ε

(j)
t . ψν and ζν are Riccati-Bessel functions of the first and third

kinds, respectively. For the anisotropic shells, the functions’ orders are
fractional and different for both TM and TE modes:

ν1 =
√

εt

εr
n(n + 1) +

1
4
− 1

2
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√
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µr
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1
4
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ν1 and ν2 represent the anisotropy effect in the coating layer. T
(M)
n ,

T
(N)
n , c

(M)
n , c

(N)
n , a

(M)
jn , a

(N)
jn , R

(M)
jn , and R

(N)
jn are unknown expansion

coefficients, thereinto, R
(M)
jn and R

(N)
jn are defined as the general

reflection coefficients of n-th order in the j-th layer for both modes.
In order to solve these coefficients, we match the boundary conditions
on each spherical surface between adjacent layers. The coefficients for
TM waves form a group of equations, and the ones for TE waves form
the other. If the shell is composed of L layers, there will be (L + 1)
boundaries which will give rise to (2L + 2) equations for each mode.
Solving the unknowns requires inverting a (2L + 2)× (2L + 2) square
matrix, which is straightforward but tedious.

However, using an agile method introduced in [21] for obtaining
the reflection and transmission by layered media, we are able to deal
with the problem in a much simpler way, which avoids inverting the
big (2L+2)× (2L+2) square matrix. The relationship of neighboring
general reflection coefficients (R(M)

jn and R
(M)
j−1n, R

(N)
j−1n and R

(N)
jn ) can

be found. For example, for TE waves (2 ≤ j ≤ L), R
(N)
jn is expressed

in terms of R
(N)
j−1n:

R
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ε
(j)
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√
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(j−1)
t µ

(j−1)
t [RT]√
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, (7)

where
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t )ψν(ξ
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t ) + R

(N)
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(j−1)
t )ψν(ξ
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(j−1)
t )ζν(ξ

(j)
t ) + R

(N)
j−1nζ ′ν(ξ
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thereinto, ξ
(j−1)
t = k

(j−1)
t r(j), ξ

(j)
t = k

(j)
t r(j), r(j) is the radius of the

interface between the (j − 1)-th and the j-th layer (r(1) = R1). At
r = R1, we can get the exact value of the general reflection coefficient
for the first layer:

R
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, (8)
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where ξ1 = k1R1 and ξ
(1)
t = k

(1)
t R1. By substitution all the general

reflection coefficients in other layers all the reflection coefficients can
be obtained from inside to outside. Once we have R

(N)
Ln for the outmost

layer of the shell, by applying the boundary conditions at r = R2, the
scattering coefficients T

(N)
n can be solved as:

T (N)
n = −

√
ε0

ε
(L)
t

[TN1]ψ′n(ξ0)−
√

µ0

µ
(L)
t

[TN2]ψn(ξ0)

√
ε0

ε
(L)
t

[TN1] ζ ′n(ξ0)−
√

µ0

µ
(L)
t

[TN2] ζn(ξ0)
, (9)

where
TN1 = ψν(ξ

(L)
t ) + R

(N)
Ln ζν(ξ

(L)
t ),

TN2 = ψ′ν(ξ
(L)
t ) + R

(N)
Ln ζ ′ν(ξ

(L)
t ),

ξ
(L)
0 = k

(L)
0 R2, and ξ

(L)
t = k

(L)
t R2. The scattering coefficients T

(M)
n for

TM waves can be obtained similarly, which guarantees that the fields
in free space (outside the shell) are all attainable. The fields in the
shells and the inner sphere can also be solved straightway if we keep
on seeking the remaining unknown coefficients a

(M)
jn , a

(N)
jn , c

(M)
n , and

c
(N)
n from the outer layer to inner layer.

3. RESULTS

Examples of numerical results are provided in this section. We first
analyze the plane-wave response of a PEC sphere coated with isotropic
media whose permittivity and permeability are smaller than vacuum.
Then we focus on the anisotropic coating case. When the coating has
a parameters of µ0 and ε0, we can get the scattering of a raw PEC
sphere, which will be used for comparison. In all of our calculations in
this section, the frequency is fixed at 10 GHz, the radius of the PEC
sphere is R1 = 3λ0, and the truncation of the summations is chosen to
be 50, at which the convergence has been verified to be acceptable.

