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Abstract—The problem about the electrical current distribution
along thin radial impedance monopole, located on the perfectly
conducting sphere, has been solved in a rigorous electrodynamic
formulation in the paper. The problem formulation strictness is
provided by the use of the Green’s function for the Hertz’s vector
potential for unbounded space outside the perfectly conducting sphere
at formulation of the initial integral equation concerning the current
in monopole. The approximate analytical solution of the integral
equation has been obtained by the method of iterations both for the
case of excitation of the monopole by the δ-generator of voltage, located
on the finite distance over the spherical scatterer, and at the excitation
of the monopole at its basis.

1. INTRODUCTION

Antennas in the form of thin vibrator radiators are used widely
on moving objects of different applications, including air and space
vehicles, in the range of meter and decimeter waves. If the object
has the form, close to the prolate body of rotation, then the vibrator
antennas are usually classified due to the method of their location
relatively to its longitudinal axis, coinciding with the dominant
direction of the object movement, by which we distinguish radial
(transverse), oblique and longitudinal vibrator antennas. Of course,
such classification of radiators turns out to be unsuitable in the case,
when the corpus of the object has a spherical form. So the vibrator
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structures, located near such bodies, characterize them by spatial
orientation relatively to the spherical surface, approximating the form
of the object corpus in a general case.

Asymmetrical radially oriented vibrator radiators (monopoles)
are applied mainly in practice. It is explained by simplicity of the
fulfillment of feeding such radiators with the help of coaxial feeders.
In those cases, when necessity in the symmetrical vibrator antennas
application arises, they can be made of two radiators, each of which
is asymmetrical relatively to the object corpus, and it is fed by a
separate section of the coaxial feeder, and the connection with the
general generator is made with the help of the power dividers.

It is obvious that the creation of the mathematical model of
the mentioned kind of surface antennas in a strict electrodynamic
formulation, which takes into account both the concrete geometry of
the vibrator element and the geometry of the spherical object, has great
practical significance. First of all, it concerns numerical-analytical
modeling of the radiation characteristics of such antennas. However,
because of complexity of realization of such modeling these questions
are not described very well in the literary sources [1–4]. What is more,
even in these rare papers the simple models (such as electrically short
dipoles) are considered as radiators despite that a rather developed
theoretical basis exists for the analysis of impedance vibrators [5–14].

We should note that the creation (availability) of the Green’s
function of the corresponding electrodynamic volume is one of the
required conditions of the possible analytical solution for the problem
about electromagnetic waves radiation by the thin vibrator with the
distributed surface impedance. The Green’s tensor function, which was
created in the monograph [15] and is represented in Appendix A, will
be used for the case in question of unbounded space (material medium)
outside the perfectly conducting sphere.

2. PROBLEM FORMULATION AND INITIAL
INTEGRAL EQUATIONS

The characteristics of radiation of the antennas in question were
investigated earlier in [16, 17] at the current distribution approximation
along the perfectly conducting vibrators by one cosine function.
However, such approximation permits to consider only electrically
short radiators (of the length of the λ/4 order) and to obtain the
electromagnetic fields, excited by the vibrators outside the perfectly
conducting sphere, by means of numerical integration. So it is of great
interest to obtain the approximate analytical expression for the current
of the asymmetrical vibrator without limits on its length in the class
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Figure 1. The asymmetrical radial impedance vibrator, located on
the sphere (the spherical surface antenna).

of the Bessel’s spherical functions, allowing to make integration in the
expressions for the vibrator radiation fields due to the known formulas
in the {ρ; θ; ϕ} spherical coordinate system. Such a solution has been
obtained for the perfectly conducting monopoles in [15].

Let us consider the perfectly conducting sphere of the radius R̃
(Figure 1). We locate the radially oriented thin cylindrical impedance
vibrator with the radius r and length L (r/L ¿ 1), and the axis of
which is coupled with the direction ρ′, θ′ = θ0, ϕ′ = ϕ0, on the sphere.

The field of the vibrator surface current is equivalent to the field
of the J(ρ′) linear current, coming along the vibrator longitudinal axis,
owing to the accepted model of the thin conductor. Then, the ~Π(~r)
Hertz’s vector potential will have only radial component in the case in
question (~r is the radius-vector of the observation point):

Πρ (~r) =
1

iωε1

R̃+L∫

R̃

J
(
ρ′

)
Gρρ′

(
ρ, θ, ϕ; ρ′, θ0, ϕ0

)
dρ′, (1)

where ε1 is the permittivity of environment, and Gρρ′(ρ, θ, ϕ; ρ′, θ′, ϕ′)
is the Green’s function of an electrical kind for the space outside the
perfectly conducting sphere from Appendix A.

