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Abstract—This paper investigates the properties of probe fed cavity-
backed fractal aperture antennas. The problem is formulated using
the finite element-boundary integral (FE-BI) method in which the field
inside the cavity is formulated using the finite element method, and
the mesh is truncated at cavity aperture surface using the boundary
integral method. Several dual-band cavity-backed fractal aperture
antennas based on Sierpinski gasket, Sierpinski carpet, plus shape
fractal and Minkowski fractal are investigated. The numerical results
obtained from the FE-BI code have been validated with simulations
on HFSS.

1. INTRODUCTION

Slot antennas form an important class of antennas which are preferred
in applications where low-profile, flush-mounted, and conformal
antennas are required. One shortcoming of slot antennas is their
bi-directional radiation characteristic which is alleviated by using a
shallow cavity on one side of the slot. The performance of several
cavity-backed aperture antennas has been investigated in the past [1–
4]. With the recent trends in the design of compact communication
systems, a demand has arisen for antennas which can be operated
in multiple frequency bands. This has led to the use of fractal
geometries whose self-similarity property has been exploited in the
design of a number of multi-band printed antennas. Recently, some
fractal printed slot antennas have also been investigated using Koch
fractal [5], circular fractal slot [6], and Sierpinski curves [7]. In this
paper, we investigate the radiation properties of some typical fractal
slot antennas backed by a cavity.
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The finite element-boundary integral (FE-BI) method has been
used to analyze the problem, since it is an efficient and versatile
numerical technique for the analysis of cavity-backed aperture
antennas [8]. The technique employs the finite element method to
compute the electromagnetic field inside the cavity and the cavity
volume mesh is terminated at the aperture surface using boundary
integral method [9]. The method generates a partly sparse and partly
filled matrix which can be efficiently stored and solved. In the absence
of suitable fabrication facilities, simulation on HFSS has been used to
validate the results obtained from FE-BI analysis.

The article is organized as follows: A general formulation
of radiation from cavity-backed aperture antennas using the finite
element-boundary integral method is presented in Section 2. In
Section 3, numerical results of different cavity-backed fractal aperture
antennas are presented. Section 4 summarizes the results.

2. FORMULATION OF THE PROBLEM

A typical coaxial probe-fed cavity-backed aperture antenna is shown
in Fig. 1, where the apertures can be of arbitrary shape and number.
The antenna is fed by a coaxial probe of inner radius ρ1 and outer
radius ρ2 and is located at (xc, yc). The problem is formulated using
the FE-BI method using tetrahedral elements for cavity discretization.
The open region above the cavity top surface is truncated using
boundary integral (BI) method and the aperture surface at the bottom
of the cavity is formulated using eigenfunction expansion method. By
combining these three methods, the entire problem can be transformed
into a linear system.
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Figure 1. Geometry of a coaxial probe-fed cavity backed aperture
antenna.
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For a linear, isotropic and source free region, the electric field
satisfies the vector wave equation given by

∇×
(

1
µr
∇× Ē

)
− k2

0εrĒ = 0 (1)

where µr and εr are, respectively, the permeability and permittivity of
the medium inside the cavity.

Multiplying (1) scalarly by a testing function T̄ and integrating
over the volume of the cavity, we get

∫∫∫

V
T̄ · ∇ ×

(
1
µr
∇× Ē

)
dv − k2

oεr

∫∫∫

V
T̄ · Ēdv = 0 (2)

where V denotes the volume of the cavity.
Using vector identities, the above expression can be written as∫∫∫

V

1
µr

(∇×T̄
) · (∇×Ē

)
dv−k2

0εr

∫∫∫

V
T̄ · Ēdv=jωµ0©

∫∫

S
(T̄×n̂) · H̄ds

(3)
where n̂ is the unit outward normal to cavity surface S.

The tangential component of the electric field is zero on the
perfectly conducting walls of the cavity, except on the aperture
surfaces. Thus, the surface integral on the right hand side of (3) is
non zero only over the aperture surfaces (Sap) on the infinite ground
plane and on the input aperture surface (Sinp) on the cavity bottom.
Therefore, (3) can be rewritten as,

∫∫∫

V

1
µr

(∇× T̄ ) · (∇× Ē)dv − k2
0εr

∫∫∫

V
T̄ · Ē dv

−jωµ0

∫∫

Sap

(T̄ × n̂) · H̄apds = jωµ0

∫∫

Sinp

(T̄ × n̂) · H̄inpds (4)

where, H̄ap and H̄inp denote the magnetic fields on the aperture
surfaces Sap and Sinp, respectively.

