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Abstract—A systematic derivation of the Coupled Nonlinear
Schrodinger Equations (CNLSE) governing nonlinear pulse propaga-
tion in a weakly birefringent monomode optical fiber based on a
multiple-scale perturbation solution of the semilinear vector wave equa-
tion for the electric field in a (randomly) birefringent fiber medium is
presented. The analysis of the nonlinear propagation characteristics of
optical pulses based on a numerical solution of the CNLSE is deferred
to the second part of this contribution.

1. INTRODUCTION

It is now generally accepted that nonlinear pulse propagation in a
birefringent optical fiber is governed by a pair of Coupled Nonlinear
Schrodinger-type Equations (CNLSE). The version of CNLSE that has
found favor with many researchers in this area [1–3] was proposed
by Menyuk [4] on the basis of a plane-wave approximation to the
guided propagation in an optical fiber. In his 1999 paper [5] on
multiple-length-scale methods for optical fiber transmission, Menyuk
observed that “It is remarkable that no derivation of the nonlinear
Schrodinger equation that is valid for physically realistic optical fibers
exists within the scientific literature. First, all derivations that have
been published in text books assume that optical fibers are perfectly
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circular. Not only is this assumption false, but, in fact, just the
opposite is true. The magnitude of an effect is inversely proportional
to its corresponding scale length, and thus relative to the Kerr effect
and chromatic dispersion, the birefringence must be considered large
but rapidly varying. A conceptually correct derivation must take
this essential fact into account. Second, even if a perfectly round
fiber is assumed, most of the published derivations [6–10] — with
notable exceptions such as Kodama’s elegant derivation [11] — contain
contradictory assumptions and errors”.

Menyuk’s ‘derivation’ [5] of the CNLSE is no doubt a substantial
improvement over his earlier derivation [4] especially with regard
to taking the fiber geometry into account. Nevertheless, even this
improved version fails to completely meet the projected objective, viz.,
a conceptually correct derivation of the CNLSE from Maxwell’s field
equations. Menyuk approaches the problem by considering the effects
of chromatic dispersion, fiber birefringence and nonlinearity one at
a time (a separate evolution equation for the complex envelopes is
deduced by assuming that only one of the effects is present), and then
superposing the individual equations with the aid of certain ordering
parameters (the precise definitions of which are not given in the paper)
to arrive at the final evolution equation (CNLSE). Needless to say,
such an approach completely ignores any possible interaction among
the effects of chromatic dispersion, fiber birefringence and nonlinearity,
and can hardly be termed as a systematic and consistent derivation of
the CNLSE from Maxwell’s field equations. A more serious drawback
of his ‘derivation’ is the introduction of a birefringence parameter ∆β
without either a definition or even an indication of how it is related to
the basic parameters characterizing a fiber as birefringent. What is the
interpretation of ∆β in the context of guided wave propagation through
an optical fiber? Interpreting ∆β as (β1− β2)/2 [12], where β1 and β2

are the propagation constants of the two orthogonally polarized modes,
is nothing short of a self-contradiction since the orthogonally polarized
degenerate modes have identical propagation constants in a fiber
fabricated out of an isotropic and azimuthally homogeneous dielectric.
Birefrigence exhibited by real fibers arises from the anisotropic and the
non-axisymmetric random perturbations to which the isotropic and
the azimuthally homogenous dielectric tensor is invariably subjected
during the manufacturing and the installation stages. It is thus seen
that a systematic derivation of the CNLSE governing nonlinear pulse
propagation through a (randomly) birefringent fiber that is free from
all inconsistences and self-contradictions is yet to emerge.

In this paper, the CNLSE governing the evolution of the wave
packet-representation of the two orthogonal polarization modes of
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a weakly birefringent monomode fiber incorporating the cumulative
effects of chromatic dispersion, birefringence and nonlinearity are
derived starting from Maxwell’s field equations using a multiple-scale
perturbation approach.

2. A MODEL FOR BIREFRINGENCE

The vector wave equation for the electric field vector following from
Maxwell’s equations is [13]

−∇×∇×E− 1
c2

∂2E
∂t2

=
1

ε0c2

∂2P
∂t2

(1)

where P is the dielectric polarization vector of the material medium, c
is the speed of light in and ε0 is the absolute permittivity of free space.

For a linearly anisotropic and centro-symmetric dielectric
material, that is also transversely nonhomogeneous, we have the
constitutive relation:

1
ε0

[PL(x, t) + PNL(x, t)] =

t∫

−∞
χ(1) (|x⊥| , t− t1) E(x, t1) dt1

+

t∫

−∞

t∫

−∞

t∫

−∞
χ(3)(|x⊥|, t−t1, t−t2, t−t3)(E(t1)·E(t2))E(t3)dt1dt2dt3, (2)

where we have assumed that the first-order linear susceptibility tensor
χ(1) ≡

[
χ

(1)
ij

]
, i, j = 1, 2, 3, and the third order (nonlinear) scalar

susceptibility χ(3) depend on the position vector x only through the
magnitude of its transverse part x⊥. The third-order susceptibility is
further assumed to be axisymmetric; that is, its dependence on x⊥ is
only through its magnitude |x⊥|. The axial asymmetry of the linear
susceptibility tensor is one of the causes of birefringence exhibited by
real fibers. The presence of the core-cladding boundary is the main
cause of radial nonhomogeneity in a monomode fiber.

Computing the Fourier transform of (2) with respect to the time
variable, and suppressing the spatial variables, we have
1
ε0

P̂ (ω) =
1
ε0

[
P̂L(ω) + P̂NL(ω)

]

=
[
χ̂(1) (ω)

]
Ê(ω) +

∞∫

−∞

∞∫

−∞

∞∫

−∞
χ̂(3)(ω1, ω2, ω3)

(
Ê(ω1)·Ê(ω2)

)

Ê(ω3)δ(ω1+ω2+ω3−ω) dω1dω2dω3 (3)
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where

P̂ (ω) =

∞∫

−∞
P (t) ejωtdt, Ê (ω) =

∞∫

−∞
E (t) ejωtdt, (4)

χ̂(1) (ω) =

∞∫

−∞
χ(1) (t) ejωtdt, (5a)

and

χ̂(3)(ω1, ω2, ω3)=
1

(2π)2

∞∫

−∞

∞∫

−∞

∞∫

−∞
χ(3)(t1, t2, t3)ej(ω1t1+ω2t2+ω3t3)dt1dt2dt3

(5b)

The effective range of integration in (5a) and (5b) is from 0 to ∞
only, because causality requires, χ

(1)
ij (t), i, j = 1, 2, 3, and χ(3)(t1, t2, t3)

to be zero for negative values of the arguments. Suppressing the
independent variables, the linear part of (3) may be written as

P̂Li = ε0

3∑

j=1

χ̂
(1)
ij Êj , i, j = 1, 2, 3 (6)

For any dielectric material of general anisotropy, the susceptibility
tensor (in the frequency domain) may be represented by a 3 × 3
symmetric matrix

[
χ̂

(1)
ij

]
with complex entries [14]. The imaginary

part of χ̂
(1)
ij is smaller in magnitude than the real part by several

orders of magnitude in a practical low-loss fiber material. The
causality requirement implies that the real and imaginary parts of
χ̂

(1)
ij are related by Kramers-Kronig dispersion relation [14]. We

may choose coordinates along the principal-axes of the crystal so
that the off-diagonal entries of the matrix become zero. That is, in
this principal-axes coordinate system, the linear susceptibility matrix
becomes diagonal with complex diagonal entries χ̂11, χ̂22, χ̂33.

