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Abstract—In the domain of electromagnetic wave propagation in the
presence of rough surfaces, the Rayleigh roughness criterion is a widely-
used means to estimate the degree of roughness of considered surface.
In this paper, this Rayleigh roughness criterion is extended to the case
of rough layers. Thus, it provides an interesting qualitative tool for
estimating the degree of electromagnetic roughness of rough layers.

1. INTRODUCTION

The Rayleigh roughness criterion is a common tool for estimating the
degree of electromagnetic roughness of a considered rough surface.
It was first studied by Lord Rayleigh [1, 2]. He considered the
case of a propagating monochromatic plane wave incident on a
sinusoidal surface, and for normal incidence [2]. This work led to
the establishment of the so-called Rayleigh roughness criterion, which
makes it possible to estimate the degree of roughness of a rough surface,
related to the coherent field.

Contrary to classical quantitative (asymptotic or rigorous)
methods that describe the electromagnetic wave scattering from rough
surfaces [3, 4], it is essentially a qualitative tool which makes it possible
to fast evaluate the degree of electromagnetic roughness of rough
surfaces. Nevertheless, under the tangent plane approximation (usually
called Kirchhoff Approximation [18–20]) which assumes large surface
curvature radius and gentle surface slopes, it allows one to calculate
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the coherent scattered intensity attenuation owing to the surface
roughness.

Moreover, it is used in practice in several simple models to describe
the electromagnetic wave scattering from rough surfaces. For instance,
in ocean remote sensing, it is used in the Ament model [5, 6, 16, 17] to
calculate the grazing incidence forward (i.e., in the specular direction)
radar propagation over sea surfaces, in optics to determine optical
constants of films [7, 8] and other applications [9–15], or in indoor
propagation, in ray-tracing based wave propagation models that take
the wall roughness into account by introducing a power attenuation
parameter [21–25].

First, Section 2 recalls the Rayleigh roughness parameter
associated to the scattering in reflection from a rough surface. Then,
the Rayleigh roughness parameter is extended in Section 3 to the case
of transmission through a rough surface, where comparisons are led
with the case of reflection. Last, it is extended in Section 4 to the
reflection from a rough layer. Under the tangent plane approximation,
an application to the coherent scattered intensity attenuation owing to
the layer roughness is presented.

2. ESTIMATION OF THE ELECTROMAGNETIC
ROUGHNESS OF ROUGH SURFACES

In the electromagnetic point of view, the roughness of a surface
depends, of course, on the surface heights, but we will see in what
follows that it also depends on the incident wave frequency as well
as on the incidence angle. Indeed, the electromagnetic roughness of
a surface is related to the phase variations δφr of the wave reflected
by the surface, owing to the surface height variations. It is obtained
under the tangent plane approximation, which is valid for large surface
curvature radii and gentle slopes.

2.1. Phase Variation of the Reflected Field from a Rough
Surface

For the case of a random rough surface (see Fig. 1), the total reflected
field Er results from the contribution of all reflected fields from
the random heights of the rough surface. Then, to quantify the
electromagnetic surface roughness, it is the phase variation δφr of the
reflected field around its mean value (which corresponds to the phase
of the mean plane surface) that must be considered.

Let us consider an incident plane wave inside a medium Ω1 of
wavenumber k1 and of incidence angle θi. For the case of a rough
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Figure 1. Surface electromagnetic roughness in reflection: Phase
variation of the reflected wave owing to the surface roughness.

surface (see Fig. 1), the phase variation δφr is given by the relation

δφr = 2k1δζA cos θi, (1)

where k1 is the wavenumber inside the medium Ω1, δζA = ζA−〈ζA〉 the
height variation, and θi the incidence angle. 〈ζA〉 is the mean value of
the rough surface height, (with 〈. . .〉 representing statistical average),
which is equal to 0 here in Fig. 1.

Thus, if |δφr| < π/2, the waves interfere constructively, and the
surface can be considered as slightly rough, or even nearly flat if
|δφr| ¿ π/2. In the reverse configuration, if |δφr| > π/2, the waves
interfere destructively, and the surface can be considered as rough.

2.2. Coherent and Incoherent Scattered Intensities

For an infinite area surface, the field scattered by a rough surface in
reflection inside Ω1, Er, can be split up into a mean and a fluctuating
component such that [26, 27]

Er = 〈Er〉+ δEr, with 〈δEr〉 = 0, (2)

where 〈Er〉 represents the field statistical average and δEr the field
variations. Indeed, the operator 〈. . .〉 is an ensemble mean, and
represents here a statistical average. As a consequence, the total
intensity scattered by the surface, 〈|Er|2〉, can be expressed as the
sum [3, 28]

〈|Er|2〉 = |〈Er〉|2 + 〈|δEr|2〉. (3)

The term |〈Er〉|2 represents the coherent intensity, owing to its well-
defined phase relation with the incident wave. It corresponds for an
infinite area surface to the specular reflection from a perfectly flat
surface. By contrast, the term

〈|δEr|2〉 = 〈|Er|2〉 − |〈Er〉|2 (4)
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represents the incoherent intensity, owing to its angular spreading
and its weak relation (i.e., correlation) with the incident wave. It
corresponds to the scattering (in reflection) from a very rough surface.

