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Abstract—The dispersion equation for electromagnetic waves guided
by an open tape helix for the standard model of an infinitesimally
thin and perfectly conducting tape is derived from an exact solution
of a homogeneous boundary value problem for Maxwell’s equations.
A numerical analysis of the dispersion equation reveals that the tape
current density component perpendicular to the winding direction does
not affect the dispersion characteristic to any significant extent. In
fact, there is a significant deviation from the dominant-mode sheath-
helix dispersion curve only in the third allowed region and towards
the end of the second allowed region. It may be concluded that
the anisotropically conducting model of the tape helix that neglects
the above transverse-current contribution is a good approximation
to the isotropically conducting model that takes into account this
contribution except at high frequencies even for wide tapes.

1. INTRODUCTION

In the first part of this contribution [1], the dispersion characteristic
of electromagnetic waves guided by an open tape helix was derived
neglecting the contribution of the tape current density component
perpendicular to the winding direction. In this part, the method
of deriving the dispersion equation for the above anisotropically
conducting model of the tape helix is extended to the case where the
tape is modeled to be only infinitesimally thin and perfectly conducting
in all directions. Once again, there arises neither a need for any apriori
assumption regarding the tape-current distribution nor is there a need
for satisfying the tape-helix boundary conditions in any approximate
sense.
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2. DERIVATION OF THE DISPERSION EQUATION

We make use of the tape-helix model introduced in Part I except that
we no longer require the tape to the perfectly conducting only along the
winding direction. We use the notation of Part I, and make use of the
prefix I while referring an equation number of Part I. Accordingly, we
consider a tape helix of infinite length, constant pitch, constant tape
width and infinitesimal thickness surrounded by free space. We take
the axis of the helix along the z-coordinate of a cylindrical coordinate
system (ρ, ϕ, z). The radius of the helix is a, the pitch is p and the
width of the tape in the axial direction is w. The pitch angle ψ is
therefore given by cotψ = 2πa/p.

Floquet’s theorem for a periodic structure in conjunction with the
property of invariance exhibited by an infinite helical structure under
a translation ∆z in the axial direction and a simultaneous rotation by
2π∆z/p around the axis permits an infinite-series expansion for any
field component (phasor) F (ρ, φ, z) in the form [2]

F (ρ, φ, z) =
∞∑

n=−∞
Fn (ρ) ej(nϕ−βnz) (1)

where
βn = β0 + 2πn/p (2)

and where β0 = β0(ω) is the guided wave propagation constant at the
radian frequency ω. Each term in the series-expansion (1) has to satisfy
the Helmholtz equation in cylindrical coordinates. Hence, the Borgnis
potentials [2] U(ρ, ϕ, z) and V (ρ, ϕ, z) for guided-wave solutions, at the
radian frequency ω, may be assumed in the form

[U, V ]T =
∞∑

n=−∞
[An, Bn]T In(τnρ)ej(nϕ−βnz) for 0 ≤ ρ < a,

=
∞∑

n=−∞
[Cn, Dn]T Kn(τnρ)ej(nϕ−βnz) for ρ > a, (3)

where An, Bn, Cn and Dn, n ∈ Z, are (complex) constants to be
determined by the tape-helix boundary conditions, In and Kn are
nth order modified Bessel functions of the first and the second kind
respectively, and the superscript ‘T ’ denotes the transpose. In (3), the
transverse mode number τn, n ∈ Z, is defined by

β2
n − τ2

n = k2
0 4ω2µε (4)

where µ is the permeability and ε is the permittivity of the ambient
space. Expressing the tangential field components in terms of the
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Borgnis potentials [2], we have

Ez =
∂2U

∂z2
+ k2

0U =
∞∑

n=−∞
−τ2

nAnIn(τnρ)ej(nϕ−βnz) for 0 ≤ ρ < a,

∞∑
n=−∞

−τ2
nCnKn(τnρ)ej(nϕ−βnz) for ρ > a (5a)

Eφ =
1
ρ

∂2U

∂ϕ∂z
+ jωµ

∂V

∂ρ

=
∞∑

n=−∞

[
nβnAnIn(τnρ)/ρ + jωµτnBnI ′n(τnρ)