Thus, the problem can be divided into three parts. The first
part involves the computation of volume integrals inside the cavity
volume. The second and third parts involve the evaluation of surface
integrals over the apertures on the top surface of the cavity and the
input aperture surface, respectively. The cavity is first discretized into
small tetrahedral elements and over each tetrahedral element, vector
edge basis functions [10] are defined. The surface integral over the
aperture surface on the top surface of the cavity is calculated using the
equivalence principle and the magnetic field in the open space region is
calculated by considering an equivalent magnetic surface current 2M̄ ,
where M̄ = Ē× ẑ, radiating in free space. The surface integral over the
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input surface at the bottom of cavity is computed by expanding the
electric field as the sum of incident and reflected fields. The procedure
is same as that described in [11]. The combination of these three
integrals can be expressed is matrix form as

A(k)e(k) = b(k) (5)

where b(k) is the excitation vector, e(k) denotes the coefficient vector
and A(k) is a partly sparse and partly dense matrix which is a
combination of three matrices and may be written as

A(k) = A1(k) + A2(k) + A3(k) (6)

with

A1(k) =
∫∫∫

V

1
µr

(∇× T̄ ) · (∇× Ē)dv − k2
0εr

∫∫∫

V
T̄ · Ēdv (7)

A2(k) = jk0Z0

∫∫

Sap

T̄s · H̄ap(2M̄)ds (8)

A3(k) =
jk0

√
εrc

2π ln
(

ρ2

ρ1

)
{∫∫

Sinp

(
T̄ · ρ̂

ρ

)
ds

∫∫

Sinp

(
Ē · ρ̂

ρ

)
ds

}
(9)

b(k) =
2jk0

√
εrc√

2π ln
(

ρ2

ρ1

)
∫∫

Sinp

T̄ ·
(

ρ̂

ρ

)
ds (10)

where εrc is the permittivity of material inside coaxial line.
Once the matrix equation (5) is solved for the unknown

coefficients, the field over the aperture surface can be calculated. The
input reflection coefficient at the incident plane (z1 = 0) is then given
by [11]

Γ =
1√

2π ln
(

ρ2

ρ1

)
∫∫

Sinp

Ē · ρ̂

ρ
ds− 1 (11)

The magnetic field in the far-field region can be calculated as

H̄(r, θ, ϕ) = −jk0

η0

e−jk0r

2πr

∫∫

Sap

(θ̂θ̂ + ϕ̂ϕ̂) · M̄ejk0 sin θ(x cos ϕ+y sin ϕ)dxdy

(12)

3. NUMERICAL RESULTS

Based on the formulation presented here, a MATLAB code has been
developed to analyze the performance of cavity-backed fractal aperture
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antennas. Several fractal aperture antennas have been investigated and
the results are presented in the following subsections. For the aperture
antennas considered here, the dimension of the cavity is taken to be
15 cm×15 cm×0.4 cm and the cavity is assumed to be fed by a coaxial
probe of 50 Ω characteristic impedance.

3.1. Sierpinski Carpet Fractal Aperture

The generation of Sierpinski carpet fractal aperture is described in [12],
where an initial square is subdivided into nine subsquares and the
central subsquare is removed to obtain the generator of the fractal.
The self-similarity factor of the Sierpinski carpet is 3 which causes a
log-periodic behavior with a periodicity of 3. To have control over
the location of resonant frequencies, the fractal geometry is modified
as shown in Fig. 2. Here, we have used a rectangle as the initial
geometry. The length of the first iteration aperture is one third of the
initial length of the rectangle and in the second iteration, the length
of the second iteration apertures is varied according to scale factor (s).
For the present analysis, the dimension of the initial rectangle is taken
to be 15 cm×7.5 cm. Hence, in the first iteration, the antenna consists
of a single aperture of length 5 cm and width 2.5 cm. In the second
iteration, the dimensions of the apertures are 4 cm × 0.83 cm with a
scale factor (s) equal to 0.8.

First, a parametric study is performed for the optimum position of
the probe and from the study, it is found that the optimum positions of
the probe are at (0, 6.0 cm) and (0, 5.4 cm) for 1st and 2nd iterations,
respectively. The frequency response of the antenna is shown in Fig. 3,
where a good agreement between the FE-BI code and HFSS results
can be seen. The frequency response of the aperture antenna for two
iterations is tabulated in Table 1. It is seen that the first resonant
frequency shifts slightly downwards in second iteration and the ratio
between the successive resonant frequencies is 1.39 which is slightly

L
W

s.L

W/3

Figure 2. A modified 2nd iteration Sierpinski carpet fractal aperture.
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Figure 3. Return loss of modified Sierpinski carpet fractal aperture
antenna with s = 0.8.

