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Abstract—Reconstruction of perfectly electric conductors (PEC)
with transverse magnetic (TM) illumination by a subspace-based
optimization method (SOM) is presented. Apart from the information
that the unknown object is PEC, no other prior information such as
the number of the objects, the approximate locations or the centers is
needed. The whole domain is discretized into segments of current lines.
Scatterers of arbitrary number and arbitrary shapes are represented
by a binary vector, and the descent method is used to solve the
discrete optimization problem. Several numerical simulations are
chosen to validate the proposed method. In particular, a combination
of a line type object and a rectangular shape object is successfully
reconstructed. The subspace-based optimization method for PEC
scatterers is found to be more complex than its counterpart for
dielectric scatterers.

1. INTRODUCTION

Due to its wide application in the field of medical imaging, non-
destructive testing and remote sensing, the inverse scattering problem
has been of great interest. This paper investigates the inverse
scattering problem of reconstructing perfectly electric conductors
(PEC), i.e., to reconstruct the locations, contours and the exact
number of PEC objects by utilizing the measured scattered field.

The traditional method is to use the so called shape function to
represent the contour of the scatterers. Spline function or the Fourier
series under local coordinate are most commonly used [1, 2]. This
method requires an initial guess of the number and the approximate
locations of the scatterers. In situations where such a prior information
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is not available, the domain of interest is discretized into pixels and
consequently PEC objects of arbitrary numbers and shapes can be
represented by choosing certain pixels to be PEC [3, 4]. However,
aforementioned methods deal with only closed-contour PEC objects,
and are not able to reconstruct very thin structures, which are
referred to as line-shape structures. In our work, we propose a
PEC reconstruction algorithm that is able to reconstruct both closed-
contour and line-shape objects, in the absence of a priori information
of the number and the approximate locations of the scatterers. The
domain of interest is discretized into line elements, and the SOM [5–8]
is used to reconstruct the PEC scatterers.

The original contributions of the paper are as follows: Firstly,
it extends the application of SOM from dielectric to PEC scatterers.
It should be highlighted that this is not a simple extension since the
physics and math for these two cases are significantly different. In
dielectric case, both scatterers and background can be represented by
permittivity, and subsequently, the Lippmann-Schwinger equation can
be applied to the whole domain of interest. In comparison, in PEC
case, the electric-field-integral-equation (EFIE) is only applicable to
the boundary of PEC scatterer that is however unknown in inverse
problem. Thus it is much more difficult to apply the SOM in PEC
case than in dielectric case. Secondly, to the best of our knowledge,
the proposed algorithm is the first one that is able to reconstruct
both closed-contour and line-shape objects. Thirdly, the paper
presents several numerical results that demonstrate the successful
reconstruction of sub-wavelength PEC structures, in the absence of
a priori information on the number and the approximate locations of
the scatterers.

2. FORWARD PROBLEM

In this paper, we consider an inverse scattering problem in two-
dimensional setting with transverse magnetic (TM) time harmonic
illuminations. The whole domain is invariant along the z axis. Suppose
that the unknown PEC scatterers are located in a given domain
D ⊂ R2. The background medium is free space, and its permittivity
and permeability are denoted as ε0 and µ0, respectively. There are Ninc

plane waves given by Einc
p (r) = ẑeikp·r, p = 1, 2, . . . , Ninc, incident from

different angles onto the domain of interest D. kp is the wave vector for
the pth incidence and the incident electric field vector is parallel to the
z axis. For each incident, the scattered field is detected by Nr antennas
symmetrically located on a circle with positions r′q, q = 1, 2, . . . , Nr.

The domain of interest is discretized into small square subunits,
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and side edges of square rather than the square itself are used as the
elements to represent scatterers, which is a significant difference from
the case of dielectric scatterers. After such discretization, the method
of moments (MoM) can be used to solve the forward problem [10].
The center of each PEC line-element is located at rj , j = 1, 2, . . . , N0,
where N0 denotes the total number of the PEC line elements. By using
the surface equivalence principle, the PEC scatterer can be replaced
by the surface current radiating in free space. From the boundary
condition, we know that the total field on the surface of the scatterer
should be zero, and the field relationship on the surface reads, by the
MoM method,