In any fixed coordinate system (x, y, z) which is related to the
principal-axes coordinate system (x′, y′, z) through a counter clockwise
rotation through an angle θ in the xy (x′y′)-plane about the z-axis
(Fig. 1), the susceptibility tensor χ̂(1) becomes

[
χ̂′11 χ̂′12 0
χ̂′21 χ̂′22 0
0 0 χ̂′33

]
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Figure 1. Rotational transformation of coordinates.

so that

P̂x = ε0

[
χ̂′11Êx + χ̂′12Êy

]

P̂y = ε0

[
χ̂′21Êx + χ̂′22Êy

]
(7a)

P̂z = ε0χ̂
′
33Êz = ε0χ̂33Êz

whereas

P̂x′ = ε0χ̂11Êx′ P̂y′ = ε0χ̂22Êy′ (7b)

Since[
Êx′

Êy′

]
=

[
cos θ sin θ
− sin θ cos θ

][
Êx

Êy

]
and

[
P̂x′

P̂y′

]
=

[
cos θ sin θ
− sin θ cos θ

][
P̂x

P̂y

]

,

we deduce from (7b) that

cos θP̂x + sin θP̂y = ε0χ̂11(cos θÊx + sin θÊy)

− sin θP̂x + cos θP̂y = ε0χ̂22(− sin θÊx + cos θÊy)
(7c)

Solving Equation (7c) for P̂x and P̂y, we have

P̂x = ε0

(
χ̂11 cos2 θ + χ̂22 sin2 θ

)
Êx + ((χ̂11 − χ̂22) cos θ sin θ) Êy

P̂y = ε0 ((χ̂11 − χ̂22) cos θ sin θ) Êx +
(
χ̂11 sin2 θ + χ̂22 cos2 θ

)
Êy

(7d)

Comparing (7d) with (7a) we get the relations

χ̂′11 = χ̂11 cos2 θ+χ̂22 sin2 θ=
(

χ̂11+χ̂22

2

)
+

(
χ̂11−χ̂22

2

)
cos 2θ
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χ̂′22 = χ̂11 sin2 θ+χ̂22 cos2 θ=
(

χ̂11+χ̂22

2

)
−

(
χ̂11−χ̂22

2

)
cos 2θ

χ̂′21 = χ̂′12 =
(

χ̂11 − χ̂22

2

)
sin 2θ

χ̂′33 = χ̂33

(8)

Since the orientation of the principal axes in the transverse plane is not
preserved in a (randomly) birefringent optical fiber, the polarization-
state angle θ will be a slowly varying (random) function of the axial
coordinate z. It is seen from (8) that the linear susceptibility tensor
χ̂(1) for a birefringent optical fiber admits the decomposition

χ̂(1) (x⊥, ω) = χ̂(1) (|x⊥| , ω) + ∆χ̂(1) (x⊥, ω) = χ̂ (|x⊥| , ω) I

+




∆χ̂ (x⊥, ω)+(χ̂d (|x⊥| , ω)
+∆χ̂d (x⊥, ω)) cos 2θ

(χ̂d (|x⊥| , ω)
+∆χ̂d (x⊥, ω)) sin 2θ

0

(χ̂d (|x⊥| , ω)
+∆χ̂d (x⊥, ω)) sin 2θ

∆χ̂ (x⊥, ω)−(χ̂d (|x⊥| , ω)
+∆χ̂d (x⊥, ω)) cos 2θ

0

0 0 χ̂33 (x⊥, ω)
−χ̂ (|x⊥| , ω)



(9)

where
χ̂ (|x⊥| , ω)∆ 〈χ̂11 + χ̂22〉/2,

χ̂d (|x⊥| , ω)∆ 〈χ̂11 − χ̂22〉/2,
(10a)

∆χ̂ (x⊥, ω)∆ (χ̂11 + χ̂22)/2−χ̂ (|x⊥| , ω) ,

∆χ̂d (x⊥, ω)∆ (χ̂11 − χ̂22)/2−χ̂d (|x⊥| , ω) ,
(10b)

and I is the 3×3 identity matrix. In (10a), 〈f〉 stands for the azimuthal
average of a function f of the transverse coordinates. Denoting the
polar coordinates of a point on the transverse plane by (|x⊥| , φ), the
azimuthal average 〈f〉 of f is given by

〈f〉 (|x⊥|) ∆
1
2π

2π∫

0

f (x⊥) dφ =
1
2π

2π∫

0

f (|x⊥| , φ) dφ

The azimuthal average will be a radial function of r = |x⊥|. In order for
the asymmetric and anisotropic part ∆χ̂(1) of the linear susceptibility
tensor to satisfy the trace condition [5]

〈
tr

(
∆χ̂(1) (x⊥, ω)

)〉
= 0,

it is necessary that

〈χ̂33〉 (|x⊥| , ω) = χ̂ (|x⊥| , ω) (11)
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Since χ̂33 may be assumed to be axisymmetric (in absence of any
evidence to the contrary), (11) implies that

χ̂33 (|x⊥| , ω) ≡ χ̂ (|x⊥| , ω)

thereby making the third diagonal entry of the symmetric matrix
∆χ̂(1) (x⊥, ω) identically equal to zero. The asymmetric and the
anisotropic contributions to fiber birefringence may be considered as
arising mainly from the ∆χ̂ term and the χ̂d factor in the (non-zero)
entries of the matrix ∆χ̂(1) (x⊥, ω) respectively whereas the factor
∆χ̂d may be considered to be the combined source of a higher order
contribution to birefringence from both asymmetry and anisotropy.
In general, the azimuthal dependence of ∆χ̂ (x⊥, ω) and ∆χ̂d (x⊥, ω)
exhibits a (random) slow variation with respect to the axial coordinate
z. Since this random slow variation will be in a much larger length scale
than that of θ with respect to z, we may assume ∆χ̂ and ∆χ̂d to be
independent of z as far as the derivation of the CNLSE from Maxwell’s
equations is concerned.

3. PROBLEM FORMULATION

We are now adequately prepared to take up the systematic derivation
of the CNLSE governing the evolution of the slowly varying envelopes
of the two orthogonal polarization modes of the electric field vector
using a multiple scale perturbation method. The non-dimensional
perturbation parameter ε in terms of which a perturbation expansion
of the electric field is sought is defined as

ε∆
(

ωmax − ωmin

2ω0

)
¿ 1 (12)

where ωmax and ωmin are the maximum and the minimum (radian)
frequencies of the significant wave trains making up the initial pulse in
the form of a wave packet, and ω0 is the center frequency of the wave
packet.

The working hypothesis underlying the perturbation approach
adopted for the derivation of the CNLSE is that the nonlinear change
of the dielectric constant due to the electric field of the optical pulse is
on the order of ε2 (O(ε2)) [15]. Therefore, the magnitude of the electric
field associated with the optical pulse launched into the fiber has to be
of O(ε) in order to be consistent with the working hypothesis.

Birefringence exhibited by optical fibers may be classified into
weak, moderate or strong according to the relative magnitudes of
χ̂d, ∆χ̂ and ∆χ̂d as indicated in the following table. In the parameter
regime in which present-day optical communication systems operate,
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Table 1. Classification of fiber birefringence.

Degree of

Birefringence
max|x⊥|

∣∣∣ χ̂d(|x⊥|,ω0)
χ̂(|x⊥|,ω0)

∣∣∣ maxx⊥

∣∣∣∆χ̂(x⊥,ω0)
χ̂(|x⊥|,ω0)

∣∣∣ maxx⊥

∣∣∣∆χ̂d(x⊥,ω0)
χ̂(|x⊥|,ω0)

∣∣∣

Weak O(ε2) O(ε2) O(ε3)

Moderate O(ε) O(ε2) O(ε3)

Strong O(ε) O(ε) O(ε2)

the contribution to fiber birefringence from χ̂d and ∆χ̂ dominate over
the much smaller contribution due to the axial asymmetry of the
difference susceptibility 〈χ̂11 − χ̂22〉/2 which has been reflected in the
entries in the third column of the Table 1.