3.1. Isotropic Coating

Three examples are presented in this subsection with logarithmic
degressive relative constitutive parameters of the isotropic coatings
in comparison with no coating of a PEC sphere. The background
material is air. Fig. 2 plots the bistatic scattering as a function of the
scattering angle θ for a PEC sphere coated by different isotropic shells
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with decrescent values of permittivity and permeability in two different
planes. The vertical axis represents the normalized differential cross

sections,
|S1(θ)|2
k2

0πR2
2

,
|S2(θ)|2
k2

0πR2
2

, where S1(θ) and S2(θ) are defined by:

S1(θ) = −∑
n

(2n + 1)
n(n + 1)

[
T (M)

n πn(θ) + T (N)
n τn(θ)

]
,

S2(θ) = −∑
n

(2n + 1)
n(n + 1)

[
T (M)

n τn(θ) + T (N)
n πn(θ)

]
.

(10)

In the above two equations πn(θ) and τn(θ) are related to the associated
Legendre functions [19]. For the configuration shown in Fig. 2, S1(θ)
and S2(θ) illustrate the scattering patterns in the yz and xz planes,
corresponding to Figs. 2(a) and 2(b) respectively.
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Figure 2. Normalized differential cross sections for a perfectly
conducting sphere coated with different isotropic media in (a) yz planes
and (b) xz planes. The size of the coated layer are (R1 = 3λ0,
R2 = 4λ0).
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From these two sub-figures, we see that the scattering cross section
is more and more suppressed at 180 degrees as the relative permittivity
and permeability of the coating get smaller and smaller. So the
fourth curve (black dotted line) has the lowest backscattering due to
its smallest permittivity and permeability values, which is closest to
the nihility sphere case [7]. The reason is that when a PEC sphere
is wrapped by nihility, no wave can penetrate and exist in it, thus
the sphere coated by nihility acts like it is a nihility sphere. On the
other hand, the forward-scattering of the coated PEC spheres are all
higher than the PEC sphere without coating. The detailed relationship
between the backscattering magnitude Qback and isotropic constitutive
parameters will be discussed in Section 3.3 later.

3.2. Anisotropic Coating

Considering the fact that achieving the small permittivity and
permeability values might be easier in one or two directions than all the
three, we will focus on the rotationally anisotropic coating with small
constitutive parameter values. In order to study the backscattering
property in this situation, we present the impact of each constitutive
parameter including εt, µt, εr, and µr on the scattering of a wrapped
PEC sphere. First, the pairs of tangential (εt, µt) and radial (εr, µr)
parameters of anisotropic media are decreased separately to compare
with isotropic case, and the results are shown in Fig. 3, where the
relative permittivity and permeability values are chosen to be 0.01 in
this example. It is indicated that the small values of εr and µr play
more effective roles than εt and µt on reducing the backscattering of the
coated PEC sphere, however, the case where all the four parameters
are small still performs the best shielding backscattering, which is
illustrated as the red solid line in Fig. 3.

In more detail, Fig. 4 shows the impact of every individual
constitutive parameter of the anisotropic coating for a PEC sphere.
In the figure legend, if not shown, the default constitutive parameters
for each curve denote that their values are equal to the vacuum’s
permittivity ε0 or permeability µ0. For example, εt = 0.01ε0 shown
in the legend of Fig. 4 represents the coated layer has the following
parameters: εt = 0.01ε0, εr = ε0, and µt = µr = µ0. From Fig. 4 we see
that the first and the second curves (only one tangential constitutive
parameter is small) are both higher than the case where either µr or
εr is small, in the range near 180 degrees. So they are both worse than
isotropic case when the coating is the air, which indicates that either of
tangential parameters (εt, µt) cannot help to reduce the backscattering.
The rest four curves all have lower backscattering than the air case as
the red lines shown in Fig. 2. Besides, solely small εr value of the
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Figure 3. Comparison of the normalized differential cross sections
for a perfectly conducting sphere coated with isotropic medium and
anisotropic media (R1 = 3λ0, R2 = 4λ0) in (a) yz planes and (b) xz
planes.

coating works better than µr due to the PEC core. Otherwise, if there
is a perfect magnetic conducting (PMC) sphere inside the coating, the
fact will be opposite according to the principle of duality [21], meaning
that µr will act more significantly than εr, which has been validated
by our calculation.