Thus, when the surface is perfectly flat, the coherent term
is maximum and the incoherent term vanishes, as all the incident
intensity is reflected in the specular direction for an infinite area
surface. When the surface electromagnetic roughness increases, the
coherent term is increasingly damped, leading to an increase of the
incoherent term 〈|δEr|2〉. For a so-called flat surface, the incoherent
component can be neglected, and the coherent component can be
assimilated to the reflection from a perfectly flat surface. For a
so-called slightly rough surface, the coherent term is predominant,
whereas for a so-called rough surface, this is the incoherent term which
is predominant. Last, for a so-called very rough interface, the coherent
term can even be neglected.

2.3. Rayleigh Roughness Parameter

In this context, the Rayleigh roughness parameter, denoted Ra,
is an interesting and simple means for estimating the degree of
electromagnetic roughness of a surface, i.e., to determine if a surface
can be qualified as flat, slightly rough, rough, or very rough. Indeed,
it appears in the expression of the coherent scattered intensity |〈Er〉|2,
calculated under the tangent plane approximation (which is usually
called the Kirchhoff Approximation, or sometimes the physical optics
approximation). For an infinite area surface, it can be shown that
the average reflected scattered field 〈Er〉 under the tangent plane
approximation (TPA, which is valid for surfaces with large mean
curvature radius and gentle RMS slope) is expressed as

〈Er〉 = E0 × 〈exp(jδφr)〉, (5)

leading to the coherent scattered intensity [3, 29]

|〈Er〉|2 = |E0|2 × |〈exp(jδφr)〉|2, (6)

where the term |〈exp(jδφr)〉|2, which carries an average over the
surface heights, describes the surface electromagnetic roughness. This
term quantifies the attenuation of the coherent intensity owing to the
surface roughness, the term |E0|2 corresponding to the reflection from
a perfectly flat surface. That is why |〈exp(jδφr)〉|2 is denoted Acoh.
For a Gaussian height pdf (probability density function), this term is
equal to Acoh = exp

[ − 4 (Rar)
2 ]

, with Rar the Rayleigh roughness
parameter associated to the reflected wave, given by the relation [3, 29]

Rar = k1σh cos θi, (7)
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with σh the surface RMS (root mean square) height. Indeed, it can
easily be shown that Rar =

√
〈(δφr)2〉/2.

Thus, the Rayleigh roughness parameter Rar, obtained from the
root mean square of the phase variation δφr, is a useful parameter for
estimating the surface electromagnetic roughness. Then, a surface is
usually qualified as slightly rough when [23, 27, 30, 31]

Rar < π/16, (8)

which corresponds to an attenuation of the coherent intensity Acoh <
exp(−π2/64) ' 0.68 ' −0.7 dB. This condition corresponds to a
criterion called Fraunhoffer criterion [23, 27, 30, 31], which can be
written for normal incidence, θi = 0, in the form

σh/λ < 0.03. (9)

By contrast, a surface is qualified as very rough when the
coherent intensity |〈exp(jδφr)〉|2 is negligible, in comparison with
the incoherent intensity 〈|δEr|2〉. From a qualitative point of view,
by using the Rayleigh roughness parameter, this corresponds to the
condition [3, 29, 32–34]

Rar > π/C, (10)

with C a constant, which is usually taken between 2 and π. Indeed,
under the tangent plane approximation (TPA) which is valid for
surfaces with large mean curvature radius and gentle RMS slope, for
a Gaussian height pdf, the coherent intensity attenuation Acoh =
exp

[ − 4 (Rar)
2 ]

checks the condition Acoh < −17 dB for C = π and
Acoh < −43 dB for C = 2.

3. EXTENSION OF THE RAYLEIGH ROUGHNESS
PARAMETER TO THE TRANSMISSION THROUGH A
ROUGH SURFACE

To our knowledge, the Rayleigh roughness parameter has never
been explicitly extended to the case of transmission through a
rough interface before [29, 35]. Though, when studying the case of
transmission through a rough dielectric interface, it is interesting to
know the degree of electromagnetic roughness of this surface. The way
of determining it is the same, i.e., by calculating the phase variation of
the transmitted wave, δφt, owing to the surface roughness (see Fig. 2).
It is related to the surface height variation δζA = ζA−〈ζA〉 (〈ζA〉 being
equal to 0 here in Fig. 2) by the relation [29, 35]

δφt = k0δζA(n1 cos θi − n2 cos θt), (11)
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Figure 2. Surface electromagnetic roughness in transmission: Phase
variation of the transmitted wave owing to the surface roughness.

with k0 the wave number inside the vacuum, θt the transmission angle,
and n1 =

√
εr1 and n2 =

√
εr2 the refractive indexes of the non-

magnetic media Ω1 and Ω2, respectively.
Then, using the same way as for the case of reflection from the

rough interface, the Rayleigh roughness parameter can be extended
to the case of transmission through the rough interface. Denoted as
Rat, and calculated from the same relation, Rat =

√
〈(δφt)2〉/2, it is

expressed as [29, 35]

Rat = k0σh
|n1 cos θi − n2 cos θt|

2
. (12)

The Rayleigh roughness parameter is defined for calculating the
attenuation of the coherent scattered intensity owing to the surface
roughness. Then, for a surface of infinite area, the transmission angle
θt is related to the incidence angle θi by the Snell-Descartes law for
a perfectly flat interface, n1 sin θi = n2 sin θt (with n2 the refractive
index of the lower medium Ω2).