The initial integral equation is represented in the following form
for the case of the zi = const constant impedance (zi is the internal
impedance per unit length ([Ohm/m])) on the vibrator generator,
which is approximated by the section of the ρ ∈

[
R̃; R̃ + L

]
radial

ray in the direction θ = θ0 and ϕ = ϕ0 + r/(R̃ + L/2):

d2Πρ(ρ)
dρ2

+
2
ρ

dΠρ(ρ)
dρ

+
(

k2
1 −

2
ρ2

)
Πρ(ρ) = −E0ρ(ρ) + ziJ(ρ), (2)



98 Nesterenko et al.

where E0ρ(ρ) is the radial component of the impressed excitation field,
k1 = k

√
ε1µ1, k = 2π/λ; λ is the wavelength in free space; µ1 is the

permeability of the medium. Taking into account (1) and the symbol
Gρρ′(ρ, ρ′) = Gρρ′(ρ, θ0, ϕ0 + r/(R̃ + L/2); ρ′, θ0, ϕ0), this equation can
be written in the form:

[
d2

dρ2
+

2
ρ

d

dρ
+

(
k2

1 −
2
ρ2

)] R̃+L∫

R̃

J(ρ′)Gρρ′(ρ, ρ′)dρ′

= −iωε1E0ρ(ρ) + iωε1ziJ(ρ). (3)

3. EQUATION SOLUTION FOR THE CURRENT BY
THE METHOD OF CONSISTENT ITERATIONS

We select the singularity of a quasi-stationary kind, by which the
integral-differential equation kernel (3) is characterized, analogically
with [9, 15], making the following identical transformations:

R̃+L∫

R̃

J
(
ρ′

)
Gρρ′

(
ρ, ρ′

)
dρ′

= J(ρ)Ω(ρ) +

R̃+L∫

R̃

[
J

(
ρ′

)
Gρρ′

(
ρ, ρ′

)− J(ρ)
R(ρ, ρ′)

]
dρ′, (4)

where R(ρ, ρ′) =
√

(ρ− ρ′)2 + r2, Ω(ρ) =
R̃+L∫
R̃

dρ′√
(ρ−ρ′)2+r2

=

ln[
√

(L−ρ)2+r2+(L−ρ)√
ρ2+r2−ρ

], and the integral mean value Ω̄(ρ) = 2 ln(L/r)−
0.614.

Thus, we will introduce the symbol of the functional:

F [ρ, J(ρ)]=
[

d2

dρ2
+

2
ρ

d

dρ
+

(
k2

1−
2
ρ2

)] R̃+L∫

R̃

[
J(ρ′)Gρρ′(ρ, ρ′)− J(ρ)

R(ρ, ρ′)

]
dρ′,

(5)
and also of the small parameter α = −1/Ω̄(ρ) ≈ 1

2 ln(r/L) . Then,
Equation (3) can be written in the following form:[
d2

dρ2
+

2
ρ

d

dρ
+

(
k2

1−
2
ρ2

)]
J(ρ)= iωε1αE0ρ(ρ)−iωε1αziJ(ρ)−αF [ρ, J(ρ)].

(6)
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If ˜̃
k1 = k1

√
1 + iαωε1zi/k1 = k1

√
1 + i2αZ̄S/(kr), where Z̄S =

R̄S + iX̄S is the normalized on the 120π Ohm surface impedance and
symbolized in the expression (6), then the equation for the current in
the impedance vibrator will have the form:
[

d2

dρ2
+

2
ρ

d

dρ
+

(
˜̃
k2

1 −
2
ρ2

)]
J(ρ) = α {iωε1E0ρ(ρ)− F [ρ, J(ρ)]} . (7)

The solution of J (0)(ρ) of the homogeneous differential Equa-
tion (7) with the null right part is represented in the form in this
case:

J (0)(ρ) = C1j1

(˜̃
k1ρ

)
+ C2y1

(˜̃
k1ρ

)
, (8)

where C1 and C2 are the arbitrary constants; j1(
˜̃
k1ρ) and y1(

˜̃
k1ρ) are

the Bessel’s spherical functions of the first order of I and II kinds,
correspondingly:

j1

(˜̃
k1ρ

)
=

sin
(˜̃
k1ρ

)

(˜̃
k1ρ

)2 −
cos

(˜̃
k1ρ

)

˜̃
k1ρ

, y1

(˜̃
k1ρ

)
=−

cos
(˜̃
k1ρ

)

(˜̃
k1ρ

)2 −
sin

(˜̃
k1ρ

)

˜̃
k1ρ

. (9)

It is necessary to add the J (∅)(ρ) arbitrary private solution of the
inhomogeneous Equation (7) to the solution of Equation (8) in order to
obtain a complete solution of Equation (7). What is more, it is useful
that (as parameters) the coordinates of both ends of the monopole will
be represented in it. It is not difficult to check by direct substitution
that the following expression is such a private solution:

J (∅)(ρ) =
3α

2˜̃
k1

ρ∫

R̃

{
iωε1E0ρ(ρ′)− F

[
ρ′, J(ρ′)

]}
j1

(˜̃
k1ρ− ˜̃

k1ρ
′
)

dρ′

−3α

2˜̃
k1

R̃+L∫

ρ

{
iωε1E0ρ(ρ′)−F

[
ρ′, J(ρ′)