Einc
z (rm)=−ikη

N0∑

j=1

J(rj)
∫

j-th segment

i

4
H

(1)
0 (kRmj)dt′,m=1, 2, . . . , N0,

(1)
where k is the free space wave number, η is the impedance of the free
space and H

(1)
0 is the Henkel function of the first kind of order zero, t′ is

the length parameter along the jth segment. Rmj denotes the distance
between the mth and jth segments which is given by Rmj = |rm − rj |.
When m = j, the integral is evaluated by the method described in [10].
After the surface current is obtained, the scattered field received by the
antennas outside the domain is given by

Esca
z (r′q) = ikη

N0∑

j=1

J(rj)
∫

j-th segment

i

4
H

(1)
0 (kRqj)dt′, (2)

where Rqj =
∣∣r′q − rj

∣∣, q = 1, 2, . . . , Nr.

3. INVERSE PROBLEM BY SOM

For inverse problem, all the PEC boundary elements are unknown
so that Eq. (1) cannot be explicitly established. The counterpart
of Eq. (1) in dielectric scatterer scenario is referred to as the state
equation [5–7]. In PEC scatterer scenario, the absence of an explicit
state equation makes it impossible to directly apply the SOM developed
for dielectric scatterer scenario.

Although surface currents exist only on the boundary of
PEC scatterers, we suppose that there are surface currents on
all line elements in domain D such that we can define J̄ =
[J(r1), J(r2), . . . , J(rN )]T, where N is the total number of line elements
in the domain and the center of each line-element is located at
rn, n = 1, 2, . . . , N . Note that the entries of J̄ equal to zero if the
corresponding line elements do not belong to the boundary of PEC.
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The total field Ētot, which is also an N -dimensional vector, inside the
domain D is given by

Ētot = Ēinc + ¯̄GD · J̄ (3)

where ¯̄GD denotes the mapping from the induced current to the field
inside the domain of interest. For m,n = 1, 2, . . . , N , the entries of ¯̄GD

are given by ¯̄GD(n,m) = −kη
4 wH

(1)
0 (k |rn − rm|), where m 6= n, and

¯̄GD(n,m) = −kηw
4 {1 + i 2

π [ln(γkw
4 ) − 1]} when m = n. Here w is the

length of the line element and γ = 1.781 [10]. The scattered field is
given by

Ēsca = ¯̄Gs · J̄ (4)

where Ēsca = [Esca
z (r′1), E

sca
z (r′2), . . . , E

sca
z (r′Nr

)]T and ¯̄Gs(q, m) =

−kη
4 wH

(1)
0 (k|r′q − rm|) for q = 1, 2, . . . , Nr and m = 1, 2, . . . , N , while

¯̄Gs is the mapping from the current in D to the scattered field measured
at receivers. We refer to Eq. (4) as the field equation.

We define an N -dimensional vector P̄ , which consists of only 1 and
0, as a judgment of whether the edge belongs to the PEC boundary. In
another word, the dimension of vector P̄ is equal to the total number
of line elements in domain D and a ‘1’ element represents the PEC
element and a ‘0’ element represents the free space area. Noticing the
fact that Ētot vanishes on the PEC boundary and in the meanwhile J̄
equals to zero for the elements which do not belong to the boundary,
we are able to arrive at the following relative residue equation, which
is the counterpart of the relative residue in the state equation in the
dielectric scatterer scenario [5–7],

∆sta =

∥∥∥(∼ P ) · J̄
∥∥∥

2

∥∥J̄s
∥∥2 +

∥∥∥( ¯̄P ) · Ētot
∥∥∥

2

∥∥Ēd
∥∥2 , (5)

where ‖·‖ is the Euclidean length of a vector, ¯̄P is the diagonal matrix
with P̄ in the diagonal, and ∼ P is the diagonal matrix with the
complement of P̄ in the diagonal. J̄s is the deterministic part of the
induced current which will be introduced later. Ēd = ¯̄GD · J̄s is electric
field generated by deterministic part of the induced current.