]
ej(nϕ−βnz)

for 0 ≤ ρ < a,
∞∑

n=−∞

[
nβnCnKn(τnρ)/ρ + jωµτnDnK ′

n(τnρ)
]
ej(nϕ−βnz)

for ρ > a (5b)

Hz =
∂2V

∂z2
+ k2

0V =
∞∑

n=−∞
−τ2

nBnIn(τnρ)ej(nϕ−βnz) for 0 ≤ ρ < a,

∞∑
n=−∞

−τ2
nDnKn(τnρ)ej(nϕ−βnz) for ρ > a (6a)

Hφ =
1
ρ

∂2V

∂ϕ∂z
− jωε

∂U

∂ρ

=
∞∑

n=−∞

[−jωετnAnI ′n(τnρ) + nβnBnIn(τnρ)/ρ
]
ej(nϕ−βnz)

for 0 ≤ ρ < a,
∞∑

n=−∞

[−jωετnCnK ′
n(τnρ) + nβnDnKn(τnρ)/ρ

]
ej(nϕ−βnz)

for ρ > a (6b)

In the expressions (5) and (6) for the tangential field components, I ′n
and K ′

n denote the derivatives of In and Kn with respect to their
arguments.

The boundary conditions at ρ = a for the perfectly conducting
model of the tape helix are

(i) The tangential electric field is continuous for all values of ϕ and z.
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(ii) The discontinuity in the tangential magnetic field equals the
surface current density on the tape surface.

(iii) The tangential electric field vanishes on the tape surface.

Thus

Ez(a−, ϕ, z)−Ez(a+, ϕ, z) = 0 (7a)
Eϕ(a−, ϕ, z)− Eϕ(a+, ϕ, z) = 0 (7b)
Hz(a−, ϕ, z)−Hz(a+, ϕ, z) = Jϕ(ϕ, z) (7c)
Hϕ(a−, ϕ, z)−Hϕ(a+, ϕ, z) = −Jz(ϕ, z) (7d)

Ez(a, ϕ, z)g(ϕ, z) = 0 (7e)
Eϕ(a, ϕ, z)g(ϕ, z) = 0 (7f)

where Jz(ϕ, z) and Jϕ(ϕ, z) are the axial and the azimuthal
components of the surface current density, which is confined only to the
tape surface, and the function g(ϕ, z), defined in terms of the indicator
functions of the disjoint (for the same value of ϕ) intervals

Il(ϕ)4 [(l + ϕ/2π)p− w/2, (l + ϕ/2π)p + w/2] , l ∈ Z,

by

g(ϕ, z)4
∞∑

l=−∞
1Il(ϕ)(z)

will be equal to 1 on the tape surface and 0 elsewhere (i.e., over the
gaps) on the surface of the (infinite) cylinder ρ = a. In (7a)–(7d)

F (a±, ϕ, z)4 lim
δ↓0

F (a± δ, ϕ, z)

for any field component F (ρ, ϕ, z). The functional dependence of
the surface current density components Jm(ϕ, z), m = z, ϕ, which
are confined to the two-dimensional region corresponding to the tape-
surface, on ϕ and z is governed by the periodicity and the symmetry
conditions imposed by the helix geometry. Accordingly, Jm(ϕ, z),
m = z, ϕ, admit the representations

Jm(ϕ, z) =

( ∞∑
n=−∞

Jmnej(nϕ−βnz)

)
g(ϕ, z), m = z, ϕ, (8)

where the (complex) constant coefficients Jzn and Jϕn, n ∈ Z,
appearing in the expansion (8) of the surface current density
components are to be determined (in terms of any one of the constants
Jz0 and Jϕ0) by the tape-helix boundary conditions. Since

ej(nϕ−βnz) = e−jβ0ze
−j 2πn

p
(z−ϕp/2π)

,
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and
1Il(ϕ)(z) = 1[lp−w/2, lp+w/2] (z − ϕp/2π) ,

the surface current density expansions of (8) may recast into the form

Jm(ϕ, z) = e−jβ0zfm(ζ), m = z, ϕ, (9)

where

fm(ζ)=
∞∑

l=−∞

( ∞∑
n=−∞

Jmne−j2πnζ/p

)
1[lp−w/2, lp+w/2] (ζ) , m=z, ϕ, (10)

and
ζ = z − ϕp/2π (11)