It has also been observed that the birefringence effect dominates
over the nonlinear and the dispersive effects in practical fibers mainly
because of the smaller length scale on which birefringence effects
manifest themselves compared to those of dispersion and nonlinearity.
Thus, practical fibers must be modeled as either moderately or strongly
birefringent to be consistent with the above observation. Nevertheless,
we shall model the fiber to be weakly birefringent for the purpose of
the derivation of the CNLSE to be presented in this paper. This, in
conjunction with the working hypothesis, means that the birefringence
effects are assumed to be of the same order as the nonlinear effects.
Moreover, the assumption of the weak birefringence rids the analysis
of much mathematical clutter without obscuring the main steps in the
perturbation approach adopted for the derivation of the CNLSE, and
moreover, prepares the ground for the derivation of the CNLSE in the
more realistic cases of moderate to strong birefringence to be taken up
in a sequel to this contribution. In accordance with the assumption
of weak birefringence, we may decompose the matrix ∆χ̂(1) (modeling
the deviation of the susceptibility tensor χ̂(1) from that of an (ideal)
isotropic and homogeneous dielectric) as

∆χ̂(1) = ε2χ̂dNRθ + ε2∆χ̂NI0 + ε3∆χ̂dNRθ (13)

where
χ̂dN ∆

χ̂d

ε2
, ∆χ̂N ∆

∆χ̂

ε2
, ∆χ̂dN ∆

∆χ̂d

ε3
,

I0 ∆

[ 1 0 0
0 1 0
0 0 0

]
and Rθ ∆

[ cos 2θ sin 2θ 0
sin 2θ − cos 2θ 0

0 0 0

]
(14)

The normalized susceptibilities χ̂dN ,∆χ̂N and ∆χ̂dN will then be of
the same order as χ̂. In practical low loss fibers, the imaginary part χ̂I

of χ̂ will be several orders smaller than its real part χ̂R. We make this
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fact explicit by assuming |χ̂I/χ̂R| to be of at most O(ε2). Finally we
assume that the polarization state angle θ does not vary too rapidly
with the axial coordinate so that θ may be assumed to remain constant
at least over every sufficiently short section of the fiber without any
significant error.

Denoting the inverse Fourier transforms of χ̂,∆χ̂N , χ̂dN and ∆χ̂dN

respectively by χ, ∆χN , χdN and ∆χdN , we may put the vector wave
Equation (1) for the electric field vector in the form

∆E−∇(∇ ·E)− 1
c2

∂2

∂t2


E +

∞∫

0

χ (|x⊥| , t1) E(x, t− t1)dt1




=
ε2

c2

∂2

∂t2

∞∫

0

[∆χN (x⊥, t1) I0 + χdN (|x⊥| , t1) Rθ]E(x, t− t1)dt1

+
ε3

c2

∂2

∂t2

∞∫

0

∆χdN (x⊥, t1) Rθ E(x, t− t1)dt1

+
1
c2

∂2

∂t2

∞∫

0

∞∫

0

∞∫

0

χ(3)(|x⊥| , t1, t2, t3)(E(x, t−t1)·E(x, t−t2))

E(x, t−t3)dt1dt2dt3 (15)

The linear integrodifferential operator acting on the electric field
vector E (x⊥, z, t) on the left of (15) may be represented in Cartesian
coordinates (x, y, z) using matrix notation as

L̃
(

∂

∂x
,

∂

∂y
,

∂

∂z
,

∂

∂t

)

∆




∂2

∂y2 + ∂2

∂z2

− 1
c2

∂2

∂t2
(1 + K (r) ∗) − ∂2

∂x∂y − ∂2

∂x∂z

− ∂2

∂x∂y

∂2

∂x2 + ∂2

∂z2

− 1
c2

∂2

∂t2
(1 + K(r)∗) − ∂2

∂y∂z

− ∂2

∂x∂z − ∂2

∂y∂z

∂2

∂x2 + ∂2

∂y2

− 1
c2

∂2

∂t2
(1 + K(r)∗)




(16)

where r = |x⊥| =
(
x2 + y2

)1/2. In (16), 1 is the identity operator, and
K(r)∗ denotes the operation of convolution in the t-variable with the
function

χ̃ (r, t)∆χ (r, t) for t ≥ 0,
0 for t < 0,
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that is

(K(r) ∗E) (x⊥, z, t) ∆

∞∫

−∞
χ̃ (r, t1)E (x⊥, z, t− t1) dt1

=

∞∫

0

χ (r, t1)E (x⊥, z, t− t1) dt1

The semilinear vector wave Equation (15) for the electric field vector
may then be rewritten in operator notation as

L̃
(

∂

∂x
,

∂

∂y
,

∂

∂z
,

∂

∂t

)
E (x⊥, z, t)

=
ε2

c2

∂2

∂t2

∞∫

0

[∆χN (x⊥, t1)I0+χdN (r, t1)Rθ]E (x⊥, z, t− t1) dt1

+
ε3

c2

∂2

∂t2

∞∫

0

∆χdN (x⊥, t1)RθE (x⊥, z, t− t1) dt1

+
1
c2

∂2

∂t2

∞∫

0

∞∫

0

∞∫

0

χ(3)(r, t1, t2, t3) (E(x⊥, z, t− t1) ·E(x⊥, z, t− t2))

E(x⊥, z, t− t3)dt1dt2dt3 (17)

Equation (17) is the starting point in the derivation of the CNLSE
using the perturbation method of multiple scales.

Consider the linear homogeneous problem for the electric field
vector E resulting from setting the right side of (17) to zero:

L̃
(

∂

∂x
,

∂

∂y
,

∂

∂z
,

∂

∂t

)
E (x⊥, z, t) = 0 (18)

Taking the Fourier transform of (18) in the time variable, we have

L̂
(

∂

∂x
,

∂

∂y
,

∂

∂z
,−jω

)
Ê(x⊥, z, ω)=−j

ω2ε2

c2
χ̂IN (r, ω)Ê (x⊥, z, ω) (19)

where

Ê (x⊥, z, ω)∆

∞∫

−∞
E (x⊥, z, t)ejωtdt

is the Fourier transform of E (x⊥, z, t),

χ̂IN (r, ω)∆ χ̂I(r, ω)
/
ε2
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and L̂ is the matrix differential operator

L̂∆




∂2

∂y2 + ∂2

∂z2 + n2(r,ω)ω2

c2
− ∂2

∂x∂y − ∂2

∂x∂z

− ∂2

∂x∂y
∂2

∂x2 + ∂2

∂z2 + n2(r,ω)ω2

c2
− ∂2

∂y∂z

− ∂2

∂x∂z − ∂2

∂y∂z
∂2

∂x2 + ∂2

∂y2 + n2(r,ω)ω2

c2




(20)
In (20), n(r, ω) is the refractive index defined by

n2(r, ω) = 1 + χ̂R(r, ω)

The refractive index n(r, ω) is an even function of ω in view of the
reality condition

χ̂(r,−ω) = χ̂∗(r, ω)

We first take up the linear homogeneous problem for the (real)
symmetric differential operator L̂ by dropping the ε2-order term on
the right side of (19). The dropped ε2-order term will reappear as one
of the nonhomogeneous terms in the linear nonhomogeneous problem
arising at the second stage of the perturbation expansion. We seek
bounded solutions of the linear homogeneous problem

L̂
(

∂

∂x
,

∂

∂y
,

∂

∂z
,−jω

)
Ê (x⊥, z, ω) = 0 (21)

that decay to zero as r = |x⊥| → ∞, in the form

Ê (x⊥, z, ω) = ejβzU (x⊥, β, ω) (22)

where the (vector-valued) mode function U (x⊥, β, ω) gives the
transverse structure of the electric field Ê (x⊥, z, ω).