Let us note that the Rayleigh roughness parameter is in general
(for media indexes of values of same order) lower for the case
of transmission than for the case of reflection. As a result, it
must be noted that a surface can be considered as very rough
electromagnetically when studying the wave scattered in reflection,
but can be considered as only rough or even slightly rough
electromagnetically when studying the wave scattered in transmission.
Moreover, it can be noticed that contrary to the reflection case, for
the transmission case the Rayleigh roughness parameter depends on
the refractive index n2 of the lower medium (through the product
term n2 cos θt). Thus, care must be taken of using the right Rayleigh
roughness parameter with respect to the case under study. In what
follows, this behavior is studied in more details.
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Figure 3. Comparison of the normalized Rayleigh roughness
parameters in reflection and in transmission, for different values of the
lower relative permittivity εr2, with εr1 = 1. The Rayleigh roughness
parameters are normalized with respect to the term k0σh.

3.1. Comparison between the Rayleigh Roughness
Parameters in Reflection and in Transmission

The computation of the Rayleigh roughness parameters in reflection
Rar and in transmission Rat makes a comparison possible between
the surface electromagnetic roughness between the case of a reflected
scattered wave and the case of a transmitted scattered wave. This
comparison is led for a surface of infinite area: the Rayleigh roughness
parameter is given by Equation (7) for the case of reflection, and by
Equation (12) for the case of transmission, where θt is given by the
relation n1 sin θi = n2 sin θt. Fig. 3 represents the normalized Rayleigh
roughness parameters (i.e., for k0σh = 1) with εr1 = 1 and different
values of εr2 (εr2 ∈ {1; 2; 5; 9; 53}), with respect to the incidence angle
θi.

As a general rule, it can be observed that the normalized Rayleigh
roughness parameter in reflection decreases from 1 to 0 when the
incidence angle θi increases from 0 to 90 degrees, because it is
proportional to cos θi. Quite the reverse, the normalized Rayleigh
roughness parameter in transmission increases when the incidence
angle θi increases (except for εr2 = 1, where it is constant and equal
to 0). It ranges from k0σh(n2 − n1)/2 for θi = 0 to k0σhn2 cos θl

t/2
for θi = 90◦, with θl

t = arcsin(n1/n2). Indeed, it can be shown
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that |n1 cos θi − n2 cos θt| increases when θi increases. Moreover,
the Rayleigh roughness parameter in transmission increases when εr2

increases, because of the same reason. It is noticeable that for low
values of εr2 and for small incidence angles, the Rayleigh roughness
parameter in transmission is inferior to the one in reflection; on the
contrary, it becomes superior for higher incidence angles. This result
is of importance because it means that for a given value of εr2 (which
checks the condition εr2 < 9 εr1), for a given incidence angle, the surface
can be rougher electromagnetically in reflection than in transmission,
whereas for a higher incidence angle, the surface can be less rough
electromagnetically in reflection than in transmission.

Thus, it can easily be shown that the incidence angle θrug
i at

which the Rayleigh roughness parameters in reflection Rar and in
transmission Rat are equal is given for εr2 ≥ εr1 by the relation

θrug
i = arccos

(√
εr2 − εr1

8 εr1

)
, (13)

under the condition of existence of θrug
i , εr2 ≤ 9 εr1. This means that

for εr2 > 9 εr1, Rat > Rar ∀θi. Then, as illustrated in Fig. 3, for
εr2 = εr1, θrug

i = 90◦, for εr2 = 2 εr1, θrug
i ' 69.3◦, for εr2 = 5 εr1,

θrug
i = 45◦, and for εr2 = 9 εr1, θrug

i = 0◦.
In conclusion, for εr2 > 9 εr1, Rat > Rar ∀θi, and for εr2 ≤ 9 εr1,

it is the case only for θi > θrug
i . Thus, for relative permittivities εr2

close to 1 (for εr1 = 1) and for low to moderate incidence angles,
Rat < Rar: the surface is in this case rougher electromagnetically if
the study focuses on the reflected scattered wave than if it focuses on
the transmitted scattered wave.

4. EXTENSION OF THE RAYLEIGH ROUGHNESS
PARAMETER TO THE REFLECTION FROM A ROUGH
LAYER

In this section, the Rayleigh roughness parameters are extended to
the case of reflection from rough layers. The case of transmission
through rough layers, expressed in [34] for uncorrelated rough surfaces,
is not detailed here. In what follows, like previously, the surfaces are
assumed to have dimensions much greater than the wavelength, so that
they can be considered of infinite area, and that the coherent intensity
contributes only in the specular direction.