The functions fm, m = z, ϕ, being periodic in ζ with period p, may be
expanded in Fourier series

fm (ζ) =
∞∑

k=−∞
Γmke

−j2πkζ/p (12)

where the Fourier coefficients Γmk, k ∈ Z,m = z, ϕ, are given by

Γmk = (1/p)
∫ p/2

−p/2
fm(ζ)ej2πkζ/pdζ

= ŵ
∞∑

k=−∞
Jmn sin c(n− k)ŵ, m = z, ϕ (13)

In (13), ŵ = w/p and sincX4 sinπX/πX. Thus

Jm(ϕ, z) =
∞∑

n=−∞
Γmnej(nϕ−βnz), m = z, ϕ (14)

Making use of the expansions (14) for Jm(ϕ, z), m = z, ϕ, in (7c) and
(7d), we may deduce from the first four of the tape-helix boundary
conditions (7a)–(7d), the following expressions for the coefficients An,
Bn, Cn and Dn, n ∈ Z, appearing in the field expansions of (5) and
(6), in terms of the coefficients Γzn and Γϕ,n, n ∈ Z, of the current-
density expansions (14) on equating the ‘coefficients’ of ej(nϕ−βnz) on
both sides:

Cn = (Ina/Kna) An (15a)

Dn =
(
Ina

′/K ′
na

)
Bn (15b)

An = aKna

[
Γzn −

(
nβna/τ2

na

)
Γϕn

]
/jωε (15c)

Bn = a2K ′
naΓϕn/τna (15d)
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where we have resorted to the following abbreviations
Ina4In(τna), Kna4Kn(τna),

I ′na4I ′n(τna), K ′
na4K ′

n(τna)
(16)

for the modified Bessel functions and their derivatives evaluated at
ρ = a. In (15), (16), and in the sequel

k0a4 ak0, β0a4 aβ0, βna4 aβn = β0a + n cotψ, τna4 aτn (17)

Finally,the enforcement of the homogeneous boundary conditions (7e)
and (7f) on the tangential electric field components leads to the two
equations

hz(ζ)4
∞∑

l=−∞

( ∞∑
n=−∞

(µnΓzn − νnΓϕn) e−j2πnζ/p

)
1[lp−w/2, lp+w/2](ζ)

= 0 (18a)

hϕ(ζ)4
∞∑

l=−∞

( ∞∑
n=−∞

(νnΓzn − ηnΓϕn) e−j2πnζ/p

)
1[lp−w/2, lp+w/2](ζ)

= 0 (18b)

on cancelation of the non-zero factor je−jβ0z/ωεa. In (18)

µn4 τ2
naInaKna (19a)

νn4nβnaInaKna (19b)

ηn4 k2
0aI

′
naK

′
na + (nβna/τna)2InaKna (19c)

Equations (18) imply that each Fourier coefficient of the two periodic
functions hm(ζ), m = z, ϕ, of ζ (with period p) must vanish, that is

∞∑
n=−∞

(µnΓzn − νnΓϕn) sinc(n− k)ŵ = 0, (20a)

∞∑
n=−∞

(νnΓzn − ηnΓϕn) sinc(n− k)ŵ = 0 for k ∈ Z (20b)

Substituting for Γzn and Γϕn from (14), Equations (20) may be put in
the form

∞∑
q=−∞

(µkqJzq − νkqJϕq) = 0, k ∈ Z, (21a)

∞∑
q=−∞

(νkqJzq − ηkqJϕq) = 0, k ∈ Z (21b)
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where

µkq =
∞∑

n=−∞
µn sinc(k − n)ŵ sinc(q − n)ŵ, (22a)

νkq =
∞∑

n=−∞
νn sinc(k − n)ŵ sinc(q − n)ŵ, (22b)

ηkq =
∞∑

n=−∞
ηn sinc(k − n)ŵ sinc(q − n)ŵ, (22c)

k, q ∈ Z.