]}
j1

(˜̃
k1ρ− ˜̃

k1ρ
′
)
dρ′.(10)

The coefficient before the integrals in expression (10) is introduced,
taking into account that

lim(
˜̃
k1ρ

)
→0

j1

(˜̃
k1ρ

)
= 0 and lim(

˜̃
k1ρ

)
→0

dj1

(˜̃
k1ρ

)

d
(˜̃
k1ρ

) =
1
3
. (11)

Thus, summing expressions (8) and (10), we obtain the general
solution for the impedance radial monopole current, located on the
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perfectly conducting sphere, in the final form:

J(ρ) = J (0)(ρ) + J (∅)(ρ) = C1j1

(˜̃
k1ρ

)
+ C2y1

(˜̃
k1ρ

)

+
3αiωε1

2˜̃
k1





ρ∫

R̃

E0ρ(ρ′)j1

(˜̃
k1ρ− ˜̃

k1ρ
′
)
dρ′−

R̃+L∫

ρ

E0ρ(ρ′)j1

(˜̃
k1ρ− ˜̃

k1ρ
′
)
dρ′





− 3α

2˜̃
k1





ρ∫

R̃

F
[
ρ′, J(ρ′)

]
j1

(˜̃
k1ρ− ˜̃

k1ρ
′
)

dρ′

−
R̃+L∫

ρ

F [ρ′, J(ρ′)]j1

(˜̃
k1ρ− ˜̃

k1ρ
′
)

dρ′





. (12)

Let us note that expression (12) has been obtained for the E0ρ(ρ)
arbitrary exciting impressed field.

Universality of the obtained solution (12) for the current of the
monopole J(ρ) is that it can be used in the algorithm of the method
of consistent iterations along the α small parameter directly. The
unknown C1 and C2 are defined from the boundary conditions on the
monopole ends, and the E0ρ(ρ) exciting field is concretized for the
problem in question. It is obvious that the expression must be chosen
from the solution (12) as the J0(ρ) zeroth-order approximation for the
monopole current:

J0(ρ) = C1j1

(˜̃
k1ρ

)
+ C2y1

(˜̃
k1ρ

)

+
3αiωε1

2˜̃
k1





ρ∫

R̃

E0ρ(ρ′)j1

(˜̃
k1ρ− ˜̃

k1ρ
′
)
−

R̃+L∫

ρ

E0ρ(ρ′)j1

(˜̃
k1ρ−˜̃

k1ρ
′
)




.(13)

Let us consider a general case of excitation of the monopole by
means of the δ-generator of voltage, located on the distance h over the
spherical object. We take into consideration that:

E0ρ(ρ′) = V0δ[ρ′ − (R̃ + h)], (14)

where V0 is the excitation field complex amplitude. Then, the zeroth-
order approximation for the vibrator current, due to (13), can be
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written in the following form:

J0(ρ) = C1j1

(˜̃
k1ρ

)
+ C2y1

(˜̃
k1ρ

)

+
3αiωε1

2˜̃
k1




−V0j1

(˜̃
k1ρ− ˜̃

k1

[
R̃+h

])
, R̃ ≤ ρ ≤ R̃+h

V0j1

(˜̃
k1ρ− ˜̃

k1

[
R̃+h

])
, R̃+h ≤ ρ ≤ R̃+L



.(15)

The C2 constant in expression (15) is defined from the boundary
condition of the equality to null of the current on the monopole end:
J0(R̃ + L) = 0. As a result, we obtain:

C2 = −C1

j1

(˜̃
k1

[
R̃ + L

])

y1

(˜̃
k1

[
R̃ + L

]) − 3αiωε1V0

2˜̃
k1

j1

(˜̃
k1

[
R̃ + L

])

y1

(˜̃
k1

[
R̄ + L

]) . (16)

Taking into account the equality (16), expression (15) is written in the
form:

J0 (ρ) = C1


j1

(˜̃
k1ρ

)
−

j1

(̃̃
k1

[
R̃ + L

])

y1

(˜̃
k1

[
R̃ + L

])y1

(˜̃
k1ρ

)



−3αiωε1V0

2˜̃
k1

j1

(˜̃
k1 [L− h]

)

y1

(˜̃
k1

[
R̃ + L

])y1

(̃̃
k1ρ

)

+
3αiωε1

2˜̃
k1




−V0j1

(˜̃
k1ρ− ˜̃

k1

[
R̃+h

])
, R̃≤ρ≤R̃+h

V0j1

(˜̃
k1ρ− ˜̃

k1

[
R̃+h

])
, R̃+h≤ρ≤R̃+L



.(17)

We note that the J0(R̃ + L) = 0 boundary condition is performed
for expression (17) at the arbitrary values of the C1 and h parameters.
The C1 unknown constant is defined from the boundary condition
in the point of the monopole contact with the conducting sphere
ρ′ = R̃. The fulfillment of the divJ(R̃) = 0 equality is required in
this point because of the current continuity. Taking into account that
divJ(ρ) = 2J(ρ)

