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Abstract—This paper proposes an efficient and automatic means of
achieving a reduced model of a transfer function for UWB antenna
design. According to the formulation of a transfer function, we have
derived two factors, which are critical in determining the radiation
pattern and input impedance respectively. Their special formula allow
us to establish a reduced model automatically using the Model Order
Reduction (MOR) techniques of a second order system. The process
is free of any human factors and suitable to any antenna systems, thus
enabling a direct and efficient interface with the optimization process
in the design of a UWB antenna system. In addition, the proposed
way of establishing a transfer function of the whole antenna system
has successfully cascaded the entire system into separate subsystems,
thus offering deeper insights in analyzing a UWB antenna system.

1. INTRODUCTION

Ultra wideband (UWB) antenna design has become one of the hottest
topics in the field of antenna design. However, to design a functionally
desirable antenna for UWB use is a really tough task. The primary
challenge is how to characterize the antenna system effectively. The
concept of transfer function [1–3] leads to a proper understanding of a
UWB antenna system. However, to determine the transfer function
over an ultra-wide band entails expensive computational cost. In
order to address this difficulty, solutions have been widely discussed.
Amongst them, the way of reducing the discrete responses into an
analytical model [4–7] attracts growing attentions. This approach has
successfully circumvented the requirement of obtaining the responses to

Corresponding author: Z. Zhang (zhangzhan@pmail.ntu.edu.sg).



268 Zhang and Lee

sufficient resolution, by instead constructing a physical-based reduced
model on the basis of much fewer samples. Since only some samples at
selected frequencies are needed to be computed directly, the efficiency
of characterization has been highly enhanced. In addition, the other
benefits, such as unifying the spectral and temporal representations
and favoring an analytic operation with the rest of the system, make
this approach even more appealing.

In fact, some efforts has been already made in the derivation
of a reduced model for the transfer function and some successful
works has been reported in the literatures. However, the majority of
them are based on the method of Model Based Parameter Estimation
(MBPE) [4–7]. The core idea is to assume a generic model first and
then to estimate the parameters via extracting the useful information
from the samples. Since the whole process is free of any specific
knowledge, MBPE is applicable to virtually all of electromagnetic
problems, thus earning overwhelming popularity. Although MBPE
opens the possibility of fulfilling a reduced model of a transfer function,
it shows some limitations especially as applying it to the optimized
design of a UWB antenna. As a sample-based method, MBPE is
highly sensitive to the choices of samples. Although the good result
can be expected, its success is mainly depended on the human efforts in
carefully tuning the number and locations of the samples. As a result,
it is far from an automatic process, thus failing to provide a direct and
automatic interface with a well-programmed optimization code, such
as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO).
Despite the extensive efforts made to reduce the uncertainties arising
in the sample selection [9, 10], a self-generated reduced model without
any human factors can not be achieved using MBPE.

Since optimization has become an indispensable part in nowadays
antenna design, the desire of working with a human-free optimization
code raises a new challenge and has motivated our work to seek a
reduced model of the transfer function automatically. Turning a shift
from MBPE that is heavily depended on the samples, this paper
proposed a new way that is based on the physical description of the
transfer function. At the first step, we take a careful investigation
on the formulation of a transfer function and then derive two complex
factors that determines the characteristics of the input admittance and
the radiation pattern of the antenna system respectively. Based on
them, a transfer function can be fully established. It is interesting
to find that the forms of both factors are consistent with the classic
descriptor of a dynamic system. In addition, impedance matrix, Z(s),
constitutes the transformation matrix of the both, which implies that
they would have the identical poles. Proper segmentation enables Z(s)
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exhibited in each segment to be approximated by a quadratic function.
Thus, a second order system is established within each segment.
The corresponding dominant poles and residues are simultaneously
identified by Q-arnoldi method [11], an efficient MOR method for
a second-order system. Gathering them from each segment results
in a reduced model ultimately. This process is free of any human
factors. Additionally, establishing the transfer function upon two
separate models offers more flexibility in dealing with various feeding
systems or propagation channels.

This paper is organized as follows. Section 2 gives a basic
formulation of problem. Section 3 describes the process of MOR.
Numerical results and conclusions are given in Sections 4 and 5.

2. PROBLEM FORMULATION

We can take a full view of a UWB communication architecture from
three ports represented by source signal Vs(s) at the feeding, radiated
field Erad(s) at a far point and output signal Vout(s) at the loading.
By properly assigning the input and the output, the resulting transfer
function serves to portray the filtering property of the intermediate
system.