In terms of the three infinite-order matrices Aµ4[µkq]k,q∈Z,
Aν4[νkq]k,q∈Z and Aη4[ηkq]k,q∈Z, and the two infinite-dimensional
vectors Jm = [. . . , Jm2̄, Jm1̄, Jm0, Jm1, Jm2, . . .]T , m = z, ϕ, the two
infinite sets of linear homogeneous Equations (21) for determining the
two infinite sets of coefficients Jzq and Jϕq, q ∈ Z, may be expressed
compactly as

AµJz −AνJϕ = 0 (23a)
AνJz −AηJϕ = 0 (23b)

where 0 denotes the column vector of infinite number of zeros. Solving
(23a) for Jϕ in terms of Jz as

Jϕ = A−1
ν AµJz (24)

and substituting into (23b), we have the infinite set of equations[
Aν −AηA−1

ν Aµ

]
Jz = 0 (25)

for determining the infinite set of coefficients Jzq, q ∈ Z. For a
nontrivial solution for Jz, it is necessary that∣∣Aν −AηA−1

ν Aµ

∣∣ = 0 (26)

The determinantal condition (26) gives, in principle, the dispersion
equation for the cold-wave modes supported by an open perfectly
conducting infinite tape helix of infinitesimal thickness and finite
width.

It may be appropriate to note at this juncture that the dispersion
equation derived by Samuel Sensiper for a perfectly conducting tape
helix in his doctoral thesis [3] also has a form resembling (26); however,
the expressions for the matrix entries µkq, νkq and ηkq, k, q ∈ Z,
obtained by him are radically different from those given by (22). In
fact, these entries (after correcting a misprint in his thesis), in our
notation, are

µ
(S)
kq = µkMkq, ν

(S)
kq = νkMkq and η

(S)
kq = ηkMkq, k, q ∈ Z,
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where

Mkq =
(
ej2π(k−qŵ) − 1

)
/j2π(k − qŵ) for k − qŵ 6= 0,

1 for k − qŵ = 0

In terms of the associated infinite-order matrices A(S)
µ , A(S)

ν and A(S)
η ,

the dispersion equation of Sensiper becomes∣∣∣∣A(S)
η −A(S)

ν

(
A(S)

µ

)−1
A(S)

ν

∣∣∣∣ = 0 (27)

In order to see that (27) cannot be the correct dispersion equation
for a tape helix, let us consider the zeroth-order approximation to the
dispersion equation resulting from a truncation of the infinite-order
matrices A(S)

µ , A(S)
ν and A(S)

η to the 1 × 1 matrices [µ(S)
00 ], [ν(S)

00 ]
and [η(S)

00 ]. Since ν
(S)
00 ≡ 0 and M00 = 1, the dispersion equation

corresponding to the above zeroth order truncation becomes

k2
0aI1(τ0a)K1(τ0a) = 0 (28)

Equation (28) has only the trivial solution k0a ≡ 0. This circumstance
may be traced to the inherent inability of the form of series expansion
assumed by Sensiper for the surface current density components to
correctly confine the surface current to the region of the tape only.
The same drawback persists even in the analysis of the tape-helix
model that neglects the transverse component of the tape-current
density necessitating an ad hoc assumption regarding the tape-current
distribution as a consequence of which it is not possible to satisfy the
tangential electric field boundary conditions over the entire width of
the tape. On the contrary, when the infinite-order matrices appearing
in (26) are truncated to 1×1 matrices, the corresponding zeroth order
dispersion equation following from our exact analysis is

ν2
00 − µ00η00 = 0 (29)

where

µ00 = µ0 +
∞∑

n=1

(µn + µ−n) sinc2nŵ, (30a)

ν00 =
∞∑

n=1

(νn + ν−n) sinc2nŵ, (30b)

η00 = η0 +
∞∑

n=1

(ηn + η−n) sinc2nŵ (30c)
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Figure 1. Zeroth order dispersion curve including the transverse-
current contribution for ŵ = 1/7 and ψ = 10◦.