For the case of rough layers, the incident wave undergoes multiple
scattering inside the rough dielectric waveguide (i.e., the medium Ω2).
Consequently, there are multiple reflected scattered fields Er,1, Er,2,
and so on (see Fig. 4). As a result, similarly as for the case of
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a single rough interface, a Rayleigh roughness parameter Rar,n can
be associated to each order n of average reflected field 〈Er,n〉 (or its
associated coherent scattered intensity |〈Er,n〉|2). To do this, first,
the phase variation δφr,n associated to each average reflected field
〈Er,n〉must be calculated, in order to determine its associated Rayleigh
roughness parameter Rar,n from the relation Rar,n =

√〈(δφr,n)2〉/2.
We must insist on the following: it implies in general that contrary
to a single interface, for a rough layer, several Rayleigh roughness
parameters exist, each one being associated to each average scattered
field 〈Er,n〉 (or its associated coherent scattered intensity |〈Er,n〉|2).
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Figure 4. Surface electromagnetic roughness in reflection from a
rough layer: Case of thin films with identical surfaces (here, a general
configuration of reflected fields away from the specular direction is
presented).
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The phase variation δφr,1 associated to the first-order reflected
field Er,1 corresponds to the one of a single interface

δφr,1 = 2k1δζA1 cos θi. (14)

For the study of the Rayleigh roughness parameter Rar,n

associated to each average reflected field 〈Er,n〉, different cases can be
encountered. Indeed, for the case where the two surfaces are identical
and form a thin film (see Fig. 4), the roughness is very different from the
case where the two surfaces are totally uncorrelated (see Fig. 5). Then,
both cases are studied here. Nevertheless, the Rayleigh roughness
parameter Rar,1 associated to the first-order average reflected field
〈Er,1〉 (or its associated coherent scattered intensity |〈Er,1〉|2) is equal
for both cases to the one corresponding to the reflection from the upper
surface such that

Rar,1 = k1σhA cos θi, (15)

with σhA the RMS height of the upper surface ΣA.

4.1. Case of Thin Film with Identical Surfaces

For the case of a thin film with identical parallel rough surfaces
(see Fig. 4), it can be observed that comparatively to the first-order
reflected field Er,1, the higher-order reflected fields Er,n (with n ≥ 2)
are related to Er,1 by a well-defined phase difference. Indeed, in
this configuration, the two interfaces can be considered as locally flat
parallel interfaces, leading to a local Fabry-Pérot interferometer (or
local flat layer). This means that all reflected fields Er,n are totally
correlated, and have the same phase variation δφr,n owing to the surface
roughness. Then, Equation (22) giving this phase deviation δφr,n can
be simplified, and it can be seen that it is equal to the one obtained in
Equation (14) for a single rough interface such that

∀n ∈ N∗, δφr,n = δφr,1 = 2k1δζA1 cos θi, (16)

with δζA1 the height deviation of a point A1 of the surface ΣA from
the mean plane 〈ζA1〉 = 0. Then, the Rayleigh roughness parameter
Rar,n associated to each average reflected field 〈Er,n〉 (or its associated
coherent scattered intensity |〈Er,n〉|2) is given by

∀n ∈ N∗, Rar,n =
√
〈(δφr,n)2〉/2 = k1σhA cos θi. (17)

This is valid if the points of successive reflections are totally
correlated, so that the film can be considered as locally flat and can
be seen as a local Fabry-Pérot interferometer. Then, it is valid if the
horizontal distance lhor between two points of successive reflections
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Ak and Ak+1 (with k ∈ {1 . . . n}) is much smaller than the surface
correlation length Lc, lhor ¿ Lc. We can show that lhor is equal for
specular direction θr = θi to

lhor = 2H
n1 sin θi√

n2
2 − n2

1 sin2 θi

, (18)

which implies that lhor ∈ [0; 2Hn1/
√

n2
2 − n2

1].

4.2. Case of Uncorrelated Surfaces

For uncorrelated rough surfaces (see Fig. 5), in the calculation of
the Rayleigh roughness parameter Rar,n associated to the nth-order
average reflected field 〈Er,n〉 (or its associated coherent scattered
intensity |〈Er,n〉|2), the surface points ζAk

and ζBk
(with k ∈ {1 . . . n})

can be considered as uncorrelated between one another. Moreover,
for the following demonstration to be true, it is necessary that all
the points of successive reflections at the same rough interface, Ak

and Ak′ as well as Bk and Bk′ , are uncorrelated between one another.
This is studied in more details in Appendix A (Section 7), in which
it is shown that the following simple approach which considers only
specular propagation angles inside the rough layer is valid for small
RMS slopes σsA and σsB (checking {σsA, σsB} . 0.3), as well as for
moderate incidence angles θi and for the condition n2 & 1.4n1.

Then, for the second-order reflected field Er,2, it is easy to
demonstrate that its associated phase variation δφr,2 (see Fig. 5) is
given in the specular direction of reflection θr = θi by the relation [29]
δφr,2 = k0(δζA1 + δζA2) (n1 cos θi − n2 cos θm) + 2k2δζB1 cos θm, (19)

with δζB1 = ζB1+H̄ the height deviation of the point B1 from the mean
plane z = −H̄ of the lower surface ΣB, and θm the angle of propagation
inside Ω2. θm is given by the Snell-Descartes law for a perfectly flat
interface, n1 sin θi = n2 sin θm. It must be highlighted that, δφr,2 being
a phase variation, it is relative to the variations of the surface heights
ζA1 , ζB1 , and ζA2 , and it is independent of the mean layer thickness H̄
(this remark also holds for each phase variation δφr,n). Using the same
way, the phase variation δφr,3 associated to the third-order reflected
field Er,3 is given by
δφr,3 =k0(δζA1+δζA3)(n1cos θi−n2cos θm)+2k2(δζB1−δζA2+δζB2)cosθm.