ρ + dJ(ρ)
dρ in the spherical coordinate system, we obtain

after identical transformations:

C1 =
3αiωε1V0

2˜̃
k1

j0

(˜̃
k1h

)
y1

(˜̃
k1

[
R̃ + L

])
+j1

(˜̃
k1 [L−h]

)
y0

(˜̃
k1R̃

)

j0

(˜̃
k1R̃

)
y1

(˜̃
k1

[
R̃+L

])
−j1

(˜̃
k1

[
R̃+L

])
y0

(˜̃
k1R̃

) ,

(18)
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where j0(
˜̃
k1ρ) and y0(

˜̃
k1ρ) the Bessel’s spherical functions of the zeroth

order of I and II kinds, correspondingly. They are defined by the
following ratios:

j0

(˜̃
k1ρ

)
=

sin
(˜̃
k1ρ

)

˜̃
k1ρ

and y0

(˜̃
k1ρ

)
= −

cos
(˜̃
k1ρ

)

˜̃
k1ρ

. (19)

Thus, the finite expression for the monopole current in the case in
question can be written in the following form, more suitable for making
calculations:

J0 (ρ) =
3αiωε1V0

2˜̃
k1

[
C̃1j1

(˜̃
k1ρ

)
+ C̃2y1

(˜̃
k1ρ

)

+

{ −j1

(˜̃
k1ρ− ˜̃

k1

[
R̃+h

])
, R̃ ≤ ρ ≤ R̃+h

j1

(˜̃
k1ρ− ˜̃

k1

[
R̃+h

])
, R̃+h ≤ ρ ≤ R̃+L

}]
, (20)

where

C̃1 = C0

[
j0

(˜̃
k1h

)
y1

(˜̃
k1R̃ + ˜̃

k1L
)

+ y0

(˜̃
k1R̃

)
j1

(˜̃
k1L− ˜̃

k1h
)]

,

C̃2 = C0

[
j0

(˜̃
k1h

)
j1

(˜̃
k1R̃ + ˜̃

k1L
)

+ j0

(˜̃
k1R̃

)
j1

(˜̃
k1L− ˜̃

k1h
)]

,

C0 =

˜̃
k1R̃

(˜̃
k1R̃ + ˜̃

k1L
)2

sin
(˜̃
k1L

)
−

(˜̃
k1R̃ + ˜̃

k1L
)

cos
(˜̃
k1L

)
.

As it is seen from (20), the obtained solution for the current in the
impedance vibrator is for both tuned and untuned vibrators, which are
the radiators of the L/λ arbitrary electrical length.

A special case, important for practical applications, is the case of
the vibrator excitation directly in the point of the monopole contact
with the sphere, i.e., when h = 0 and the δ-generator is located in the
ρ′ = R̃ point on the surface of the sphere. One would choose expression
(17) as the original one, here, rewritten in the following form, taking
into account the h = 0 equality:

J0 (ρ) =
C1

y1

(̃̃
k1R̃+˜̃

k1L
)

[
j1

(˜̃
k1ρ

)
y1

(˜̃
k1R̃+˜̃

k1L
)
−y1

(˜̃
k1ρ

)
j1

(˜̃
k1R̃+˜̃

k1L
)]

+
3αiωε1V0

2˜̃
k1y1

(˜̃
k1R̃ + ˜̃

k1L
)

[
j1

(˜̃
k1ρ− ˜̃

k1R̃
)

y1

(˜̃
k1R̃ + ˜̃

k1L
)

−y1

(˜̃
k1ρ

)
j1

(˜̃
k1L

)]
. (21)
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It is necessary to use a physical requirement of equality of the
Φ(ρ) = −divΠρ(ρ) scalar potential to the V0 complex amplitude in the
generator location point in order to define the value of the constant C1

in this case:
−divΠρ(ρ)|ρ=R̃ = V0. (22)

Because for the zeroth-order approximation in the Πρ(ρ) integral
representation its main value from (4) is used:

Πρ(ρ) =
1

iωε1

R̃+L∫

R̃

J(ρ′)Gρρ′(ρ, ρ′)dρ′ ≈ − 1
αiωε1

J0(ρ), (23)

then the boundary condition (22) for the J0(ρ) current will be written
in the form:

1
αiωε1

divJ0(ρ)
∣∣∣∣
ρ=R̃

= V0. (24)

Using condition (24) for the monopole current (21), it is not difficult
to obtain further:

C1 =
αiωε1V0

2˜̃
k1

3j1

(˜̃
k1L

)
y0

(˜̃
k1R̃

)
− y1

(˜̃
k1R̃ +˜̃

k1L
)

j0

(˜̃
k1R̃

)
y1

(˜̃
k1R̃+˜̃

k1L
)
−y0

(˜̃
k1R̃

)
j1

(˜̃
k1R̃+˜̃

k1L
). (25)