HTA(s) =
Erad(s)
Vs(s)

(1)

HRA(s) =
Vout(s)
Erad(s)

(2)

H(s) =
Vout(s)
Vs(s)

(3)

where s = j2πf , f is the frequency. For the present purpose, the
definitions are assumed only frequency-dependent, while ignoring
the other factors such as the polarization and angular dependence.
According to the above definitions, HTA(s), namely transmitting
antenna transfer function takes into account the transmitting antenna
(Tx) and the channel jointly, whereas the receiving antenna transfer
function, HRA(s) only consider the transfer properties of the receiving
antenna (Rx). As integrating them together, H(s) is taken as the
overall response of the whole system. This paper will concentrate on
the modeling of HTA(s) and then exploit the reciprocity to derive
HRA(s) of the same antenna. Based on HTA(s) and HRA(s) and
given the both polarization of Tx and Rx, H(s) can be derived
accordingly. The following discussions are developed by the moment of
method relying on Rao-Wilton-Glisson (RWG) basis function [12, 13].
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However, the similar analysis can be arrived depending on the other
basis function for solving electrical field integral equation (EFIE). For
convenience, we start with some basic concepts of RWG edge elements.
Suppose the antenna surface is divided into separate triangles, each
pair of triangles sharing an edge in common constitutes a basic element
and is distinguished by a plus sign T+ and a minus sign T− such that
the reference current is always from T+ to T−. A basis function is
assigned to each edge as following:

f(r) =





l/2A+ρ+(r) r in T+

l/2A−ρ−(r) r in T−
0 otherwise

(4)

here l is the length of the edge, A± are the area of T±. Vector ρ+

connects the free vertex of T+ to the observation point r, whereas ρ−
connects the observation point r to the free vertex of T−. The above
way of defining a basis function allows us to consider each edge element
as a small but finite dipole of length |rc−−rc+| and with a unit current
density. Index c denotes the center of T±.

In a MoM solver, HTA(s) can be formulated as

HTA(s) =
Erad(s)
Vin(s)

Vin(s)
Vs(s)

=
Erad(s)
Vin(s)

ZA(s)
ZA(s) + Zs(s)

(5)

The former part describes the efficiency of radiation where Vin(s) is the
incident voltage across the antenna, while the latter part corresponds
to the impedance matching where ZA(s) and Zs(s) are the impedance
of the transmitting antenna and the source respectively.

In a MoM, the first step is to solve surface current density I(s).

I(s) = Z(s)−1bVin(s) (6)

where Z(s) ∈ Cn×n is an impedance matrix and b denotes an excitation
vector. The form of b depends on the feeding model. In the simplest
case a delta-function generator is adopted, b is supposed to be all zeros,
except for the feeding edge m where b(m) = lm (lm is the length of
edge m). An alternative model is a base-driven monopole whose feeding
model is at a junction of two edge elements, say n1 and n2. Similarly,
b is supposed to be all zeros, except that b(ni) = lni , i = (1, 2) (where
lni is the length of edge ni). Despite the different forms of feeding
model, the antenna impedance ZA(s) can be generalized to

ZA(s) =
1

bTZ(s)−1b
(7)

If adopting the delta generator, ZA(s) equals to Vin(s)/Imlm.
Otherwise, ZA(s) is transformed to Vin(s)/(In1ln1 + In2ln2) for the
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case of a monopole model. The generalized form of ZA(s) is validated
since it offers a total agreement with the results presented in [13].

Once surface current density I(s) has been solved, Erad(s) in the
far field can be approximated by

Erad(s) =
sη
4πc

e
−sR

c

R
cT I(s) (8)

where c is a vector describing the contribution of each edge element to
the total field. If each edge element can be treated as an infinitesimal
dipole (rc−

m − rc+
m ) and with an effective current lm, the mth element

of c corresponds to (r ·m)~r/|r| where r is the location of observation
point and m = (rc−

m − rc+
m )lm.

According to (6), (7) and (8), we develop HTA(s) into

HTA(s) =
Erad(s)
Vin(s)

ZA(s)
ZA(s) + Zs(s)

=
sη

c

e
−sR

c

4πR
cTZ(s)−1b

1
1 + Zs(s)bTZ(s)−1b

=
sη

c

e
−sR

c

4πR

Q1

1 + Zs(s)Q2
(9)

Factoring the linear term sη
c and propagation term e

−sR
c

4πR out, we extract
two models: Q1(= cTZ(s)−1b) and Q2(= bTZ(s)−1b). Q1 relates
radiation pattern and Q2 represents the input admittance. As shown
in (9), they constitute the critical parts of HTA(s) and the following
discussion would further verify that they also act as determining factors
in HRA(s).