The zeroth-order dispersion curve for the choice of ŵ = 1/7 and
ψ = 10◦, when the infinite series for µ00, ν00 and η00 are truncated
at the 6th term (that is, when the contributions from the main
lobe of the ‘sinc2’ functions only are retained), is plotted in Fig. 1.
The plot of Fig. 1, however, should not be misconstrued to be
representative of the dispersion characteristics of an open tape helix
including the transverse-current distribution since (29) is too crude an
approximation to the true dispersion equation for this case. As will be
demonstrated in the sequel for the choice of parameter values ŵ = 1/2
and ψ = 10◦, the infinite-order matrices Aµ, Aν , and Aη, need to
be symmetrically truncated to order at least 7 × 7 in order to get a
reasonably good approximation to the dispersion characteristic for the
assumed model of the tape helix.

3. NUMERICAL SOLUTION OF THE TRUNCATED
DISPERSION EQUATION

As was done in Part I, we resort to a symmetric truncation of the
infinite-order matrices Aµ, Aν , and Aη, to the (2N + 1) × (2N + 1)
matrices Âµ, Âν , and Âη. Our objective, as for the the anisotropically
conducting model, is to study for ŵ = 1/2, the behavior of the
dispersion characteristic with respect to the truncation order N , and
deduce the smallest value N̂ of N such that there is no perceptible
difference between the dispersion curves for N̂ and N̂ +1. It is readily
seen from the expressions (22a)–(22c) that only the main lobes of the
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sinc functions contribute significantly to the values of µkq, νkq and
ηkq. Thus, for the choice of ŵ = 1/2, the infinite series for them get

Figure 2. Dispersion characteristic of tape helix for truncation order
N = 1.

Figure 3. Dispersion characteristic of tape helix for truncation order
N = 2.
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truncated to [1]

bkq 4 µ̂kq =
min(k,q)+1∑

n=max(k,q)−1

µnsinc
(

k − n

2

)
sinc

(
q − n

2

)
(31a)

ckq 4 ν̂kq =
min(k,q)+1∑

n=max(k,q)−1

νnsinc
(

k − n

2

)
sinc

(
q − n

2

)
(31b)

dkq 4 η̂kq =
min(k,q)+1∑

n=max(k,q)−1

ηnsinc
(

k − n

2

)
sinc

(
q − n

2

)
(31c)

When the contributions from the main lobes of the sinc functions
only are retained in the expressions for bkq, ckq and dkq, −N ≤
k, q ≤ N , there will only be three types of non-zero entries in the
(2N + 1) × (2N + 1) symmetric matrices Âµ, Âν , and Âη for the
choice of ŵ = 1/2, viz.,

bkk = µk + (2/π)2(µk−1 + µk+1) −N ≤ k ≤ N,

bk,k+1 = bk+1,k = (2/π)(µk + µk+1) −N ≤ k ≤ N − 1,

bk,k+2 = bk+2,k = (2/π)2µk+1 −N ≤ k ≤ N − 2

with similar relations for ck,k+i and dk,k+i, i = 0, 1, 2. Thus,
the truncated coefficient matrices Âµ, Âν , and Âη will be banded
symmetric matrices with nonzero entries only along the main diagonal
and the four symmetrically located subdiagonals adjacent to the main
diagonal. Thus, the approximate dispersion equation corresponding to
a truncation order equal to N becomes

f (N)(k0a; β0a)4
∣∣∣Âν − ÂηÂ−1

ν Âµ

∣∣∣ = 0 (32)

The approximate dispersion Equation (32) is solved numerically on a
computer for truncation orders of N = 0, 1, 2, 3 and 4, by seeking a
real root of (32) for k̂0a (β0a) for various values of β0a ∈ (0, 16), and
the resulting family of tape-helix dispersion curves for the choice of the
pitch angle ψ = 10◦ are plotted in Figs. 2–5 for truncation orders 1, 2, 3
and 4 respectively. The dominant-mode dispersion curve of the sheath
helix (for the same value of ψ = 10◦) is also plotted in the figures for
comparison. Tape-helix dispersion curve for the truncation order of 0 is
not shown because of its limited range of validity. It may be seen from
the plots that a truncation order as low as N = 3 is adequate to deliver
a fairly accurate estimate of the dispersion curve for a tape width-to-
pitch ratio of 0.5. However, a fairly large number N of the ‘modal
amplitudes’ Ĵzn and Ĵϕn, 0 ≤ |n| ≤ N corresponding to β̂0a(k0a)
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Figure 4. Dispersion characteristic of tape helix for truncation order
N = 3.