(20)
Similarly, the phase variation δφr,4 associated to the fourth-order
reflected field Er,4 is given by [29]

δφr,4 = k0(δζA1 + δζA4)(n1 cos θi − n2 cos θm)
+2k2(δζB1 − δζA2 + δζB2 − δζA3 + δζB3) cos θm. (21)
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Thus, it can be shown ∀n ≥ 3 that the phase variation δφr,n associated
to the nth-order reflected field Er,n is given by

δφr,n = k0(δζA1 + δζAn)(n1 cos θi − n2 cos θm)

+2k2

[
δζB1 +

n−1∑

k=2

(− δζAk
+ δζBk

)]
cos θm. (22)

As a result, ∀n ≥ 2, the calculation of Rar,n =
√〈(δφr,n)2〉/2

becomes easy and equals the square root of the quadratic summation
of the elementary Rayleigh roughness parameters, associated to each
order of scattering inside the rough layer [29, 34]

Rar,n =
√

2(RaA
t12)

2 + (n− 1)(RaB
r23)

2 + (n− 2)(RaA
r21)

2
, (23)

with RaA
t12 the Rayleigh roughness parameter in transmission from the

medium Ω1 into the medium Ω2 through the upper surface ΣA, RaB
r23

the Rayleigh roughness parameter in reflection inside the medium Ω2

onto the lower surface ΣB separating the medium Ω3, and RaA
r21 the

Rayleigh roughness parameter in reflection inside the medium Ω2 onto
the upper surface ΣA separating the medium Ω1.

One can notice for εr2 > εr1 and for equal RMS heights σhB = σhA

that RaB
r23 > RaA

r12. As a consequence, Rar,2 > Rar,1, and the higher
orders being superior to Rar,2, one has

∀n ≥ 2, Rar,n+1 > Rar,n > Rar,1. (24)

4.3. Comparison between the Different Rayleigh Roughness
Parameters

Similarly as for the single interface case, a comparison is led between
the different Rayleigh parameters Rar,n associated to each average
reflected field 〈Er,n〉, for the case of uncorrelated surfaces. The RMS
roughnesses of the lower and upper interfaces are taken identical,
σhB = σhA. In the numerical simulations, we will focus on the first
two contributions Rar,1 and Rar,2. Fig. 6 represents the normalized
Rayleigh roughness parameters of the first two contributions, with the
same parameters as in Fig. 3.

It can be observed that for this configuration, the second-order
(normalized) Rayleigh roughness parameter is always superior to the
first-order one (except for the case εr2 = εr1 = 1, where they are equal).
Moreover, keeping in mind that for the case of a thin film with identical
surfaces, all the Rayleigh roughness parameters are equal, it means that
the case of uncorrelated surfaces (with σhB = σhA) is always rougher
than the case of a thin film with identical surfaces. For εr2 > εr1 = 1, it
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can be observed that the behavior of Rar,2 with respect to the incidence
angle θi differs from the case of a single interface. Indeed, Rar,2 is
a combination of a Rayleigh roughness parameter in transmission,
RaA

t12, which increases when θi increases, and a Rayleigh roughness
parameter in reflection, RaB

r23, which decreases when θi increases. As
a consequence, it is observed that for rather low values of εr2, Rar,2 first
decreases slightly when θi increases from 0 to a given angle. Then, it
increases slightly when θi increases from this given angle to 90 degrees.

The numerical results (not presented) for the higher-order
Rayleigh roughness parameters Rar,n, which check the condition in
Equation (24), led to the same general behaviors and comments.

4.4. Case of a Flat Lower Interface

For the case of a flat lower interface, the Rayleigh roughness parameters
in reflection from the lower interface RaB

r23 = 0 in Equation (23).
Like in the previous subsection, the behavior of the first two Rayleigh
roughness parameters Rar,1 and Rar,2 are plotted in Fig. 7.

In this case of a flat lower interface, the general behavior of the
second-order Rayleigh roughness parameter Rar,2 is the same as for
the single interface case. In fact, it can be seen that Rar,2 =

√
2RaA

t12.
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Figure 6. Comparison of the first two normalized Rayleigh roughness
parameters in reflection from a rough layer Rar,1 and Rar,2 with
a rough lower interface (with same RMS heights as for the upper
interface), for different values of the layer relative permittivity εr2,
with εr1 = 1. The Rayleigh roughness parameters are normalized with
respect to the term k0σh.
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Similarly, it can be shown that the third-order contribution Rar,3 is
equal to the second-order contribution of the case of a rough lower
interface with identical RMS heights, which is presented in Fig. 6.

This approach can easily be extended to the case of transmission
through the rough layer, like in [34] for uncorrelated rough surfaces.
Similarly, the extension to the case of several rough layers can easily be
done. In what follows, the Rayleigh roughness parameters are applied
to the calculation of the coherent scattered intensity attenuation under
the tangent plane approximation (TPA).