This permits to write the finite expression for the current distribution
along the monopole in the form similar to (20):

J0 (ρ) =
3αiωε1V0

2˜̃
k1

[
C̃1j1

(˜̃
k1ρ

)
+C̃2y1

(˜̃
k1ρ

)
+j1

(˜̃
k1ρ− ˜̃

k1R̃
)]

, (26)

where

C̃1 = C0

[
j1

(˜̃
k1L

)
y0

(˜̃
k1R̃

)
− 1

3
y1

(˜̃
k1R̃ + ˜̃

k1L
)]

,

C̃2 = −C0

[
j1

(˜̃
k1L

)
j0

(˜̃
k1R̃

)
− 1

3
j1

(˜̃
k1R̃ + ˜̃

k1L
)]

,

C0 =

˜̃
k1R̃

(˜̃
k1R̃ + ˜̃

k1L
)2

sin
(˜̃
k1L

)
−

(˜̃
k1R̃ + ˜̃

k1L
)

cos
(˜̃
k1L

) .

From a fundamental point of view, it is interesting to observe
transformation of expression (26) at the fulfillment of the ˜̃

k1R̃ → ∞
condition. This condition requires “transition” of the surface of the
sphere into the infinite perfectly conducting screen formally. To
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be precise, it is required that the current distribution in the radial
monopole over such a limiting surface corresponds to the current
distribution in the vertical monopole over the horizontal perfectly
conducting screen. In its turn, the current distribution in the monopole
over the screen (taking into account its mirror image) must correspond
to the current distribution in the symmetrical vibrator radiator,
located in the infinite material medium. It turns out that the current
in the monopole (26) is represented by the expression as a result of
such limiting transition (˜̃k1R̃ →∞):

lim
˜̃
k1R̃→∞

J0 (s) =
αiωε1V0

2˜̃
k1 cos

(˜̃
k1L

)
{

sin
[˜̃
k1 (L−s)

]
−3j1

(˜̃
k1L

)[
cos

(˜̃
k1s

)

−cos
(˜̃
k1L

)]
+3

[
j1

(˜̃
k1s

)
−j1

(˜̃
k1L

)]
cos

(˜̃
k1L

)}
, (27)

where transition to the s ∈ [0;L] local coordinate has been made for
the convenience of comparison. This expression corresponds to the
trinomial formula for the current in the thin impedance vibrator due
to its structure, obtained in [18]. We should note that the functional
multiplier in the curly brackets (27) has a negative value, which
provides a positive value for the J0(s) current, taking into account
the negative value of the α magnitude at numerical calculations.

4. RADIATION FIELDS OF THE RADIAL IMPEDANCE
VIBRATOR ON THE PERFECTLY CONDUCTING
SPHERE

The full radiation field will be defined by the radial component (1)
of the Hertz’s vector potential Πρ(~r) owing to the spherical surface
antenna model, considered earlier in Figure 1, representing itself the
system, which consists of the impedance vibrator and the metallic
scatterer of a spherical form. One needs to substitute the obtained
current distribution J(ρ′) = J0(ρ′) along the impedance monopole in
the form (20) for a general case of location of the δ-generator on the
vibrator or in the form (26) for the case of its excitation in the point
of contact with the sphere into expression (1).

Due to the formulas [13]

~E(~r) = ~E0(~r) +
(
grad div + k2ε1µ1

)
~Π(~r),

~H(~r) = ~H0(~r) + ikε1rot~Π(~r),
(28)

in which we must except ~E0(~r) = ~H0(~r) = 0, and the expression for
the components of full radiation field of the spherical surface antenna
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is obtained:

Eρ(~r) =
∂2Πρ(~r)

∂ρ2
+

2
ρ

∂Πρ(~r)
∂ρ

+
(

k2ε1µ1 − 2
ρ2

)
Πρ(~r),

Eθ(~r) =
1
ρ

∂2Πρ(~r)
∂ρ∂θ

+
2
ρ2

∂Πρ(~r)
∂θ

,

Eϕ(~r) =
1

ρ sin θ

∂2Πρ(~r)
∂ρ∂θ

+
2

ρ2 sin θ

∂Πρ(~r)
∂ϕ

,

Hρ(~r) = 0,

Hθ(~r) =
ikε1

ρ sin θ

∂Πρ(~r)
∂ϕ

,

Hϕ(~r) = − ikε1

ρ

∂Πρ(~r)
∂θ

.

(29)

Let us note that formulas (29) permits to obtain the electromagnetic
radiation fields at any distance from the antenna, that is, at arbitrary
ρ ≥ R̃.

If the outer homogeneous medium is not characterized by losses,
that is, ε1 is a purely real value, then formulas (29) will be simplified
for the antenna far zone (ρ À λ), because the addendums, proportional
to the coefficient 1/ρ2, can be omitted in them.