Figure 5. Dispersion characteristic of tape helix for truncation order
N = 4.

(where β̂0a(k0a) is the estimate of the normalized propagation constant
corresponding to the normalized frequency k0a, that is, the unique
root of the equation k̂0a(β0a) = k0a for β0a) are needed in the series
representation (8) of the surface current density components Jz(ϕ, z)
and Jϕ(ϕ, z) in order to be assured of a reasonably good approximation
for the tape-current density, and hence for the electromagnetic field
vectors.

Stacking the first (2N + 1) (for N large enough) lowest order
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coefficients in the expansion (8) of the surface-current density
components into the two (2N + 1)-dimensional vectors Ĵm =
[ĴmN , Ĵ

m(N−1)
, . . . , Ĵm1, Ĵm0, Ĵm1, . . . , Ĵm(N−1), ĴmN ]T , m = z, ϕ, the

truncated versions of (24) and (25) may be expressed as

Ĵϕ = Â−1
ν ÂµĴz (33)

and [
Âν − ÂηÂ−1

ν Âµ

]
Ĵz = 0 (34)

where 0 denotes the column vector of (2N + 1) zeros. Thus, the task
before us is to find the null-space vector of a (2N + 1) × (2N + 1)
(N large) rank-deficient matrix corresponding the the already located
root k̂0a(β0a) of the determinantal Equation (32). A direct method
of doing this is likely to be computationally very intensive because of
the large size of the coefficient matrix in (34). Fortunately, there is
an alternative computationally more efficient method for iteratively
computing the null-space vector.

We begin by recasting the two infinite sets of Equation (21) into
a single infinite set of equations with matrix coefficients

∞∑
q=−∞

αkqJq = 0, k ∈ Z, (35)

for determining the two-component vectors

Jq 4 [Jzq, Jϕq]
T , q ∈ Z,

where the 2× 2 matrices αkq, k, q ∈ Z, are given by

αkq =
[
µkq −νkq

νkq −ηkq

]

When the infinite set of Equations (35) is symmetrically truncated to
(2N + 1) equations, and the infinite-series representation for µkq, νkq

and ηkq, −N ≤ k, q ≤ N , is truncated retaining only the contributions
from the main lobes of the sinc functions, the truncated versions of (35)
go over into

N∑

q=−N

akqĴq = 0, −N ≤ k ≤ N, (36)

where

akq = α̂kq =
[
bkq −ckq

ckq −dkq

]
, −N ≤ k, q ≤ N,
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and the bkq, ckq and dkq are defined in (31). The (2N +1)-dimensional
vector Ĵz made up of the (2N + 1) first components of the (2N + 1)
two-component vectors

Ĵq =
[
Ĵzq, Ĵϕq

]T
, −N ≤ q ≤ N,

is of course the sought-after null-space vector of the (2N +1)×(2N +1)
matrix appearing in (34) corresponding to the already determined root
k̂0a(β0a) of the ‘Nth order’ dispersion Equation (32). The Ĵq, −N ≤
q ≤ N, make up the first (2N + 1) lowest order coefficients in the
truncated expansion for the surface current density vector. We now
make the key observation that the set of Equations (36) has a form
identical to (I36) except for the replacement of the scalar coefficients
akq, −N ≤ k, q ≤ N, by the matrix coefficients akq, −N ≤ k, q ≤ N,

and the replacement of the (2N + 1) scalar components Ĵq, −N ≤
q ≤ N , of the null-space vector by the (2N + 1) two-component
vectors Ĵq, −N ≤ q ≤ N . Moreover, the (2N + 1) × (2N + 1)
matrix [akq]−N≤k,q≤N , whose entries are themselves 2 × 2 matrices,
has the same banded structure as that of the (2N + 1) × (2N + 1)
matrix [akq]−N≤k,q≤N of Part I with scalar entries. Thus, it becomes
feasible to adapt the recursive method (of successive substitutions
and eliminations) employed in Part I to arrive at the approximate
dispersion equation to the present context to recursively solve for Ĵq