5. APPLICATION TO THE COHERENT SCATTERED
INTENSITIES ATTENUATION UNDER THE TPA

Under the tangent plane approximation (TPA) corresponding to locally
smooth rough interfaces having gentle slopes, following Subsections 2.2
and 2.3 for a single interface, the coherent total scattered intensity
|〈Etot

r 〉|2 for a rough layer can be calculated, by using Rayleigh
roughness parameters [34]. Then, under this assumption, it must be
noted that it is also a quantitative tool for describing the coherent
electromagnetic scattering from rough surfaces or layers. In what
follows, like previously, we will consider only the case of surfaces with
dimensions much greater than the wavelength (called of infinite area),
so that the coherent scattered intensity contributes only in the specular
direction. That is why only the specular direction is considered here.
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Figure 7. Same simulation parameters as in Fig. 6, but for a flat
lower interface.
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5.1. Attenuation under the Case of a Thin Layer with
Identical Surfaces

For the case of a thin layer with identical surfaces, the reflected field
modulus |Etot

r | is equal to |req(θi) × Ei|, with Ei the incident wave
amplitude and req the equivalent Fresnel reflection coefficient given
by Equation (17) in [29]. From Equation (6), it can be seen that
|E0| = |r12(θi)Ei|. Moreover, as explained in Subsection 4.1, the phase
variation of each reflected field Er,n is equal and given in Equation (16).
As a consequence, the average total reflected field 〈Etot

r 〉 is given by

〈Etot
r 〉 = req(θi)Ei × 〈exp(jδφr,1)〉, (25)

with δφr,1 the phase variation of the wave reflected by the upper
interface, given by Equation (14). The term 〈exp(jδφr,1)〉 describes the
layer electromagnetic roughness, and the term req(θi)Ei corresponds to
the reflection from a flat layer. Thus, the coherent scattered intensity
attenuation for a thin layer with identical surfaces, Acoh ≡ Aid

coh, is
given by the relation

Aid
coh = |〈exp(jδφr,1)〉|2 . (26)

Then, for a Gaussian height pdf, Aid
coh = exp

[ − 4(Rar,n)2
]
, with

Rar,n ≡ Rar,1 given by Equation (17).

5.2. Attenuation under the Case of Uncorrelated Surfaces

For the case of uncorrelated surfaces, the average total reflected field
〈Etot

r 〉 can be written with respect to each average reflected field 〈Er,n〉
by the relation

〈Etot
r 〉 =

+∞∑

n=1

〈Er,n〉, (27)

with (see Equation (18) of [29])

〈Er,1〉 = r12(θi)Ei × 〈exp(jδφr,1)〉 , (28)

〈Er,n〉 = t12(θi)t21(θm)r23
n+1(θm)r21

n(θm)ej(n+1)φflatEi

×〈exp(jδφr,n)〉 , ∀n ≥ 2, (29)

rij and tij being the Fresnel reflection and transmission coefficients
from the medium Ωi to the medium Ωj , respectively [36], and φflat =
2k2H̄ cos θm the phase difference between two successive reflected fields
Er,n−1 and Er,n [29]. As a consequence, the coherent scattered intensity∣∣〈Etot

r 〉∣∣2 can be written in the form
∣∣〈Etot

r 〉∣∣2 = |req,un(θi) Ei|2 , (30)
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with req,un the equivalent Fresnel reflection coefficient from a rough
layer, given by Equation (18) of [29].

For a Gaussian height pdf, the term 〈exp(jδφr,n)〉 can be written
as exp

[ − 2(Rar,n)2
]
, with Rar,n given by Equation (15) for n = 1

and by Equation (23) ∀n ≥ 2. Thus, a coherent scattered intensity
attenuation Acoh ≡ Aun

coh,n can be defined for each average scattered
field contribution 〈Er,n〉 and equals for Gaussian statistics

Aun
coh,n = |〈exp(jδφr,n)〉|2 = exp

[− 4 (Rar,n)2
]
. (31)

5.3. Numerical Results

The numerical results of the attenuation of the coherent scattered
intensity owing to the layer roughness are presented for the case of a
layer of sand over a granite surface [37]. This configuration corresponds
to the case of two uncorrelated rough surfaces.

The relative permittivities of sand and granite are taken as
εr2 = 2.5 and εr3 = 8, respectively. The frequency is f = 300 MHz,
(λ = 1m) and the incidence angle θi = 30 degrees. The mean layer
thickness is H̄ = 1.5λ, and the surface RMS heights are σhA = 0.01λ
and σhB = 0.35λ.

In this context, the attenuation of the first two coherent scattered
field contributions are

Aun
coh,1 = 0.988 ' −0.05 dB, (32)

Aun
coh,2 = 1.25× 10−19 ' −189 dB, (33)

the third-order one, Aun
coh,3, and the higher contributions being much

inferior to Aun
coh,2. This means that for this typical configuration, the

first-order average scattered field 〈Er,1〉 is almost not attenuated by the
layer roughness, contrary to the higher-order average scattered fields
〈Er,n〉, with n ≥ 2, which are very strongly attenuated and can be
neglected, as the attenuation is at least −189 dB, or even stronger.