Let us represent the expressions for the components of the
magnetic radiation field of the spherical antenna in the case of the
radial impedance monopole excitation in the point of its contact with
the sphere in an explicit form as an example:

Hθ (~r)=
3αikε1V0

4˜̃
k1ρ sin θ

∞∑

n=0

∞∑

m=0

mεm

Cmn
Pm

n (cos θ) Pm
n (cos θ0) sinm (ϕ− ϕ0)

×
R̃+L∫

R̃

h(2)
n

(
ρ, ρ′

)[
C̃1j1

(˜̃
k1ρ

′
)
+C̃2y1

(˜̃
k1ρ

′
)
+j1

(˜̃
k1ρ

′− ˜̃
k1R̃

)]
dρ′,

Hϕ (~r)=
3αikε1V0

4˜̃
k1ρ

∞∑

n=0

∞∑

m=0

εm

Cmn

dPm
n (cos θ)

dθ
Pm

n (cos θ0) cosm (ϕ− ϕ0)

×
R̃+L∫

R̃

h(2)
n

(
ρ, ρ′

)[
C̃1j1

(˜̃
k1ρ

′
)
+C̃2y1

(˜̃
k1ρ

′
)
+j1

(˜̃
k1ρ

′− ˜̃
k1R̃

)]
dρ′.

(30)

The symbols, accepted earlier, are used in formulas (30), including the
ones from Appendix A. The expressions (30) are transformed easily,
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taking into account that the Hankel spherical functions of the second
kind have the known asymptotic representation at ˜̃

k1ρ → ∞ and
|˜̃k1ρ| À m for the antenna far zone:

h(2)
n (kr) ≈ (i)n+1 e−ikr

kr
. (31)

We should note that integration in expressions (30) can be made on
the ground of the formula from [19] for most addendums analytically:

∫
1
x

Z(1)
µ (ax)Z(2)

ν (ax)dx =
ax

µ2 − ν2

[
Z

(1)
µ+1(ax)Z(2)

ν (ax)

−Z(1)
µ (ax)Z(2)

ν+1(ax)
]

+
1

µ + ν
Z(1)

µ (ax)Z(2)
ν (ax), (32)

where Z
(1)
µ (ax) and Z

(2)
ν (ax) are the different combinations of the

Bessel, Neumann and Hankel functions.
We should like to write a few words about the radiation pattern

(RP) of such a spherical surface antenna in free space. The principles
of its formation are analogous to the case of spherical surface
antennas with the perfectly conducting monopole, considered in the
monograph [15]. We shall give only general tendencies of these
analogues briefly here.

The RP of the spherical surface antenna, excited by the radial
monopole, has the cut, lobe behavior at the increase of the diffraction
radius of the sphere kR̃. The oscillations of the radiation fields
amplitudes generally take place in the region of geometrical shadow
(θ > π/2 at θ0 = 0). From physical point of view, these oscillations
are explained by that, that the waves come into the shadow zone,
propagating along the surface of the spherical scatterer along the
meridians in forward and back directions. The result of interference of
the waves is the oscillations of the amplitudes of the antenna radiation
fields. When the kR̃ value is larger, the number of standing waves,
“put” on the surface of the sphere, is greater, and the number of the
side lobes, which will be in the RP, is greater.

The deepest oscillation is observed near the “dark pole” (θ =
π
2 − θ0, ϕ = ϕ0 + π), where the amplitudes of the interfering waves
are similar approximately. When the observation point is more remote
from the “dark pole”, the difference in the lengths of the propagation
paths of the straight and back waves will increase. As a result, the
difference in the degree of damping of these waves will increase, and
the amplitude of the oscillations will decrease.

As expected, the screening influence of the sphere increases at the
increase of its diffraction radius kR̃. So, the form of the antenna RP
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in the front half-space (ϕ0 − π/2 ≤ ϕ ≤ ϕ0 + π/2) approaches the
form of the RP of the vertical monopole of the same geometry over the
infinite perfectly conducting screen at a considerable increase of sizes
of the sphere. The radiation field amplitude in the back half-space
decreases considerably because of the increasing screening influence of
the spherical scatterer.

It is obvious that availability of the impedance monopole on the
spherical scatterer will influence the form of the RP of the spherical
surface antenna at the change of its electrical length. More considerable
influence will occur in the cases of rather small diffraction radiuses
of the sphere kR̃ of the order of some wavelengths. However, the
investigation of the back influence of the spherical scatterer on the
kind of the current distribution along the impedance monopole, the
results of which will be represented in the following section, is more
essential for practical applications.