in terms of Ĵ(|q|−1)sgnq and Ĵ(|q|−2)sgnq, 2 ≤ |q| ≤ N . Both Ĵ1 and Ĵ1

are solved in terms of Ĵ0. Since Ĵ04[Ĵz0, Ĵϕ0]T satisfies an equation
of the form

a(N)
00 Ĵ0 = 0, (37)

where the 2×2 coefficient matrix a(N)
00 is singular, only the ratio of Ĵz0

to Ĵϕ0 is fixed by (36). Thus, all of Ĵq, −N ≤ q ≤ N, are determined
modulo an arbitrary (complex) mulitiplicative constant. We now give
below the relations required for carrying out the recursive computation
of the coefficients Ĵq, −N ≤ q ≤ N, appearing in the expansion for
the surface current density vector. We assume N to be equal to 2 at
least.

ĴN−i = −
(
a(i)

N−i,N−i

)−1 [
a(i)

N−i,N−i−1ĴN−i−1 + aN−i,N−i−2ĴN−i−2

]

for 0 ≤ i ≤ N − 2, (38)
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a(i)
N−i,N−i = a(i−1)

N−i,N−i − a(i−1)
N−i,N−i+1

(
a(i−1)

N−i+1,N−i+1

)−1
a(i−1)

N−i+1,N−i,

a(i)
N−i,N−i−1 = aN−i,N−i−1 − a(i−1)

N−i,N−i+1

(
a(i−1)

N−i+1,N−i+1

)−1

aN−i+1,N−i−1,

a(i)
N−i−1,N−i = aN−i−1,N−i − aN−i−1,N−i+1

(
a(i−1)

N−i+1,N−i+1

)−1

a(i−1)
N−i+1,N−i,

a(i)
N−i−1,N−i−1 = aN−i−1,N−i−1 − aN−i−1,N−i+1

(
a(i−1)

N−i+1,N−i+1

)−1

aN−i+1,N−i−1

for 1 ≤ i ≤ N − 2, (39)

together with a corresponding set of relations with an overbar over
the suffices. In (38), (39), and in any of the subsequent formulae,
a(0)

kl , −N ≤ k, l ≤ N, is to be interpreted simply as akl. The recursive
relation for Ĵ1 is

Ĵ1 = a(N)
10 Ĵ0 =

[(
a(N−1)

11

)−1
a11 − a−1

11
a(N−1)

11

]−1

[
a−1

11
a(N−1)

10 −
(
a(N−1)

11

)−1
a(N−1)

10

]
Ĵ0, (40a)

and the expression for a(N)

10
in the recursive relation

Ĵ1 = a(N)

10
Ĵ0 (40b)

for Ĵ1 is obtained from that for a(N)
10 by complementing all the suffixes

where 141 and 040. In the expression for a(N)
10

a(N−1)
10 = a10 − a(N−2)

12

(
a(N−2)

22

)−1
a20,

a(N−1)
11 = a(N−2)

11 − a(N−2)
12

(
a(N−2)

22

)−1
a(N−2)

21 (41)

together with a corresponding set of relations obtained by complement-
ing the suffixes. Finally, the 2× 2 rank-one matrix a(N)

00 appearing in
(37) is given by

a(N)
00 =a00 + a(N−1)

01
a(N)

10
+ a(N−1)

01 a(N)
10

− a02

(
a(N−2)

22

)−1
a20 − a02

(
a(N−2)

22

)−1
a20 (42)
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where
a(N−1)

01
= a01 − a02

(
a(N−2)

22

)−1
a(N−2)

21
(43a)

and
a(N−1)

01 = a01 − a02

(
a(N−2)

22

)−1
a(N−2)

21 (43b)

Denoting the entries of the rank-one matrix a(N)
00 by a

(N)
kl , k, l = 1, 2,

we have
Ĵz0/Ĵϕ0 = −a

(N)
12 /a

(N)
11 = −a

(N)
22 /a

(N)
21 = λN

(
β̂0a(k0a)

)
(say)

or
Ĵz0 = λ̂N (k0a)Ĵϕ0 (44)

where λ̂N (k0a)4λN (β̂0a(k0a)). Working backward from (44) through
(40) to (38) with the help of (39), (40), (43) and (42), we can determine
all the 2(2N + 1) coefficients in the truncated expansion of the surface
current density components in terms of one undetermined (complex)
constant Ĵϕ0.