Denoting by L2
(
R2

)
the Hilbert space of square integrable

complex-valued functions (of x and y) and by S1(0, a) the circle{
(x, y) : x2 + y2 = a2

}
, we define the subspace H

(
R2

)
of L2

(
R2

)3 to
be the set of all those (vector-valued) functions which are infinitely
differentiable on R2

/
S1(0, a) and which, together with all their

derivatives, belong to L2
(
R2

)3. The mode function U ∈ H
(
R2

)
which is an inner-product space with the inner product induced from
L2

(
R2

)3. The inner product of f ,g ∈ H
(
R2

)
is given by

〈f ,g〉∆
∫∫

R2

(
fxg∗x + fyg

∗
y + fzg

∗
z

)
dxdy

where the suffixes x, y and z denote the respective components. The
cylinder S1(0, a)×R corresponds to the core-cladding boundary of the
optical fiber.
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The mode function U (x⊥, β, ω) satisfies the linear homogeneous
differential equations

L
(

∂

∂x
,

∂

∂y
, jβ,−jω

)
U

∆




∂2

∂y2 − β2+ n2(r,ω)ω2

c2
− ∂2

∂x∂y −jβ ∂
∂x

− ∂2

∂x∂y
∂2

∂x2 − β2+ n2(r,ω)ω2

c2
−jβ ∂

∂y

−jβ ∂
∂x −jβ ∂

∂y
∂2

∂x2 + ∂2

∂y2 + n2(r,ω)ω2

c2


U

= 0 (23)

Nontrivial solution for U exist only for those functions β(ω) that satisfy
the dispersion equation. We now assume that the ratio of the refractive
index difference between the core and the cladding to the core refractive
index is sufficiently small so that the fiber is monomode supporting
only a single, but possibly degenerate, guided mode, similar to the
two-fold degenerate dominant HE11 mode supported by an ideal step-
index fiber. The mode functions corresponding to the two degenerate
modes may be chosen to be mutually orthogonal with respect to the
L2-inner product. The function U (x⊥, β(ω), ω) will then signify any
one of the two orthogonal modes.

We seek a solution for the electric field vector E (x⊥, z, t) in the
form of a wave packet, that is, as a continuous linear superposition of
wavetrains with the frequencies of all the significant wavetrains lying
in an ε-neighborhood of a center frequency ω0:

E (x⊥, z, t) =
1
2π

∞∫

−∞
Ê (x⊥, z, ω) e−jωtdω (24)

where almost all the ‘energy’ of the Fourier transform Ê (x⊥, z, ω) of
the electric field vector is contained in an ε-neighborhood of ω0. Thus

Ê(x⊥, z, ω)=Ũ(x⊥, ω)Â(z, ω−ω0)ejβ0z+Ũ∗(x⊥,−ω)Â∗(z,−ω−ω0)e−jβ0z

(25)
where

β0 ∆ β(ω0), Ũ(x⊥, ω)∆U (x⊥, β(ω), ω) ,

the superscript ∗ denotes the complex conjugate, and Â(z, ω) is
essentially zero for ω /∈ [−ω0ε, ω0ε]. The z-dependence of the
frequency-domain mode-envelope function Â(z, ω) arises mainly due
to attenuation, dispersion and nonlinearity. In complete absence of
attenuation, dispersion and nonlinearity, each wavetrain making up
the wave packet will be traveling at a constant speed with constant
amplitude. As a result, the wave packet will be translating itself
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along the z-axis at the constant speed (ω0/β0 = 1/β′(ω0)) without any
change of shape, and the mode-envelope function will be independent
of z in a frame of reference moving with this constant speed along the z-
axis. The effect of a small, but nonzero, amount of (linear) dispersion(
0 < ω2

0

∣∣∣β′′(ω0)
/

β(ω0)
∣∣∣ ¿ 1

)
would be a gradual spreading as seen

in a frame of reference moving at the group speed 1/β′(ω0) in the
axial direction. The effect of a small amount of attenuation would
be gradual decay of the amplitudes of all the constituent wavetrains
with propagation distance. Finally, the effect of the weak nonlinearity
would be a gradual compression of the wavepacket in the axial direction
partially compensating for the dispersive-spreading. When there
is an exact balance between the opposing effects of dispersion and
nonlinearity, an envelope soliton, capable of maintaining the pulse
shape over large propagation distances in absence of attenuation, can
in principle be formed. Thus, the time-domain mode envelope function
Ã(z, t), the Fourier transform of which is essentially supported in an
ε-neighborhood of the origin on the ω-axis, will be a slowly varying
function of both z and t.

Expanding the modal functions Ũ(x⊥, ω) and Ũ∗(x⊥,−ω)
appearing in (25) in Taylor series around ω0 and −ω0, and
computing the inverse Fourier transform of the resulting infinite-series
representation of Ê (x⊥, z, ω) term-by-term, we obtain a time-domain
wave-packet representation for the electric field vector:

E(x⊥, z, t) = ej(β0z−ω0t)

( ∞∑

n=0

1
n!

∂n

∂ωn
Ũ (x⊥, ω0)

(
j

∂

∂t

)n
)

Ã(z, t)

+e−j(β0z−ω0t)

( ∞∑

n=0

1
n!

∂n

∂ωn
Ũ∗ (x⊥,−ω0)

(
−j

∂

∂t

)n
)

Ã∗(z, t) (26)

where

Ã(z, t)∆
1
2π

∞∫

−∞
Â(z, ω)e−jωtdω

will be a slowly-varying complex-valued function of z and t. Denoting
the differential operators of infinite order (with variable coefficients)
acting on the slowly-varying envelope functions Ã(z, t) and Ã∗(z, t)
respectively by Ũ

(
x⊥, ω0 + j ∂

∂t

)
and Ũ∗ (

x⊥,−ω0 − j ∂
∂t

)
, we end up
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with a compact time-domain representation of the wavepacket:

E(x⊥, z, t) = ej(β0z−ω0t)Ũ
(
x⊥, ω0 + j

∂

∂t

)
Ã(z, t)

+e−j(β0z−ω0t)Ũ∗
(
x⊥,−ω0 − j

∂

∂t

)
Ã∗(z, t) (27)

We now make explicit the slowly-varying nature of the complex
envelope Ã(z, t) as a function of z and t with the help of one slow
time-scale variable and two slow space-scale variables defined by

T∆εt, Z1∆εz, Z2∆ε2z (28)

Thus, we may represent Ã(z, t) in terms of the slow-scale variables as

Ã(z, t) ∆A(Z1, Z2; T ) .

The corresponding wave-packet representation of the electric field
vector will then be

E (x⊥, z, t) ∆Ẽ
(
x⊥, z′, t′; Z1, Z2, T ; ε

)

= ej(β0z′−ω0t′)Ũ
(
x⊥, ω0 + jε

∂

∂T

)
A(Z1, Z2, T ) + c.c. (29)

since
∂

∂t
Ã(z, t) = ε

∂

∂T
A(Z1, Z2, T ) (30a)

In (29), and in the sequel, ‘c.c.’ denotes the complex conjugate of the
preceding expression. The corresponding transformation rules for the
partial derivatives of E and Ẽ with respect to the axial coordinate and
the time variable are

∂E
∂z

=
∂Ẽ
∂z′

+ ε
∂Ẽ
∂Z1

+ ε2 ∂Ẽ
∂Z2

,
∂E
∂t

=
∂Ẽ
∂t′

+ ε
∂Ẽ
∂T

(30b)

Accordingly

L
(

∂

∂x
,

∂

∂y
,

∂

∂z
,

∂

∂t

)
E (x⊥, z, t)

= L
(

∂

∂x
,

∂

∂y
,

∂

∂z′
+ε

∂

∂Z1
+ε2 ∂

∂Z2
,

∂

∂t′
+ε

∂

∂T

)
Ẽ

(
x⊥, z′, t′; Z1, Z2, T ; ε

)

= ej(β0z′−ω0t′)L
(

∂

∂x
,

∂

∂y
, jβ0 + ε

∂

∂Z1
+ ε2 ∂

∂Z2
,−jω0 + ε

∂

∂T

)

Ũ
(
x⊥, ω0 + jε

∂

∂T

)
A(Z1, Z2, T )
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+e−j(β0z′−ω0t′)L
(

∂

∂x
,

∂

∂y
,−jβ0 + ε

∂

∂Z1
+ ε2 ∂

∂Z2
, jω0 + ε

∂

∂T

)

Ũ∗
(
x⊥,−ω0 − jε

∂

∂T

)
A∗(Z1, Z2, T ), (31)

In (31), L
(

∂
∂x , ∂

∂y , ∂
∂z , ∂

∂t

)
is the integro-differential operator derived

from L̃
(

∂
∂x , ∂

∂y , ∂
∂z , ∂

∂t

)
by replacing χ (r, t) by the inverse Fourier

transform χR (r, t)