Following the SOM algorithm proposed in [5], the induced current
is decomposed into two orthogonally complementary parts: the
deterministic part J̄s and the ambiguous part J̄n. The equation can
be expressed as J̄ = J̄s + J̄n = ¯̄V sᾱs + ¯̄V nᾱn, where ¯̄V n is the noise
subspace composed of the last M − L columns of ¯̄V , and L is the
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number of the total singular values that are above a predefined noise-
dependent threshold [5]. After J̄s is determined from the field equation
Eq. (4) by the singular value decomposition (SVD) [5], the residue due
to the mismatch of the scattering data can be expressed as

∆fie =

∥∥∥ ¯̄Gs · ¯̄V n · ᾱn + ¯̄Gs·J̄s − Ēsca
∥∥∥

2

∥∥Ēsca
∥∥2 . (6)

And we can call it the field residue. The optimal solution of ᾱn in the
least square sense is given by

ᾱn
opt = ¯̄A−1 · B̄ (7)

where ¯̄A =
∥∥Ēd

∥∥2 [(∼ P ) · ¯̄V n]∗ · [(∼ P ) · ¯̄V n] +
∥∥J̄s

∥∥2 ( ¯̄P · ¯̄GD · ¯̄V n)∗ ·
( ¯̄P · ¯̄GD · ¯̄V n), B̄ = −∥∥Ēd

∥∥2 [(∼ P · V̄ n)∗ · (∼ P · J̄s)] − ∥∥J̄s
∥∥2 [( ¯̄P ·

¯̄GD · V̄ n)∗ · [ ¯̄P · (Ēinc + ¯̄GD · J̄s)], and the inverse is understood as the
pseudoinverse.

The total relative residue is defined to be
∆tot = ∆fie + ∆sta (8)

For each of the incidence Ēinc
p , the total relative residue can be

calculated as ∆tot
p , p = 1, 2, . . . , Ninc. The vector P̄ can be obtained

by minimizing the following objective function

f(P̄ ) =
Ninc∑

p=1

∆tot
p (9)

Since we have already represented ᾱn as the function of P̄ , there
is only one unknown argument P̄ left in the optimization equation.
The discrete descent optimization method is chosen to minimize the
objective function (9). Let the initial guess of P̄ as a vector of zeros,
i.e., consider all the line elements in the domain as free space. In each
iteration, we change each element of P̄ into its complement and check
whether the objective function decreases, and keep the value which
gives smaller residue in the objective function. It is worth mentioning
that in the objective function, the relative residue in the state equation
can be regarded as some kind of regularization term, and thus no
additional regularization method is needed in minimizing (9), as has
been done in the previous versions of SOM [5–8].

4. NUMERICAL RESULT

In this section, we give four numerical simulations to validate the
algorithm. The domain D is a square with the dimension of 0.6λ×0.6λ
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and is discretized into 15 × 15 square cells, the centers of which are
represented by the vertexes of blue lines. The contour of the PEC is
represented in yellow lines while the other line elements are represented
by red ones. A total number of Ninc = 10 incident waves are evenly
distributed in [0, 2π), with kp = k(x̂ cosφp+ŷ sinφp), p = 1, 2, . . . , Ninc.
Nr = 30 receivers are equally distributed on a circle of radius 5λ.
The method of moments (MoM) is used to generate the forward
scattering data Ēsca, which is recorded in the format of the multistatic
response (MSR) matrix with the size of Nr × Ninc [9]. Then white
Gaussian noise ¯̄κ is added to the MSR matrix, and the resultant noisy
matrix ¯̄K + ¯̄κ is treated as the measured MSR matrix and is used to
reconstruct scatterers. The noise level is quantified by the noise-to-
signal ratio defined as ||¯̄κ||F

|| ¯̄K||F
, where ‖·‖F denotes the Frobenius norm

of a matrix. The initial guess in the optimization problem is free space,
i.e. P̄ = 0. Since the PEC scatterer is impenetrable, it does not change
the scattered field whether the internal edges are detected as PEC or
air as long as the boundary is correctly detected as PEC. The value of
L can be chosen using the criteria presented in [8].

The first numerical example is a circle with radius 0.15λ located in
the middle of the region, as shown in Fig. 2(a). Assume the scattered
field is obtained without any noise added. The value of L is chosen
to be 11, by referring to the spectrum of matrix ¯̄Gs as shown in
Fig. 1. After 10 iterations, the objective function has fallen to be
3.9499 × 10−23, and the PEC boundary is reconstructed completely
as shown in Fig. 2(b), where the light-blue line with triangle vertex
stands for the reconstructed PEC sections of line.