3.3. Discussions

The performance of coating’s invisibility for a PEC sphere is
determined by its constitutive parameters. As we have already
shown, the small values of constitutive parameters result in a lowered
backscattering and concomitant higher forward-scattering regardless
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of isotropic or anisotropic coating, but with different extents. In this
subsection, we discuss the effect of the constitutive parameters on the
backscattering properties from a different viewpoint.

Make use of the special values when θ = π [22],

πn(π) = (−1)n+1 n(n + 1)
2

,

τn(π) = (−1)n n(n + 1)
2

,

(11)

the two equations from Eq. (10) will get the same expression because of
the square, and then the unique normalized differential backscattering
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Figure 4. Normalized differential cross sections for a perfectly
conducting sphere coated by anisotropic media (R1 = 3λ0, R2 = 4λ0)
in (a) yz planes and (b) xz planes.
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being paid close attention to can be written as:

Qback =
1

k2
0πR2

2

∣∣∣∣∣
∑
n

(−1)n(2n + 1)
2

(T (M)
n − T (N)

n )

∣∣∣∣∣
2

. (12)

For different coatings, once their scattering coefficients T
(M)
n and T

(N)
n

are known, the normalized differential backscattering can be obtained
through the above equation.

Figure 5 compares the calculated backscattering magnitude [see
Eq. (12)] for anisotropic and isotropic coatings as functions of
their relative permittivity and permeability values. For anisotropic
coatings, the green dot-dashed curve represents that only radial relative
permittivity (RP = εr/ε0) and relative permeability (RP = µr/µ0) for
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Figure 5. Comparison of normalized differential backscattering values
versus RP values for a perfectly conducting sphere (R1 = 3λ0) coated
with anisotropic media and isotropic media. (b) is the enlargement of
(a) with RP value from 0.001 to 0.01. for anisotropic media, the RP
values for default constitutive parameters are 1 (εt = ε0, µt = µ0 or
εr = ε0, µr = µ0). the thickness of the coating is λ0 (R2 = 4λ0).
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anisotropic media are smaller than unity, the tangential ones remain
the same as the air (εt = ε0, µt = µ0); on the contrary, for the blue
dashed curve, the tangential RP are changing while the radial ones
fixed to vacuum values.

As shown in Fig. 5(a), the green dot-dashed curve oscillates
continuously while the blue dashed one is almost a horizontal
line, which is influenced little by the changing values of tangential
parameters εt and µt of the anisotropic coating. The normalized
differential backscattering for small εr and µr type coated PEC sphere
has a series of local minima possessing lower magnitude than its
corresponding isotropic coating, which can be clearly observed in
Fig. 5(a). Near these valleys, the PEC sphere can be better shielded
from backscattering detection. Fig. 5(b) illustrated the result in the
area of 0.001 ≤ RP ≤ 0.01. As we can see from Fig. 5(b), when
εr and µr approach nihility, that is RP → 0, the backscattering of
anisotropic media drops much more quickly than the isotropic media,
which can be explained as a spatial filter without reflection for normal
incidence [12]. The examples we have given in the previous subsection
(Figs. 3 and 4) happen at RP = 0.01 where the anisotropic coating’s
backscattering (green dot-dashed) is larger than isotropic coating (red
solid). Therefore, if we want to cloak a PEC sphere better from a
monostatic radar with an anisotropic coating, selective right positions
for RP values will be a wise choice.

4. CONCLUSION

In summary, the scattering properties of a coated sphere are studied
theoretically. Concentrating on a PEC sphere with anisotropic coating,
attention is paid to the backscattering properties which is valuable
in monostatic radar detection. Our calculated results show that
decreasing the radial constitutive parameters (εr and µr) is much more
helpful to reduce the backscattering magnitude, while small tangential
constitutive parameters (εt and µt) have little effect on the elimination
of the backscattering. In physical applications, the backscattering of
the coated PEC sphere can be controlled by adjusting the constitutive
parameters of the anisotropic media, either for enhancement or for
reduction.
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