(
∆ 1

2π

∞∫
−∞

χ̂R(r, ω)e−jωtdω

)
of the real part of

χ̂ (r, ω). We seek a solution of the semilinear wave Equation (17) in the
form of a superposition of two wave packets centered around the same
frequency ω0. The peak values of the two constituent wavepackets
are assumed to be O(ε) in accordance with the working hypothesis.
Substituting Ẽ (x⊥, z′, t′;Z1, Z2, T ; ε)∆ εĒ (x⊥, z′, t′;Z1, Z2, T ; ε) for
E(x⊥, z, t) in (17), we have the following semilinear vector wave
equation for Ē (x⊥, z′, t′; Z1, Z2, T ; ε) correct to ε2-order:

L
(

∂

∂x
,

∂

∂y
,

∂

∂z′
+ε

∂

∂Z1
+ε2 ∂

∂Z2
,

∂

∂t′
+ε

∂

∂T

)
Ē

(
x⊥, z′, t′; Z1, Z2, T ; ε

)

= j
ε2

c2

∂2

∂t′2

∞∫

−∞
χIN (r, t1)Ē

(
x⊥, z′, t′ − t1;Z1, Z2, T ; ε

)
dt1

+
ε2

c2

∂2

∂t′2

∞∫

0

[∆χN (x⊥, t1)I0+χdN (r, t1)Rθ]Ē
(
x⊥, z′, t′−t1; Z1, Z2, T ; ε

)
dt1

+
ε2

c2

∂2

∂t′2

∞∫

0

∞∫

0

∞∫

0

χ(3)(r, t1, t2, t3)Ē
(
x⊥, z′, t′ − t1; Z1, Z2, T ; ε

)

·Ē(
x⊥, z′, t′−t2;Z1, Z2, T ; ε

)
Ē

(
x⊥, z′, t′−t3; Z1, Z2, T ; ε

)
dt1dt2dt3, (32)

where χIN (r, t) is the inverse Fourier transform of χ̂IN (r, ω).

4. PERTURBATION SOLUTION

We seek an asymptotic solution of (32) in the form of a power series
in the perturbation parameter ε:

Ē
(
x⊥, z′, t′; Z1, Z2, T ; ε

)
=

∞∑

n=0

εnEn

(
x⊥, z′, t′;Z1, Z2, T

)
(33)
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Substituting (33) into (32) and setting ε = 0, we have the following
homogeneous problem for E0 (x⊥, z′, t′; Z1, Z2, T ) at the ε0-order:

L
(

∂

∂x
,

∂

∂y
,

∂

∂z′
,

∂

∂t′

)
E0

(
x⊥, z′, t′; Z1, Z2, T

)
= 0 (34)

We assume a solution for E0 (x⊥, z′, t′; Z1, Z2, T ) as a superposition of
wavepackets corresponding to the two degenerate orthogonal modes of
a monomode fiber:

E0

(
x⊥, z′, t′; Z1, Z2, T

)

= ej(β0z′−ω0t′)
2∑

l=1

Ul (x⊥, β(ω0), ω0)Al(Z1, Z2, T ) + c.c. (35)

where Ul (x⊥, β(ω0), ω0), l = 1, 2, are the mode functions associated
with the two orthogonally polarized modes evaluated at the common
center frequency ω0 of the wavepackets, and Al(Z1, Z2, T ), l = 1, 2,
are their slowly-varying complex envelopes. We assume without loss
in generality that the mode functions Ul, l = 1, 2, are normalized with
respect to the norm induced by the L2-innerproduct, that is

‖Ul‖2 ∆ 〈Ul,Ul〉 = 1 for l = 1, 2.

The mode functions Ul (x⊥, β(ω), ω), l = 1, 2, satisfy the linear
homogeneous differential equations in the transverse (Cartesian)
coordinates (x, y):

L
(

∂

∂x
,

∂

∂y
, jβ(ω),−jω

)
Ul (x⊥, β(ω), ω) = 0, l = 1, 2. (36)

Since (36) is satisfied for all ω, we have the identity

d

dω
(L0Ul) (ω) ≡ 0, l = 1, 2 for all ω (37)

where we have resorted to the compact notation L0 = L0 (jβ,−jω) for
the operator L

(
∂
∂x , ∂

∂y , jβ,−jω
)
. Carrying out the ω-differentiation

in (37), we get another identity:
(
L0

∂Ũl

∂ω

)
(ω)=−

(
dL0

dω
Ũ
)
(ω)=−j

[(
β′(ω)L1−L2

)
Ũl

]
(ω) , l = 1, 2, (38a)

for all ω, where Ũl = Ũl (x⊥, ω) ∆Ul (x⊥, β (ω) , ω) , l = 1, 2, and
we have denoted ∂L0

∂(jβ) by L1, ∂L0
∂(−jω) by L2 = j ∂

∂ω

(
n2(r,ω)ω2

c2

)
I,
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and dβ(ω)
dω by β′(ω). Taking the L2-innerproduct of (38a) with

Ũm (x⊥, ω) ∆Um (x⊥, β (ω) , ω) , m = 1, 2, we have

0 =

〈
∂Ũl

∂ω
,L0Ũm

〉
(ω) =

〈
L0

∂Ũl

∂ω
, Ũm

〉
(ω)

= −j
〈(

β′ (ω)L1 − L2

)
Ũl, Ũm

〉
(ω) , l, m = 1, 2, (38b)

where we have appealed to the symmetry property of the operator L0

with respect to the L2-innerproduct, viz.,
〈L0f ,g〉 = 〈f ,L0g〉 ∀f ,g ∈ H(R2)

which follows easily by integration by parts since Ũl and ∂Ũl
∂ω ∈ H

(
R2

)
for l = 1, 2, and the functions in H

(
R2

)
vanish at infinity together with

all their derivatives with respect to x and y. From (38b), we obtain
the useful identity:

〈L2Ul,Um〉 (ω) = β′ (ω) 〈L1Ul,Um〉 (ω) , l, m = 1, 2, (39)
for all ω. Differentiating the identity (38a) once again with respect to
ω, we obtain yet another identity:(
L0

∂2Ũl

∂ω2

)
(ω) =−jβ′′(ω)

(
L1Ũl

)
(ω)+

[(
β′(ω)2L11−β′(ω)L12+L22

)
Ul

]
(ω)

−2j

[
(
β′ (ω)L1 − L2

) ∂Ũl

∂ω

]
(ω) , l = 1, 2 (40)

In (40)

L11∆
∂

∂(jβ)
L1, L12∆

∂

∂(−jω)
L1 = −2β′ (ω) I0 and L22∆

∂

∂(−jω)
L2

The scalar identity (39) and the vector identities (38a) and (40) turn
out to be quite useful for the derivation of the CNLSE.

We now turn to the ε1-order problem. Substituting (33) into (32),
differentiating the resulting equation with respect to ε, and setting
ε = 0, we have to ε1-order:

L
(

∂

∂x
,

∂

∂y
,

∂

∂z′
,

∂

∂t′

)
E1

(
x⊥, z′, t′; Z1, Z2, T

)

=

{
−jL(1)

0

(
2∑

l=1

∂Ũl (x⊥, ω0)
∂ω

∂Al

∂T

)
− L(1)

1

(
2∑

l=1

Ũl (x⊥, ω0)
∂Al

∂Z1

)

−L(1)
2

(
2∑

l=1

Ũl (x⊥, ω0)
∂Al

∂T

)}
ej(β0z′−ω0t′) + c.c. (41)
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where

L(1)
0 ∆L0(jβ0,−jω0), L(1)

1 ∆L1(jβ0,−jω0) and L(1)
2 ∆L2(jβ0,−jω0)

Using the operator identities (38a), the expression for the coefficient
of ej(β0z′−ω0t′) in (41) may be simplified to

F1(x⊥; Z1, Z2, T ; ω0)=−
2∑

l=1

L(1)
1 Ũl (x⊥, ω0)

(
∂Al

∂Z1
+β′(ω0)

∂Al

∂T

)
(42)