In the second numerical example, two squares of side length 0.14λ
are located at (−0.17λ, 0.17λ) and (0.17λ,−0.17λ), respectively as
shown in Fig. 3(a). For convenience, we refer to the square on the
left as number one and the one on the right as number two. The
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Figure 1. Singular values of the matrix ¯̄Gs in all numerical
simulations.
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separation from the right lower corner of square number one to the
left upper corner of square number two is about 0.3λ. 10% white
Gaussian noise is added to the exact scattering data. The L chosen
here is 4 because of the added noise. After 26 iterations the objective
function has been minimized to be 1.8803×10−3, and the corresponding
contour of the reconstructed pattern is plotted in Fig. 3(b). It is
clearly seen that the region in between the squares are indentified as
free space while there are two rectangular-liked shaped PEC scatterers
located around (−0.17λ, 0.17λ) and (0.17λ,−0.17λ). The sizes of the
reconstructed scatterers are almost the same as the original ones. The
result is satisfactory, considering the close distance of scatterers and
the presence of 10% noise.
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Figure 2. A circle with radius 0.15λ. (a) Exact contour. (b)
Reconstructed contour.
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Figure 3. Two squares separated by 0.3λ. (a) Exact contour. (b)
Reconstructed contour under 10% white Gaussian noise.
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In the third example we deal with a line-shape scatterer, which
resembles an “L” (Fig. 4(a)). In presence of 5% noise, we successfully
reconstructed the single line with only one segment missing after 16
iterations. And the L chosen here equals to 6 with the objective
function minimized to be 6.4665× 10−4.

In the last example, we test the proposed method for
reconstructing a combination of a closed-contour scatterer and a line-
shape scatterer. A rectangular and a straight line PEC scatterer are
located in the domain as shown in Fig. 5(a). 10% white Gaussian noise
is added and L is chosen to be 4 which is the same as in the second
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Figure 4. Single line shaped scatterer. (a) Exact contour. (b)
Reconstructed contour under 5% white Gaussian noise.
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Figure 5. A combination of a square and a single straight line. (a)
Exact contour. (b) Reconstructed contour under 10% white Gaussian
noise.
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example. After 54 iterations, the objective function is minimized to
1.6917×10−3 and from the reconstructed figure we can clearly see that
there is a single line and a rectangular shaped scatterer located in the
domain with an obvious gap.

5. DISCUSSION AND CONCLUSION

The paper extends the application of SOM from dielectric to PEC
scatterers. The advantages of SOM that have been presented in
dielectric case [5–8] are also exhibited in the PEC case, such as
fast convergence and robustness against noise. The essences of
SOM, no matter in dielectric or PEC cases, lie in decomposing the
induced current into deterministic and ambiguous part. Whereas
the deterministic part is obtained by SVD without resourcing
to optimization, the ambiguous part is obtained by solving an
optimization problem in which the searching dimension is smaller than
that of the original problem. However, since these two cases are
significantly different in both physics and math, the SOM in PEC
case is consequently much different from the SOM in dielectric case.
The following aspects are worth discussing.

1. In the PEC case, the boundary of PEC scatterers are to be
reconstructed, and subsequently, the line-element is used as the
basic element to represent scatterers of arbitrary numbers and
shapes, including a combination of closed-contour and line-shape
scatterers that to the best of our knowledge has never been
explored so far. This is significantly different from the dielectric
case where the square-element is used as the basic element.

2. In PEC case, induced currents are surface currents and the
condition that tangential electric field vanishes at the surface
leads to the EFIE. However, in inverse problems, the boundary
of PEC is unknown so that the EFIE cannot be applied to the
whole domain of interest. We highlight that for this reason, the
objective function of SOM in PEC case is much more difficult to
build up than that in dielectric case [11]. Proposing the model of
the relative state residue is one of the main contributions of the
paper.

3. In PEC case, the shape function P is binary, and the optimization
problem is a discrete one. This is different from the dielectric case
which is a continuous optimization problem. The optimization
method used in this paper is the discrete descent method. In the
future research work, we will adopt genetic algorithm (GA) which
is more suitable for binary optimization problem.
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