Table 1. Frequency response of modified Sierpinski carpet fractal
aperture antenna.

Parameters Iteration 1 Iteration 2
fr1 fr1 fr2

Resonant
Freq. (GHz) 1.94 1.87 2.60

VSWR 1.25 1.09 1.32
Bandwidth (%) 1.55 1.98 2.50

Table 2. Frequency response of modified Sierpinski carpet fractal
aperture antenna for different scale factors.

Scale Factor Resonant Frequencies Ratio Bandwidth (%)
(s) fr1 fr2 fr2/fr1 BW1 BW2

0.7 1.89 2.74 1.45 1.85 1.83
0.8 1.87 2.60 1.39 1.98 2.50
0.9 1.82 2.36 1.30 2.31 2.58

greater than the theoretical ratio of 1.25. The ratio between the
successive resonant frequencies can be controlled by changing the scale
factor (s). Two more fractal structures with different scale factors were
analyzed. The variation of return loss of the antenna for different scale
factors is shown in Fig. 4 and the results are summarized in Table 2.

The optimum probe location for the two antennas with s = 0.7
and s = 0.9 are (0, 5.7 cm) and (0, 5.0 cm), respectively. It is evident
that while the first resonant frequency is relatively insensitive to the



Progress In Electromagnetics Research C, Vol. 11, 2009 161

1.5 1.75 2 2.25 2.5 2.75 3
 -25

 -20

 -15

 -10

 -5

0

Frequency (GHz)

R
et

u
rn

 L
o
ss

 (
d

B
)

s=0.7

s=0.8

s=0.9

Figure 4. Return loss of modified Sierpinski carpet fractal aperture
antenna for different scale factors.

-40

-30

-20

-10

0

10

0

30

60

90

120

150

180

210

240

270

300

330

-40

-30

-20

-10

0

10

N
o

r
m

a
li

z
e
d

 R
a

d
ia

te
d

 P
o

w
e
r
 (

d
B

)

(a) 1st Resonance

-40

-30

-20

-10

0

10

0

30

60

90

120

150

180

210

240

270

300

330

-40

-30

-20

-10

0

10

N
o

r
m

a
li

z
e
d

 R
a

d
ia

te
d

 P
o

w
e
r
 (

d
B

)

(b) 2nd Resonance

=0

=90φ
φ

o

o =0

=90φ

φ
o

o

Figure 5. Normalized radiation pattern of modified Sierpinski carpet
fractal aperture antenna with s = 0.8.

variation in scale factor and is primarily dependent on the size of initial
rectangle; the second resonant frequency can be suitably located by
selecting an appropriate scale factor. The frequency ratios are greater
than the theoretical value which is a characteristic of the pre-fractal
geometries for lower order iterations. Also, the ratios between the
successive resonant frequencies depend on the position of slot relative
to the center of the cavity and the location of resonant frequencies can
be fine tuned by varying the spacing between the apertures.

The normalized radiation pattern of a 2nd iteration modified
Sierpinski carpet aperture in the two principal planes is shown in Fig. 5
for s = 0.8. At the second resonant frequency (2.6GHz), the cavity is
excited in TM120 mode which has a field pattern such that the second
iteration apertures are excited in opposite phase, causing a null to
appear along z -axis.
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3.2. Self-affine Sierpinski Gasket Dipole Apertures

The generation of Sierpinski gasket dipole geometry is same as that
of the Sierpinski gasket fractal except that an image of the original
structure is taken along the base line of the initial triangle. In order
to maintain the continuity of the apertures, a certain amount of
overlapping is incorporated and the final geometry of the 2nd iteration
self-affine Sierpinski gasket dipole aperture with a scale factor s = 0.8
is shown in Fig. 6. From the parametric analysis, it was found that the
optimum position of the probe was at (0, 5.25 cm) for both iterations.
The variation of return loss of the fractal aperture antenna for two
iterations is shown in Fig. 7 and the results are tabulated in Table 3.
Again a good agreement between the results from FE-BI code and
those obtained from HFSS simulation can be seen for both iterations.
It can be seen that there is a 8.05% downward shift of first resonant

7.5 cm
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m

6 cm

4.8 cm
0.75 cm
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Figure 6. A modified 2nd iteration Sierpinski gasket dipole fractal
aperture.
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Figure 7. Return loss of modified Sierpinski gasket dipole fractal
aperture antenna with s = 0.8.
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Table 3. Frequency response of modified Sierpinski gasket dipole
fractal aperture antenna.