Assuming a solution of (41) in the form

E1

(
x⊥, z′, t′; Z1, Z2, T

)
=V1(x⊥; Z1, Z2, T ; ω0) ej(β0z′−ω0t′)+c.c., (43)

and substituting into (41), we find that V1 (x⊥; Z1, Z2, T ; ω0) satisfies
the equation

L(1)
0 V1(x⊥; Z1, Z2, T ;ω0)=−

2∑

l=1

L(1)
1 Ũl(x⊥, ω0)

(
∂Al

∂Z1
+β′(ω0)

∂Al

∂T

)

(44)
Taking the L2-innerproduct of (44) with Ũm (x⊥, ω0) , m = 1, 2, we
have

0 =
〈
V1,L

(1)
0 Ũm

〉
=

〈
L(1)

0 V1, Ũm

〉

= −
2∑

l=1

〈
L(1)

1 Ũl, Ũm

〉 (
∂Al

∂Z1
+ β′(ω0)

∂Al

∂T1

)
, m = 1, 2 (45)

But, the identities (39) and the formula L(1)
2 = j ∂

∂ω

(
n2(r,ω0)ω2

0
c2

)
I imply

that 〈
L(1)

1 Ũl, Ũm

〉
= β′(ω0)−1

〈
L(1)

2 Ũl, Ũm

〉
= 0 if l 6= m,

6= 0 if l = m.
(46)

Thus, we deduce from (45) that
(

∂Am

∂Z1
+ β′(ω0)

∂Am

∂T

)
= 0, m = 1, 2 (47)

Once the compatibility conditions (47) are satisfied, Equation (44)
reduces to the homogeneous problem

L(1)
0 V1 = 0 (48)

Since a nontrivial solution in the null space of the L(1)
0 has already been

included in the leading-order solutions Ul (x⊥, β(ω0), ω0), l = 1, 2,
we may set V1 (x⊥; Z1, Z2, T2; ω0), and hence E1 (x⊥, z′, t′; Z1, Z2, T )
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identically equal to zero. The compatibility conditions (47) imply that
the complex envelopes, Al, l = 1, 2, depend on the slow-scale variables
Z1 and T only through the combination T − β′(ω0)Z1.

We are now ready to take up the ε2-order problem. Substitut-
ing (33), with E1 ≡ 0, into (32), differentiating the resulting equation
twice with respect to ε, and setting ε = 0, we have, to order ε2:

L
(

∂

∂x
,

∂

∂y
,

∂

∂z′
,

∂

∂t′

)
E2

(
x⊥, z′, t′; Z1, Z2, T

)

= −1
2
ej(β0z′−ω0t′) ∂2

∂ε2

{[
L

(
∂
∂x , ∂

∂y , jβ0+ε ∂
∂Z1

+ε2 ∂
∂Z2

,−jω0+ε ∂
∂T

)

+j
ε2ω2

0
c2

χ̂IN (r, ω0)I

]

(
2∑

l=1

Ũl

(
x⊥, ω0 + ε

∂

∂T

)
Al (Z1, Z2, T )

)}

ε=0

+ c.c.

+
1
c2

∂2

∂t′2

∞∫

0

[∆χN (x⊥, t1)I0+χdN (r, t1)Rθ]E0

(
x⊥, z′, t′−t1;Z1, Z2, T

)
dt1

+
1
c2

∂2

∂t′2

∞∫

0

∞∫

0

∞∫

0

χ(3)(r, t1, t2, t3)E0

(
x⊥, z′, t′ − t1; Z1, Z2, T

)

·E0

(
x⊥, z′, t′ − t2; Z1, Z2, T

)
E0

(
x⊥, z′, t′ − t3;Z1, Z2, T

)
dt1dt2dt3

= F21 (x⊥;Z1, Z2, T ; β0, ω0) ej(β0z′−ω0t′) + c.c.

+F23 (x⊥; Z1, Z2, T ; 3β0, 3ω0) e3j(β0z′−ω0t′) + c.c. (49)

The explicit expressions for the coefficients F21 and F23, respectively,
of ej(β0z′−ω0t′) and e3j(β0z′−ω0t′) on the right side of (49) are

F21 (x⊥; Z1, Z2, T ; β0, ω0)

= −
(
L(1)

1

∂

∂Z2
+

1
2
L(1)

11

∂2

∂Z2
1

+
1
2
L(1)

12

∂2

∂Z1∂T
+

1
2
L(1)

22

∂2

∂T 2

)(
2∑

l=1

ŨlAl

)

−j

(
L(1)

1

∂

∂Z1
+ L(1)

2

∂

∂T

) (
2∑

l=1

∂Ũl

∂ω0

∂Al

∂T

)

−1
2
L(1)

0

(
2∑

l=1

∂2Ũl

∂ω2
0

∂2Al

∂T 2

)
− j

ω2
0

c2
χ̂IN (r, ω0)

(
2∑

l=1

ŨlAl

)

−ω2
0

c2
[∆χ̂N (x⊥, ω0)I0 + χ̂dN (r, ω0)Rθ]

2∑

l=1

ŨlAl
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−ω2
0

c2
{χ̂(3)(ω0, ω0,−ω0)

2∑

l=1

(
Ũl · Ũl

)
Ũ∗

l |Al|2 Al + 2χ̂(3)(−ω0, ω0, ω0)

2∑

l=1

(
Ũl · Ũ∗

l

)
Ũl |Al|2 Al

+2χ̂(3)(ω0, ω0,−ω0)
2∑

l=1
l 6=m

(
Ũl · Ũm

)
Ũ∗

l |Al|2 Am + 2χ̂(3)(−ω0, ω0, ω0)

2∑

l=1
l 6=m

(∣∣∣Ũl

∣∣∣
2
Ũm +

(
Ũ∗

l · Ũm

)
Ũl

)
|Al|2 Am

+χ̂(3)(ω0, ω0,−ω0)
2∑

l=1
l 6=m

(
Ũl · Ũl

)
Ũ∗

mA2
l A

∗
m + 2χ̂(3)(−ω0, ω0, ω0)

2∑

l=1
l 6=m

(
Ũl · Ũ∗

m

)
ŨlA

2
l A

∗
m} (50)

where
L(1)

lm ∆Llm(jβ0,−jω0), l,m = 1, 2, l ≤ m,
∂

∂ω0
∆

[
∂

∂ω

]
ω=ω0

and ∂2

∂ω2
0

∆
[

∂2

∂ω2

]
ω=ω0

and we have made use of the equality χ̂(3)(ω0,−ω0, ω0) =
χ̂(3)(−ω0, ω0, ω0) to condense the expressions for the coefficients of the
nonlinear terms in (50).

F23 (x⊥; Z1, Z2, T ; 3β0, 3ω0) =
−9ω2

0

c2
χ̂(3)(ω0, ω0, ω0)





2∑

l=1

(
Ũl ·Ũl

)
ŨlA

3
l +2

2∑

l=1
l 6=m

(
Ũl ·Ũm

)
ŨlA

2
l Am+

2∑

l=1
l 6=m

(
Ũl ·Ũl

)
ŨmA2

l Am





(51)

In (50) and (51), we have suppressed the arguments x⊥ and ω0 of
Ũl, l = 1, 2, and the arguments Z1, Z2 and T of Al, l = 1, 2, in the
interests of brevity. Making use of the compatibility conditions (47),
the sum of the first three terms in (50) may be rewritten as

−
[
L(1) ∂

∂Z2
+

1
2

(
β′(ω0)2L

(1)
11 − β′(ω0)L

(1)
12 + L(1)

22

) ∂2

∂T 2

] 2∑

l=1

ŨlAl
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+j
(
β′(ω0)L

(1)
1 − L(1)

2

) 2∑

l=1

(
∂Ũl

∂ω0

)
∂2Al

∂T 2
+

1
2
L(1)

0

2∑

l=1

(
∂2Ũl

∂ω2
0

)
∂2Al

∂T 2

which collapse, in view of the identity (40), to

−L(1)
1

2∑

l=1

Ũl

(
∂Al

∂Z2
+ j

β
′′
(ω0)
2

∂2Al

∂T 2

)
(52)

We look for a solution of the nonhomogeneous Equation (49)
having the same form as the nonhomogeneous terms:

E2

(
x⊥, z′, t′;Z1, Z2, T

)
=V21(x⊥; Z1, Z2, T ; β0, ω0)ej(β0z′−ω0t′)+c.c.