5. NUMERICAL RESULTS

In spite of proximity of the sinusoidal distribution function of the
current along cylindrical vibrators (sin ˜̃

k1(L−|s|)), this approximation
is used for the calculation of different characteristics of vibrators such
as the radiation field in all zones of observation in practice widely
and successfully. We must note that the searched values are the
integral characteristics from the distribution function of the current,
and the small errors in its approximation do not give considerable
contribution to the finite result. This also concerns the monopoles,
located near metallic bodies of different configurations as a whole.
However, one must take into consideration that the vector potential
in each point of the monopole is defined by the currents summarized
operation, induced on both the rest parts of the monopole and the
spherical scatterer, but not by the current local value in this point of
the radiator in the case of the spherical scatterer in question. This
is the very circumstance, which allows us to consider the “monopole-
perfectly conducting sphere” system in the form of a single antenna.
Thus, the current actual (true) distribution along the monopole (26)
differs from the sinusoidal distribution in this case, and it is more
considerable, when the diffraction radius of the sphere kR̃ is less (that
is, when the difference in the degree of interaction with the monopole
of the scatterer of concrete sizes or the infinite screen is larger). We
note that this circumstance stays just both for perfectly conducting
and impedance monopoles.

The results of calculations of the currents normalized amplitude
distributions in the radial perfectly conducting monopoles, located on
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the perfectly conducting sphere in Figure 1 are represented in Figure 2.
The calculations have been made according to formula (26) under the
condition of the choice of the real impedance value R̄S = 0.0001 and
r/λ = 0.0033 for the local longitudinal coordinate s = ρ − R̃. As
seen from the plots, the most considerable difference of the current
distribution from the sinusoidal one is observed for the smallest value
from the considered ones of the spherical scatterer diffraction radius
kR̃ = 0.2π (R̃/λ = 0.1) even in the case of the quarter-wave monopoles
with L = 0.25λ (Figure 2(a)). When the radius of the sphere is larger,
the calculated distributions approach the sinusoidal dependence more
strongly. What is more, the current dependence on the longitudinal
coordinate in the quarter-wave monopole is close to the linear one
analogically with the case of symmetrical electrically short vibrators
in free space for the sizes of the sphere kR̃ = 3.0.

Small efficiency of excitation of the radiator is observed at the
increase of the monopole length for the kR̃ small values. The current
distributions have the behavior of damping exponential dependencies
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Figure 2. The current normalized amplitude distribution along the
radial perfectly conducting monopole on the spherical scatterer at
R̄S = 0.0001, r/λ = 0.0033: (a) L = 0.25λ, (b) L = 0.5λ, (c) L = 1.0λ.
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Figure 3. The current normalized amplitude distribution along the
radial impedance monopole, located on the sphere at R̄S = 0.0001,
L = 0.25λ, r/λ = 0.0033, kR̃ = π.

in this case. The efficiency of the monopole excitation increases
sufficiently at the increase of the diffraction radius of the sphere.
As one would expect, additional antinodes and nodes in the current
distributions, coupled with the creation of sections with the antiphase
currents on the monopole, are formed in this case.

Thus, we can state that availability of the spherical scatterer
with small and resonant diffraction radiuses influences the kind of
the current distribution in the monopole considerably. It is more
considerable than the change of the proper length of the radiator.
Therefore, when introducing the distributed surface impedance, it is
impossible to expect a similar kind of the effect of its electrical length
change as in the case of the impedance vibrator in free space. And it
is natural, because the monopole impedance covering is only a part of
the spherical antenna general surface, which, we emphasize once more,
represents itself a uniform system of the monopole and the sphere.

The results of calculations of the normalized amplitude distribu-
tions of the currents along the quarter-wave monopole (L = 0.25λ),
which is characterized by the surface impedance of the Z̄S = iX̄S in-
ductive kind, on the sphere with the kR̃ = π diffraction radius are
represented in Figure 3 in order to prove everything written above. As
seen from the plots, a formal lengthening of the monopole electrical
size on the account of the impedance of an inductive kind is only a
required condition for realization of this effect. The impedance condi-
tion must be added by a sufficient one, which is required by the choice
of the size of the spherical scatterer for its display. These conditions
agree weakly in the case in question (Figure 3), but such examples
prove the necessity of making optimization simulation at the creation
of a concrete antenna system of the investigated kind in the case in
question.
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6. CONCLUSION

The approximate analytical solution for the current in radial
impedance monopole, located on the perfectly conducting sphere,
has been obtained in this paper. This solution has been
obtained in the form of the zeroth approximation of the method
of iterations. The solution’s correctness is provided by the
strict electrodynamic formulation of the problem in the frames of
conventional approximations of the theory of thin wire antennas, and
the Green’s function for the Hertz’s vector potential for unbounded
space outside the perfectly conducting sphere has been used in
the formulation of the original integral equation for the current in
monopole. The solutions have been obtained both for the case of
excitation of monopole of the δ-generator of voltage, located on the
finite distance h over the spherical scatterer, and for the case of
excitation of monopole at its basis, when h = 0. The possibilities
of the investigations of the radiation fields of the spherical antenna in
question, representing itself a uniform system of impedance monopole
and a spherical scatterer, have been analyzed. General tendencies of
their formation in the antenna far zone are given. The influence of the
spherical scatterer on the kind of the current distribution along the
impedance monopole has been investigated on concrete examples.
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APPENDIX A. ELECTRICAL DYADIC GREEN’S
FUNCTION FOR THE UNBOUNDED SPACE OUTSIDE
THE PERFECTLY CONDUCTING SPHERE