As a consequence, in this configuration, only the first-order
average scattered field 〈Er,1〉 contributes to the total coherent reflected
intensity |〈Etot

r 〉|2, which means that the only upper air/sand interface
can be considered to compute |〈Etot

r 〉|2. Moreover, the attenuation
coefficient Aun

coh,1 ' −0.05 dB being negligible, |〈Etot
r 〉|2 can be

assimilated to the reflected intensity from the air/sand interface. This
result is in full agreement with the results from [37] (see the second
paragraph of page 1356).

Similarly, the reverse configuration where the first-order contribu-
tion is negligible in comparison with the higher ones was studied in
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Section 3 of [34] (see Fig. 3 and Fig. 7), leading as well to good agree-
ment with the numerical results. Thus, this allows us to validate the
extension of the Rayleigh roughness parameter to the case of rough
layers.

6. CONCLUSION

The Rayleigh roughness parameter is an interesting means for
evaluating the degree of roughness of a rough surface. In other words,
it allows one to evaluate the attenuation of the coherent scattered
intensity owing to the surface roughness, in the case of gentle surface
slopes. Its extension to the case of rough layers led in this paper
provides us an interesting means for evaluating the degree of roughness
of a rough layer, and more precisely the attenuation of each average
field contribution 〈Er,n〉 owing to the layer roughness. Rigorously, this
general qualitative tool is valid under the tangent plane approximation
(or Kirchhoff Approximation), i.e., for locally smooth rough surfaces
having gentle slopes (so that the multiple scattering phenomenon
can be neglected). Thus, under the TPA, the Rayleigh roughness
parameters can be used for quantifying the attenuation of 〈Er,n〉.
Then, for a Gaussian height pdf, they are easily calculated. These
developments can be extended to transmission through rough layers,
as well as to reflection form or transmission through rough multilayers.

APPENDIX A. RIGOROUS CALCULATION FOR
UNCORRELATED ROUGH SURFACES

For uncorrelated rough surfaces, a rigorous calculation of the phase
variation δφr,2 of the second-order reflected field Er,2 (owing to the
layer roughness) must be calculated from considering random angles
of propagation inside the rough layer. That is to say, the angle
of propagation from A1 to B1 and denoted θm in Fig. 6 does not
necessarily correspond to specular transmission from the incidence
angle θi, and the angle of propagation from A1 to B1 is different from
θm, and will be denoted θp here. Then, the phase variation δφr,2 is
given by the relation

δφr,2 = k0δζA1 (n1 cos θi − n2 cos θm) + k2δζB1 (cos θm + cos θp)
+ k0δζA2 (n1 cos θi − n2 cos θp), (A1)

Then, to obtain the associated second-order Rayleigh roughness
parameter Rar,2, the statistical average over the square of (δφr,2)2,
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〈(δφr,2)2〉, must be derived to obtain Rar,2 =
√〈(δφr,2)2〉/2. We get

〈(δφr,2)
2〉 = k2

0 〈(δζA1)
2 (n1 cos θi − n2 cos θm)2〉

+ k2
2 〈(δζB1)

2 (cos θm + cos θp)2〉
+ k2

0 〈(δζA2)
2 (n1 cos θi − n2 cos θp)2〉

+2k0k2 〈δζA1δζB1 (n1 cos θi − n2 cos θm)(cos θm + cos θp)〉
+2k2

0 〈δζA1δζA2 (n1 cos θi − n2 cos θm)(n1 cos θi − n2 cos θp)〉
+2k2k0 〈δζB1δζA2 (cos θm + cos θp)(n1 cos θi − n2 cos θp)〉. (A2)

The statistical average is over the heights δζA1 , δζB1 , δζA2 of the
surface points, and over the propagation angles θm and θp, which
can be transformed into over the surface slopes γA1 and γA1 , γB1 ,
respectively. As it can be shown that the heights δζM and slopes γM

of a surface point M are uncorrelated for even height autocorrelation
(indeed, it is related to W ′(0), where W ′ is the first derivative of the
height autocorrelation function), the first term in Equation (A2) can
be simplified as k2

0σ
2
hA〈(n1 cos θi − n2 cos θm)2〉.

Moreover, the two rough surfaces being assumed to be
uncorrelated, this means that the surface points are uncorrelated,
implying that the points of successive reflections are such that A1 and
B1, as well as B1 and A2, are uncorrelated between each another. It
is valid for both their heights and slopes (the case of the correlation
between A1 and A2, and more precisely between their heights, will be
discussed further). Thus, Equation (A2) simplifies as

〈(δφr,2)
2〉 = k2

0 σ2
hA 〈(n1 cos θi − n2 cos θm)2〉

+ k2
2 σ2

hB 〈(cos θm + cos θp)2〉
+ k2

0 σ2
hA 〈(n1 cos θi − n2 cos θp)2〉

+2k0k2 〈δζA1〉〈δζB1〉 〈(n1 cos θi − n2 cos θm)(cos θm + cos θp)〉
+2k2

0 〈δζA1δζA2〉 〈(n1 cos θi − n2 cos θm)(n1 cos θi − n2 cos θp)〉
+2k2k0 〈δζB1〉〈δζA2〉 〈(cos θm + cos θp)(n1 cos θi − n2 cos θp)〉. (A3)