+V23 (x⊥; Z1, Z2, T ; 3β0, 3ω0) e3j(β0z′−ω0t′) + c.c. (53)

The (vector) functions V21 and V23 are to be chosen to satisfy,
respectively, the nonhomogeneous differential equations

L(1)
0 V21 (x⊥; Z1, Z2, T ; β0, ω0) = F21 (x⊥;Z1, Z2, T ;β0, ω0) (54)

and

L(3)
0 V23 (x⊥;Z1, Z2, T ; 3β0, 3ω0) = F23 (x⊥; Z1, Z2, T ; 3β0, 3ω0) (55)

where
L(3)

0 ∆L0(3jβ0,−3jω0)

Let us consider (55) first. Since 3β (ω0) 6= β (3ω0), in general,
the null-space of the operator L(3)

0 is trivial. Consequently, the
range of the operator is the whole space H

(
R2

)
. Therefore,

(55) can be solved uniquely for V23 (x⊥; Z1, Z2, T ; 3β0, 3ω0) in
terms of F23 (x⊥; Z1, Z2, T ; 3β0, 3ω0). A homogeneous solution

of the form
2∑

l=1

Ul (x⊥, β(3ω0), 3ω0)A
(3)
l (Z1, Z2, T ) belonging to

the nontrivial null space of the operator L0 (jβ(3ω0),−3jω0)
may be added to V23 (x⊥;Z1, Z2, T ; 3β0, 3ω0) and the values of
A

(3)
l (0, 0, T ) , l = 1, 2, chosen to make the resulting total solution

corresponding to the wavepacket centered around 3ω0 generated
out of the nonlinear interaction vanish at z = Z1 = Z2 =
0 (launching plane). The semilinear partial differential equations
in the slow variables Z1, Z2 and T governing the evolution of
A

(3)
l (Z1, Z2, T ) , l = 1, 2, and the ε4-order corrections to the complex

envelopes Al (Z1, Z2, T ) , l = 1, 2, arising out of the nonlinear
interaction between V23 (x⊥; Z1, Z2, T ; 3β0, 3ω0) e3j(β0z′−ω0t′)+c.c. and

ej(β0z′−ω0t′)
2∑

l=1

Ul (x⊥, β0, ω0) Al (Z1, Z2, T ) + c.c. can be determined
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only at the 4th stage of the perturbation. In general, the correction
to the complex envelopes Al (Z1, Z2, T ) , l = 1, 2, due to all the odd
harmonics of ω0 (generated out of the nonlinear interaction) up to
and including the (2n + 1)th harmonic will be of the order ε2n+2 at
least. This happy circumstance makes it possible to study nonlinear
pulse propagation in an optical fiber independently of any harmonic or
combination frequency generation.

We now return to (54). Taking the L2-inner product of (54) with
Ũp (x⊥, ω0) , p = 1, 2, we have

0 =
〈
V21,L

(1)
0 Ũp

〉
=

〈
L(1)

0 V21, Ũp

〉
=

〈
F21, Ũp

〉
, p = 1, 2. (56)

Now
〈
F21, Ũp

〉
= −

2∑

l=1

{〈
L(1)

1 Ũl, Ũp

〉(
∂Al

∂Z2
+ j

β
′′
(ω0)
2

∂2Al

∂T 2

)

+
ω2

0

c2

〈
(∆χ̂NI0 + χ̂dNRθ) Ũl, Ũp

〉
Al

}

−j
ω2

0

c2

〈
χ̂IN (ω0)Ũp, Ũp

〉
Ap−ω2

0

c2

{〈
χ̂(3)(ω0, ω0,−ω0)

(
Ũp · Ũp

)
Ũ∗

p, Ũp

〉

+2
〈
χ̂(3)(−ω0, ω0, ω0)

(
Ũp · Ũ∗

p

)
Ũp, Ũp

〉
|Ap|2 Ap

+2
2∑

l=1

(1− δlp)
[〈

χ̂(3)(ω0, ω0,−ω0)
(
Ũl · Ũp

)
Ũ∗

l

+χ̂(3)(−ω0, ω0, ω0)
(∣∣∣Ũl

∣∣∣
2
Ũp +

(
Ũ∗

l .Ũp

)
Ũl

)
, Ũp

〉]
|Al|2 Ap

+
2∑

l=1

(1− δlp)
[〈

χ̂(3)(ω0, ω0,−ω0)
(
Ũl · Ũl

)
Ũ∗

p

+2χ̂(3)(−ω0, ω0, ω0)
(
Ũl · Ũ∗

p

)
Ũl, Ũp

〉]
A2

l A∗p

}
, p = 1, 2 (57)

With the help of the identity (39), the compatibility conditions〈
F21, Ũp

〉
= 0, p = 1, 2, may be translated to

∂Am

∂Z2
+ j

β
′′
(ω0)
2

∂2Am

∂T 2
+ α (ω0) Am − j

2∑

l=1

Λml (θ, ω0)Al

−j

(
2∑

l=1

[n1 (ω0) δml + n3 (ω0) (1− δml)] |Al|2
)

Am
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−jn2 (ω0)

(
2∑

l=1

(1− δml) A2
l

)
A∗m, m = 1, 2, (58)

where

α (ω0) = β′ (ω0)
(
ω2

0

/
c2

) 〈
χ̂IN (ω0) Ũm, Ũm

〉/
D (ω0) , (59a)

−Λ11 (θ, ω0) = Λ22 (θ, ω0) = σs1 (ω0)− σa (ω0) cos 2θ,

Λ12 (θ, ω0) = Λ21 (θ, ω0) = σs2 (ω0)− σa (ω0) sin 2θ,
(59b)

n1 (ω0) = β′ (ω0)
(
ω2

0

/
c2

) 〈(
χ̂(3)(ω0, ω0,−ω0)

(
Ũm · Ũm

)
Ũ∗

m

+2χ̂(3)(−ω0, ω0, ω0)
) ∣∣∣Ũm

∣∣∣
2
Ũm, Ũm

〉/
D(ω0),

n2 (ω0) = β′ (ω0)
(
ω2

0

/
c2

)
(1− δmp)

〈(
χ̂(3)(ω0, ω0,−ω0)

(
Ũm ·Ũm

)
Ũ∗

p

+2χ̂(3)(−ω0, ω0, ω0)
) (

Ũ∗
p · Ũm

)
Ũm, Ũp

〉 /
D(ω0),

n3 (ω0) = n1 (ω0)− n2 (ω0) = 2β′ (ω0)
(
ω2

0/c2
)
(1− δmp)

〈
χ̂(3)(ω0, ω0,−ω0)

(
Ũm.Ũp

)
Ũ∗

m

+χ̂(3)(−ω0, ω0, ω0)
(∣∣∣Ũm

∣∣∣
2
Ũp +

(
Ũ∗

m.Ũp

)
Ũm

)
, Ũp

〉 /
D(ω0)

(59c)

and where

σs1 (ω0) = −β′ (ω0)
(
ω2

0

/
c2

) 〈
∆χ̂N (ω0) Ũ1, I0Ũ1

〉/
D (ω0)

= β′ (ω0)
(
ω2

0

/
c2

) 〈
∆χ̂N (ω0) Ũ2, I0Ũ2

〉/
D (ω0) ,

σs2 (ω0) = β′ (ω0)
(
ω2

0

/
c2

) 〈
∆χ̂N (ω0) Ũ1, I0Ũ2

〉/
D (ω0)

= β′ (ω0)
(
ω2

0

/
c2

) 〈
∆χ̂N (ω0) Ũ2, I0Ũ1

〉/
D (ω0) ,

(60a)

σa (ω0) = β′ (ω0)
(
ω2

0

/
c2

) 〈
χ̂dN (ω0) Ũ1, I1Ũ1

〉/
D (ω0)