Parameters Iteration 1 Iteration 2
fr1 fr1 fr2

Resonant
Freq. (GHz) 1.74 1.60 1.95

VSWR 1.10 1.09 1.12
Bandwidth (%) 2.15 0.75 1.03

frequency in the second iteration. The ratio between the successive
resonant frequencies is 1.22, which is slightly less than the theoretical
value 1.25. The bandwidth of the antenna decreases as the order
of iteration increases. Although the input match is good in all the
iterations, the bandwidth of the antenna is very small at both the
resonant frequencies. In order to see the effect of scale factor on the
response of the antenna, another gasket dipole aperture antenna with
a scale factor s = 0.6 was investigated. The dimensions of the first
iteration aperture were kept constant at 6 cm, so the length of the
2nd iteration aperture was 3.6 cm. The variation of return loss of
2nd iteration self-affine gasket dipole aperture antenna for different
scale factors is shown in Fig. 8. It can be seen that there is a very
little change in the first resonant frequency and the location of the
2nd resonance can be controlled by changing the scale factor. The
resonant frequencies for s = 0.6 are 1.58 GHz and 2.38 GHz with
a ratio of 1.49. This ratio is much less than the theoretical ratio
of 1.67. This is due to the geometric modifications incorporated in
the generation of fractal aperture. Also, it is well known that for a
rectangular aperture antenna, the resonant aperture length approaches
0.5λ as the resonant frequency of the antenna moves closer to the
fundamental resonant mode of the closed cavity [13]. However, as the
resonant frequencies move away from fundamental resonant mode, the
ratio decreases, which is another reason of smaller frequency ratio for
s = 0.6.

The normalized radiation pattern of the 2nd iteration gasket
dipole aperture antenna with s = 0.8 is shown in Fig. 9 in two principal
planes and is similar at both resonant frequencies. The maximum gain
of the aperture antenna at the resonant frequencies is around 4 dB. It
is to be noted here that both the resonant frequencies for the dipole
aperture antenna are within the fundamental resonant mode of the
closed cavity, hence, the pattern at both resonant frequencies remains
same.
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Figure 8. Return loss of modified Sierpinski gasket dipole fractal
aperture antenna for different scale factors.
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Figure 9. Normalized radiation pattern of modified Sierpinski gasket
dipole fractal aperture antenna with s = 0.8.

3.3. Self-affine Plus Shape Fractal Aperture Antenna

Plus shape fractal apertures are widely used in the design of frequency
selective surfaces [14]. An ideal plus shape fractal is generated by
placing four copies of initial geometry, each of which is scaled by 0.5.
Here, we have considered a self-affine plus shape fractal aperture upto
second iteration only. The initial plus shape has a horizontal arm
length L and vertical arm length W and the width of each arm is taken
to be Ws. The initial geometry is scaled by a factor s in both directions
and four such copies are placed with an offset (dx, dy) as shown in
Fig. 10. In the present analysis, the initial plus shape is assumed to
have a length L = W = 5 cm and the width of each arm is 2 mm. The
variation of return loss for first iteration plus fractal aperture antenna
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Figure 10. A self-affine 2nd iteration plus shape fractal aperture
antenna.
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Figure 11. Return loss of
1st iteration plus shape fractal
aperture antenna.
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Figure 12. Return loss of 2nd it-
eration plus shape fractal aperture
antenna for different offset values.

with probe at (0, 6.5 cm) is shown in Fig. 11. Also shown in the figure
are the results obtained from HFSS which are in good agreement with
the FE-BI analysis. The initial plus aperture antenna resonates at
2.05GHz with a 10-dB bandwidth of 0.45%. Next, a 2nd iteration
plus shape aperture antenna was investigated for different values of
offset parameters (dx, dy) with a scale factor of s = 0.8. Fig. 12 shows
the variation of return loss for different offset values and the results
are summarized in Table 4. It is evident that the location of the 2nd
iteration aperture affects the location of 2nd resonant frequency and
hence, the ratio of successive resonant frequencies. The variation of
return loss for a 2nd iteration aperture with dx = dy = 2.5 cm is shown
in Fig. 13. It is seen that the first resonant frequency shifts downward
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Table 4. Frequency response of 2nd iteration plus shape fractal
aperture antenna for different offset values.