Before concluding the paper, it seems appropriate to correct a
statement made towards the end of Section 2 of Part I regarding the
interval of existence for real solutions to (I30). It has been erroneously
concluded, on the basis of the particular fixed point format (I32), that
the truncated version of (I30) does not possess any real solution for
k0a(β0a) beyond β0a = 1.543. As a matter of fact, it is possible
to extend the interval of existence beyond the stipulated value by
resorting to an alternate fixed-point format for the truncated version
of the dispersion equation (I30) which may be expressed as

σ0 +
W∑

n=1

γn(σn + σ−n) = 0 (45)

where
γn 4 sinc2nŵ, n = 1, 2, 3, . . .

Making use of the expressions for σ0 and σn, |n| ≥ 1, (45) may be
written in terms of k0a and β0a as[

C(τ0a) +
W∑

n=1

γn(C(τna) + C(τ−na))

]
k2

0a

+

[
D(τ0a) +

W∑

n=1

γn(D(τna) + D(τ−na))

]
k2

0a cot2 ψ

=

[
C(τ0a) +

W∑

n=1

γn(C(τna) + C(τ−na))

]
β2

0a (46)
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where

C(τna) =I|n|(τna)K|n|(τna),
D(τna) =I|n|+1(τna)K|n|+1(τna)

+ (|n|/τna)
(
I|n|(τna)K|n|−1(τna)− I|n|+1(τna)K|n|(τna)

)

for |n| ≥ 0

Defining

χ
(W )
1 (k0a;β0a) 4 C(τ0a) +

W∑

n=1

γn(C(τna) + C(τ−na))

and

χ
(W )
2 (k0a; β0a) 4 D(τ0a) +

W∑

n=1

γn(D(τna) + D(τ−na)),

Equation (46) may be put in the alternate fixed-point format

k0a = G
(0)
W (k0a; β0a)

4
{

β2
0a/

(
1 + χ

(W )
2 (k0a;β0a) cot2 ψ/χ

(W )
1 (k0a; β0a)

)}1/2
(47)

Equation (47) may be solved numerically for k0a(β0a), β0a > 0, for
the choice of ŵ = 0.1/π, by the method of successive substitutions
to find any fixed point of the ‘operator’ for k0a in the range 0 <
k0a < (1/2) cot 10◦. The resulting dispersion curve is plotted in Fig. 6.

Figure 6. Zeroth order dispersion curve excluding transverse-current
contribution for ŵ = 0.1/π and ψ = 10◦.
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together with the dominant-mode dispersion curve of the sheath helix.
It may be seen from Fig. 6. that a real solution of the dispersion
equation exists for values of β0a up to 9.45 in the complement of the
forbidden regions. However, the tape-helix dispersion curve (for the
truncation order N = 0) crosses the sheath helix dispersion curve from
below around a value of β0a = 1.8 and stays above it for the remaining
values of β0a in the allowed regions except for a second crossing from
above at around β0a = 4.5 near the first forbidden-region boundary.
It may therefore be inferred that the behavior of the ‘zeroth-order’
tape-helix dispersion curve of Fig. 6. may not be acceptable beyond
β0a = 1.8 notwithstanding the fact that a real root k0a(β0a) of the
dispersion Equation (47) is available for larger values of β0a. This is
again a confirmation of the already established fact that the zeroth
order (N = 0) truncation of the tape-helix dispersion equation is too
crude to reveal the true nature of the dispersion characteristics.

4. CONCLUSION

In this paper, we have demonstrated the feasibility of an exact analysis
of guided electromagnetic wave propagation through an open tape helix
including the effect of the transverse component of the tape-current
density. The main conclusion that may be drawn from the analysis is
that the tape-current density component perpendicular to the winding
direction does not affect the dispersion characteristic to any significant
extent except for a small decrease in the phase speed of the cold wave
supported by the helix towards the high-frequency end.

Work on the extension of analysis presented in both parts of this
paper to a full field analysis of the practically important case of a
dielectric-loaded tape-helix enclosed in a coaxial perfectly conducting
cylindrical shell is currently in progress and will be reported in due
course.
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