As we have 〈δζA1〉 = 〈δζB1〉 = 〈δζA2〉 = 0, the fourth term and the
last term of Equation (A3) equal 0. Moreover, 〈δζA1δζA2〉 is the upper
surface height auto-correlation function and can be denoted W (xA12),
which checks the condition −σ2

hA ≤ W (xA12) ≤ +σ2
hA. Then, 〈(δφr,2)2〉

simplifies as

〈(δφr,2)
2〉=k2

0σ
2
hA

[〈(n1 cos θi−n2 cos θm)2〉+〈(n1 cos θi − n2 cos θp)2〉
]

+ k2
2 σ2

hB 〈(cos θm + cos θp)2〉
+ 2k2

0 W (xA12) 〈(n1 cos θi − n2 cos θm)(n1 cos θi − n2 cos θp)〉. (A4)
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Then, to resolve Equation (A4), the following statistical averages must
be solved:

I1 = 〈(n1 cos θi − n2 cos θm)2〉 (A5)
I2 = 〈(cos θm + cos θp)2〉 (A6)

I3 = 〈(n1 cos θi − n2 cos θp)2〉 (A7)
I4 = 〈(n1 cos θi − n2 cos θm)(n1 cos θi − n2 cos θp)〉 (A8)

Let us first focus on I1.
First, the angle θm must be expressed. The local incidence

angle χi can be expressed by χi = θi + arctan γA1 , and the local
transmission angle χm by χi = θm + arctan γA1 . Thus, by using the
transmission Snell-Descartes law n1 sinχi = n2 sinχm, the angle θm

can be expressed by

θm = arcsin
{

n1

n2
sin [θi + arctan γA1 ]

}
− arctan γA1 . (A9)

Then, cos θm can easily be obtained from the calculation of sin θm and
with the relation cos2 θm = 1−sin2 θm. The surface slopes being gentle,
this is the case for γA1 , and we can make a Taylor series development
of (n1 cos θi− n2 cos θm)2 around γA1 = 0 and can restrict ourselves to
the second-order in γA1 . We get

(n1 cos θi − n2 cos θm)2 = a0 + a1γA1 + a2γ
2
A1

+ ◦(γ2
A1

), (A10)

with

a0 = α2
1, (A11)

a1 = a0, (A12)

a2 = α3
1

1
n2 cos θspec

m
+ α2

1 tan2 θspec
m − α1

(
n2

2 − n2
1

) tan2 θspec
m

n2 cos θspec
m

, (A13)

with α1 = n1 cos θi − n2 cos θspec
m , θspec

m the angle of specular
transmission corresponding to a flat surface γA1 = 0, and then given
by n1 sin θi = n2 sin θspec

m .
Thus, the statistical average I1 = 〈(n1 cos θi − n2 cos θm)2〉 can

be done, the only random variable being here γA1 . Then, the
approximation of considering only the angle of specular transmission
θspec
m in I1, 〈(n1 cos θi − n2 cos θm)2〉 ≈ n1 cos θi − n2 cos θspec

m = a0, can
be quantified by

〈(n1 cos θi − n2 cos θm)2〉 − a0 ' a2σ
2
sA. (A14)

For small upper surface RMS slope σsA, it can be shown that this
approximation induces small relative errors in general: it is valid for
moderate incidence angles and values of n2 such that n2 & 1.4n1. The
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same developments and general conclusions can be drawn for the other
statistical averages I2, I3, and I4.

Thus, a Taylor series development up to the second order of the
first three terms of Equation (A4) over the random variables γA1 and
γB1 can be led to check the general approximation of considering
specular angles θspec

m and θspec
p = −θspec

m in 〈(δφr,2)
2〉. After statistical

average, this leads to the relation

〈(δφr,2)
2〉 = b0 + b1Aσ2

sA + b1Bσ2
sB, (A15)

with

b0=2k2
0

[
(n1−n2)2σ2

hA+2n2
2σ

2
hB

]
+2k2

0

[
n1

n2
(n1−n2)2σ2

hA−2n2
1σ

2
hB

]
θ2
i ,(A16)

b1A = 2k2
0(n1 − n2)2 β1, (A17)

b1B = 4k2
0n

2
2 β1, (A18)

with β1 =
[

n1−n2
n2

σ2
hA − 2σ2

hB

]
. This means that the approximation of

specular angles implies the condition

b1Aσ2
sA + b1Bσ2

sB

b0
¿ 1. (A19)

For small upper and lower RMS slopes σsA and σsB, respectively (of
the order of {σsA, } . 0.3), it can be shown that this condition is valid
for moderate incidence angles and values of n2 such that n2 & 1.4n1.

Up to now, we did not take the fourth term inside Equation (A4)
into account. In fact, a similar derivation would show that this
term does not significantly contribute for moderate incidence angles
and values of n2 such that n2 & 1.4n1. In conclusion, under these
conditions and with gentle RMS slopes (of the order of {σsA, σsB} .
0.3), the approximation of taking specular propagation angles inside
the rough layer is valid.
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