For unbounded space outside the perfectly conducting sphere of radius
R̃ with the permittivity and permeability of the medium ε1 and µ1

(Figure 1) it has:

Ĝe
(
ρ, θ, ϕ; ρ′, θ′, ϕ′

)
=

∣∣∣∣∣∣

Ge
ρρ′ 0 0
0 Ge

θθ′ Ge
θϕ′

0 Ge
ϕθ′ Ge

ϕϕ′

∣∣∣∣∣∣
,
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Ge
ρρ′

(
ρ, θ, ϕ; ρ′, θ′, ϕ′

)

= −
∞∑

n=0

n∑

m=0

εmhn(ρ, ρ′)
2Cnm

Pm
n (cos θ)Pm

n

(
cos θ′

)
cosm(ϕ− ϕ′),

Ge
θθ′

(
ρ, θ, ϕ; ρ′, θ′, ϕ′

)
= −

∞∑

n=0

n∑

m=0

εmun(ρ, ρ′) cos m(ϕ− ϕ′)
2n (n + 1)Cnm sin θ sin θ′

×
[
m2Pm

n (cos θ) Pm
n

(
cos θ′

)
+ sin θ sin θ′

dPm
n (cos θ)

dθ

dPm
n (cos θ′)

dθ′

]
,

Ge
θϕ′

(
ρ, θ, ϕ; ρ′, θ′, ϕ′

)
=

∞∑

n=0

n∑

m=0

mun(ρ, ρ′) sin m(ϕ− ϕ′)
n (n + 1)Cnm

×
[
dPm

n (cos θ)
dθ

Pm
n (cos θ′)
sin θ′

+
Pm

n (cos θ)
sin θ

dPm
n (cos θ′)

dθ′

]
,

Ge
ϕθ′

(
ρ, θ, ϕ; ρ′, θ′, ϕ′

)
= −Ge

θϕ′
(
ρ, θ, ϕ; ρ′, θ′, ϕ′

)
,

Ge
ϕϕ′

(
ρ, θ, ϕ; ρ′, θ′, ϕ′

)
= Ge

θθ′
(
ρ, θ, ϕ; ρ′, θ′, ϕ′

)
.

Here Pm
n (cos θ) is the associated Legendre functions of the first sort,

Cnm =
2π (n + m)!

(2n + 1) (n−m)!
,

hn(ρ, ρ′)=





4πk1h
(2)
n (k1ρ

′)


jn (k1ρ) Qn

(
yn

(
k1R̃

))

−yn (k1ρ) Qn

(
jn

(
k1R̃

))

, R̃≤ρ<ρ′,

4πk1h
(2)
n (k1ρ)


jn (k1ρ

′) Qn

(
yn

(
k1R̃

))

−yn (k1ρ
′) Qn

(
jn

(
k1R̃

))

, ρ > ρ′,

Qn (fn (k1R)) =
n fn

(
k1R̃

)
− k1R fn+1

(
k1R̃

)

n h
(2)
n

(
k1R̃

)
− k1Rh

(2)
n+1

(
k1R̃

) ,

un(ρ, ρ′) =





4πk1
h
(2)
n (k1ρ′)

h
(2)
n (k1R̃)

[
jn (k1ρ) yn

(
k1R̃

)
−yn (k1ρ) jn

(
k1R̃

)]
,

R̃ ≤ ρ < ρ′,

4πk1
h
(2)
n (k1ρ)

h
(2)
n (k1R̃)

[
jn (k1ρ

′) yn

(
k1R̃

)
−yn (k1ρ

′) jn
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k1R̃
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ρ > ρ′,

h(2)
n (k1ρ) = jn (k1ρ)− iyn (k1ρ) =

√
π

2k1ρ
H

(2)
n+1/2 (k1ρ)
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is the Hankel spherical function of the second sort; jn (k1ρ) =√
π

2k1ρ Jn+1/2 (k1ρ) and yn (k1ρ) =
√

π
2k1ρNn+1/2 (k1ρ) are the Bessel

spherical function and the Neumann one; correspondingly, Jn+1/2 (k1ρ)
is the Bessel function; Nn+1/2 (k1ρ) is the Neumann function;

H
(2)
n+1/2 (k1ρ) is the Hankel function of the second sort with the half-

integral index [19].
Let us note that it turns out to be possible to represent the expres-

sion for the component of the Green’s function Ge
ρρ′ (ρ, θ, ϕ; ρ′, θ′, ϕ′)

in a more suitable form for numerical realization, having made the
transition from the double series to the single one with the help of the
summation theorem for the Legendre polynomials:

Ge
ρρ′

(
ρ, θ, ϕ; ρ′, θ′, ϕ′

)

= −
∞∑

n=0

n + 1/2
2π

hn(ρ, ρ′) Pn

(
cos θ cos θ′ + sin θ sin θ′ cos (ϕ− ϕ′)

)
.
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