Offset xc yc Resonant Frequencies Ratio
(dx = dy) (cm) (cm) f1 (GHz) f2 (GHz) f2/f1

2.50 0 6.6 1.97 2.69 1.37
3.00 0 6.4 1.99 2.75 1.38
3.50 0 6.4 2.00 2.87 1.44
3.75 0 6.25 2.00 2.91 1.46
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Figure 13. Return loss of
2nd iteration plus shape fractal
aperture antenna with dx = dy =
2.5 cm and s = 0.8.
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Figure 14. Return loss of 2nd
iteration plus shape fractal aper-
ture for different scale factors.

and the ratio between the successive resonant frequencies is 1.36 as
compared to the theoretical value 1.25. Two more plus shape fractal
apertures with scale factors s = 0.7 and s = 0.9 were investigated
and the results are shown in Fig. 14. The value of offset was kept
at 2.5 cm. It is seen that the ratio between the successive resonant
frequencies are 1.425, 1.37 and 1.31 for s = 0.7, s = 0.8 and s = 0.9,
respectively. Thus, the antenna resonant frequency can be controlled
by changing the scale factor, which can be fine tuned with different
offset values.

The radiation pattern of the 2nd iteration plus shape fractal
aperture antenna is shown in Fig. 15. The pattern shows a similar
behavior as that of carpet antenna which shows a null along z-axis.

3.4. Minkowski Fractal Aperture Antenna

Minkowski fractal geometries are widely used in the miniaturization
of antenna and frequency selective surface design. Here, we have
considered a second iteration Minkowski aperture antenna. The
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Figure 15. Normalized radiation pattern of self affine 2nd iteration
plus shape fractal aperture antenna with s = 0.8.

dimension of the initial square is taken to be 3 cm × 3 cm and a
10 cm× 10 cm× 0.4 cm cavity is used. The geometry of the Minkowski
aperture is shown in Fig. 16. From the parametric analysis, it was
found that the optimum probe locations are (0, 4.25 cm), (0, 3.80 cm)
and (0, 3.60 cm) for three iterations, respectively. The frequency
response of the Minkowski fractal aperture for different iterations of
the fractal geometry is shown in Fig. 17. It is found that the resonant
frequency of the antenna decreases by 12.66% as the order of iteration
increases from 0th to 2nd iteration. The ratio of the square aperture
length to the resonant wavelength is 0.31. Generally, it is found
that the antenna bandwidth decreases with the miniaturization of
the antenna structure. However, in this case, the antenna bandwidth
increases as the order of iteration increases and the impedance match
for all the iterations is very good.

The normalized power patterns of 2nd iteration Minkowski
aperture antenna at the resonant frequency are shown in Fig. 18.
Although not shown in the figure, the power patterns at the resonant
frequencies of the aperture antenna for different iterations were studied
and it was found that the pattern remains same at the resonant
frequencies for all iterations, although the gain of the antenna decreases
with the increase in order of iteration. The maximum gains of the
antenna at the resonant frequencies for different iterations are 6.76 dB,
5.88 dB and 5.45 dB.
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Figure 16. A 2nd iteration
Minkowski fractal aperture an-
tenna.

2.5 2.75 3 3.25 3.5
 -20

 -15

 -10

 -5

0

Frequency (GHz)

R
et

u
rn

 L
o
ss

 (
d

B
)

Iteration 0(FE-BI)

Iteration 0(HFSS)

Iteration 1(FE-BI)

Iteration 1(HFSS)

Iteration 2(FE-BI)

Iteration 2(HFSS)

Figure 17. Return loss of
Minkowski fractal aperture an-
tenna for different iterations.

-30

-20

-10

0

0

30

60

90

120

150

180

210

240

270

300

330

-30

-20

-10

0

N
o

r
m

a
li

z
e
d

 R
a

d
ia

te
d

 P
o

w
e
r
 (

d
B

)

=0

=90φ

φ
o

o

Figure 18. Normalized radiation pattern of 2nd iteration Minkowski
aperture antenna.

4. CONCLUSIONS

A hybrid FE-BI analysis for the cavity backed aperture antenna with
a coaxial feed is presented. Some dual-band cavity-backed antennas
based upon self-affine fractal geometries, such as, Sierpinski gasket,
Sierpinski carpet, plus shape fractal and Minkowski fractal have been
investigated and discussed. It is observed that the scale factor of the
fractal apertures can be used to suitably locate the resonant frequencies
of the antenna. Also, it is found that the location of the aperture
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relative to the center of the cavity changes the frequency characteristics
of the antenna. One of the main drawbacks of the cavity backed
antenna is that they have a low bandwidth which is due to the cavity
resonances. The normalized radiation pattern of the antenna is the
same at both the resonant frequencies for Sierpinski gasket dipole
aperture antenna, but a null appears along z-axis for aperture antennas
like Sierpinski carpet and plus shape fractal antennas. From the results
presented here, it can be concluded that the radiation pattern of the
antenna can be kept same if the apertures are excited by a single cavity
mode. A self-similar antenna based on the Minkowski fractal is also
analyzed, and it is found that this fractal geometry can be useful to
minimize the dimension of aperture antenna.
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