= −β′ (ω0)
(
ω2

0

/
c2

) 〈
χ̂dN (ω0) Ũ2, I1Ũ2

〉/
D (ω0)

= −β′ (ω0)
(
ω2

0

/
c2

) 〈
χ̂dN (ω0) Ũ1, I2Ũ2

〉/
D (ω0)

= −β′ (ω0)
(
ω2

0

/
c2

) 〈
χ̂dN (ω0) Ũ2, I2Ũ1

〉/
D (ω0) , (60b)
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D(ω0) = −j
〈
L(1)

2 Um, Ũm

〉
=

〈
∂

∂ω

(
n2(r, ω0)ω2

0

c2

)
Ũm, Ũm

〉
, (61)

I1 =

[ 1 0 0
0 −1 0
0 0 0

]
and I2 =

[ 0 1 0
1 0 0
0 0 0

]
(62)

Since the susceptibilities ∆χ̂, χ̂dN and χ̂(3) are all complex with
their imaginary parts several orders smaller than their respective
real parts, the coefficients of asymmetry σs1 (ω0) and σs2 (ω0) , the
coefficient of anisotropy σa (ω0) , and the coefficients of nonlinearity
n1 (ω0) and n2 (ω0) turn out also to be complex with very small
imaginary parts.

Since the dependence of the slowly-varying envelope functions
Am(Z1, Z2, T ), m = 1, 2, on Z1 and T is only through the combination
T − β′ (ω0) Z1, we may introduce a new set {ζ, τ} of independent
variables related to the set {Z1, Z2, T} by

ζ∆Z2 = εZ1 = ε2z τ∆T − β′ (ω0) Z1 = ε
(
t− β′ (ω0) z

)
(63a)

In terms of the new dependent variables

A(ζ, τ)∆A1 (Z1, Z2, T ) , B(ζ, τ)∆A2 (Z1, Z2, T ) , (63b)

Equation (58) becomes

∂A

∂ζ
+ j

β
′′
(ω0)
2

∂2A

∂τ2
+ α(ω0)A + j (b1 (θ, ω0) A− b2 (θ, ω0)B)

−jn1(ω0)A
(
|A|2 + |B|2

)
+ jn2(ω0)

(
A |B|2 −A∗B2

)
= 0 (64a)

∂B

∂ζ
+ j

β
′′
(ω0)
2

∂2B

∂τ2
+ α(ω0)B − j (b1 (θ, ω0) B + b2 (θ, ω0)A)

−jn1(ω0)B
(
|A|2 + |B|2

)
+ jn2(ω0)

(
|A|2 B −A2B∗

)
= 0(64b)

where
b1 (θ, ω0) = σs1 (ω0)− σa (ω0) cos 2θ,

b2 (θ, ω0) = σs2 (ω0)− σa (ω0) sin 2θ
(65)

The pair of Equations (64a)–(64b) is the CNLSE governing the
evolution of the complex envelopes A(ζ, τ) and B(ζ, τ) of the
wavepackets representing the two orthogonal polarization modes of
a weakly birefringent monomode fiber. In (64), α(ω0) is the
usual coefficient of attenuation, b1 (θ, ω0) and b2 (θ, ω0) are the two
birefringence coefficients (associated with terms linear in A and B),
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and n1(ω0) and n2(ω0) are the coefficients of the nonlinear terms.
Since the imaginary parts of σs1 (ω0) , σs2 (ω0) , σa (ω0) , n1 (ω0) and
n2 (ω0) are much smaller in magnitude compared to their respective
real parts, the complex-valued birefringent coefficients b1 (θ, ω0) and
b2 (θ, ω0) and the coefficients of nonlinearity n1 (ω0) and n2 (ω0) may
be replaced by their respective real parts in (64) without any significant
error. All the coefficients appearing in the CNLSE (64), henceforth,
are understood to be real. The birefringence coefficient b2 (θ, ω0) gives
rise to linear coupling between the mode envelope functions A(ζ, τ)
and B(ζ, τ). Since the last term in (64a) and that in (64b) are
equal to 2n2 (ω0) Im (A∗B) B and −2n2 (ω0) Im (A∗B)A respectively,
these terms represent an exchange of energy, that varies with ζ and
τ , between the mode envelope functions arising out of the nonlinear
coupling between the two modes. The two coupled partial differential
Equations (64a)–(64b) may be combined into a single vector partial
differential equation for the two-dimensional vector envelope function
A (ζ, τ)∆ [A (ζ, τ) , B (ζ, τ)]T :

∂A
∂ζ

+ j
β
′′
(ω0)
2

∂2A
∂τ2

+ α(ω0)A− jB (θ, ω0)A − jn1(ω0) |A|2 A

+jn2(ω0)
(
AHσ3A

)
σ3A = 0 (66)

where the 2× 2 matrices B (θ, ω0) and σ3 are given by

B (θ, ω0)∆
[ −b1 (θ, ω0) b2 (θ, ω0)

b2 (θ, ω0) b1 (θ, ω0)

]
, σ3∆

[
0 j
−j 0

]

and the superscript H denotes the Hermitian (transpose conjugate).

5. DISCUSSION AND CONCLUSIONS

It is, in general, not possible for a weakly birefringent fiber to be
polarization preserving due to the presence of ‘linear coupling’ between
the two equations in (64) through the coefficient b2(θ, ω0). This is so
because even if one of the modes, say the mode with envelope B, were
initially absent, i.e., B(0, τ) ≡ 0, B(ζ, τ) cannot continue to be zero
for ζ > 0 as the nonzero term −jb2(θ, ω0)A in (64b) forces B to be
nonzero for ζ > 0.

It is instructive at this point to compare (66) with the corre-
sponding equation for the complex vector envelope appearing as (46)
in [5]. Apart from the fact that two independent coefficients n1 (ω0)
and n2 (ω0) (as against Menyuk’s just one) are needed to account for
the effects of nonlinearity, and that there are neither any third order
linear dispersion term involving β′′′ (ω0) nor any birefringence term
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involving ∂A/∂τ in (66), the nature of the birefringence coefficients
appearing in the two equations are quite different. A third order dis-
persion term involving β′′′ (ω0) can appear only in a combined evolu-
tion equation for A(ζ, τ) + εA′(ζ, τ) if a nonzero ε-order correction to
Am(Z1, Z2, T ), m = 1, 2, is retained at the first stage of the pertur-
bation by assuming a nonzero solution for E1 (x⊥, z′, t′;Z1, Z2, T ) in

the form
2∑

l=1

A′l (Z1, Z2, T ) Ũl (x⊥, ω0) ej(β(ω0)z′−ω0t′) + c.c., and deter-

mining the evolution equations for A′m(Z1, Z2, T ), m = 1, 2, from the
compatibility (solvability) conditions arising at the (third) ε3-stage of
the perturbation [15]. Birefringence terms involving ∂A/∂τ are absent
from (66) because of the assumption of weak birefringence. It may be
helpful at this stage to present the coefficients of the terms propor-
tional to A in the two equations in tabular form in terms of the two

matrices [16, 17] σ1∆
[

1 0
0 −1

]
and σ2∆

[
0 1
1 0

]
:

Equation (66) Menyuk’s Equation (46) from [5]

Coefficients
of A

α(ω0) −g(ω0)
−[σs1 (ω0)−σa (ω0) cos 2θ] σ1

+[σs2 (ω0)−σa (ω0) sin 2θ] σ2
∆β cos θσ1+∆β sin θσ2

A couple of observations may be in order: (i) Menyuk’s equation
does not appear to take fiber asymmetry into account and (ii) the
sign of the coefficient multiplying the sine function is different in
the two equations. The above fundamental differences in the form
of the birefringence coefficients may be attributed to the way the
fiber birefringence is modeled in the two approaches. Since our θ
corresponds to Menyuk’s θ/2, the dependence of the trigonometric
functions, appearing in the two expressions for the birefringence
coefficients, on the polarization state will be the same.

The detailed analysis of the nonlinear propagation characteristics
of optical pulses based on a numerical solution of the CNLSE will be
presented in the second part of this paper.
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