As well known, the effective length of the antenna, heff , keeps
identical in the mode of the transmission and reception. In terms of
Q1 and Q2, heff takes on a new form through the derivation of (10)

sη

c

e
−s
c

R

4πR
heff =

Erad(s)
Iin(s)

=
Erad(s)
Vin(s)

Vin(s)
Iin(s)

=
sη

c

e
−s
c

R

4πR

Q1

Q2
⇒heff =

Q1

Q2
(10)

By exploiting the reciprocity of heff , HRA(s) of the same antenna can
be simply derived from (11), suppose it is loaded by ZL [14].

HRA(s) = heff

(
ZL

Zs(s) + ZL

)
=

Q1

Q2

(
ZLQ1

1 + ZLQ2

)
(11)

It should be noted that the same formulation of HRA(s) can be derived
by instead solving a receiving problem based on RWG elements [12].
According to (9) and (11), Q1 and Q2 determine the complex properties
of HTA(s) and HRA(s). Once they are known, the derivation of HTA(s)
and HRA(s) becomes trivially simple. Rather than undertaking the
model reduction on heff or directly on the integral transfer function
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Figure 1. Cascaded system.

by previous work [5, 7, 14], the current study attempts to carry out
the modeling on Q1 and Q2. One reason is that the formula of Q1

and Q2 are both consistent with the generic descriptor of a dynamic
system where the techniques of MOR have reached a mature level, thus
straightening the possibility of realizing an automatic modeling. Since
both models have the identical poles that coincide with the eigenvalues
of Z(s), MOR can proceed on Q1 and Q2 simultaneously. Furthermore,
the independent analysis of Q1 and Q2 lead to a deeper understanding
of the entire system which allow us to decompose it into a cascade
of subsystems as depicted in Fig. 1. 1/Q2T and 1/Q2R represent the
impedance of Tx and Rx respectively. Their characteristics provide
guidelines for design or analysis of the ahead feeding model and the
sequent loading model respectively. Similarly, Q1T and Q1R are helpful
for investigating the radiation/reception phenomena that taken place
on the Tx and Rx respectively. Therefore, the independent modeling
of Q1 and Q2 offers more details of the antenna system.

3. MODEL REDUCTION OF Q1 AND Q2

The following work focus on the modeling of Q1 and Q2 which depends
on the MOR techniques for a complex electronic system. The core idea
is to project a larger system Q(s) into a much smaller one such that the
identification of poles (si) and residues (Ri) becomes rather simpler.
And hence, a reduced model can be established as

Q(s) =
∑ Ri

s− si
(12)

However,the techniques is highly depended on the complexity order
of the system. According to (9), the form of Z(s) determines the
order of both models. Since frequency behavior of Z(s) can be
approximated by a quadratic function [15], it might raise a second-
order problem. However, a single quadratic function seems inadequate
to depict the complete behavior of Z(s) over the ultra-wide band.
Under such a situation, segmentation of Z(s) seems necessary. As a
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result, the entire system is cascaded into several second-order systems.
This requires MOR to be performed within each spectrum separately.
Since the dominant behavior of a model is naturally governed by
the poles with larger residues and smaller real parts, instead of the
full set, computation with special emphasis on those dominant ones
leads to increased efficiency. Furthermore, there should be means to
compensate the truncated poles out of the investigation band. In sum,
the main steps of the method are outlined here:
(i) Segmentation and derivation of Z(s) of each segment.
(ii) Identification of dominant poles/residues within each spectrum.
(iii) Compensation of the modes out of the spectrum of interest.

3.1. Quadratic Approximation of Z(s)

Using RWG basis functions [12], the impedance matrix is derived by

Zmn = lm[jω(A+
mn · ρc+

m /2 + A−mn · ρc−
m /2) + (Φ+

mn − Φ−mn)] (13)

where the index m and n corresponds to two edge elments; (·) denotes
the dot production. Amn and Φmn represent the magnetic vector
potential and the scalar potential as following

A±mn =
µ

4π

(
ln

2A+
n

∫

T+
n

ρ+
n (r′)g±m(r′)dS′ +

ln

2A−n

∫

T−n
ρ−n (r′)g±m(r′)dS′

)

Φ±mn =
1

4πjωε

(
ln

2A+
n

∫

T+
n

g±m(r′)dS′ − ln

2A−n

∫

T−n
g±m(r′)dS′

)
(14)

where g±m(r′) = e−jk|rc±
m −r′|

|rc±
m −r′| . From the above expressions, frequency-

dependent terms in Z(s) involves ωe−jk4r and e−jk4r/ω where ω is
angular frequency, k is the wavenumber and 4r = |rc±

m − r′|. We can
further factorize them into e−jk4r, ω and 1/ω. Among these three
factors, e−jk4r has the strongest response to frequency. Therefore,
it is a dominant factor of Z(s). Quadratic function can approximate
e−jk4r to certain bandwidth but is subject to a constraint [16]. If the
quadratic approximation is made within the band [f0 −4f, f0 +4f ]
that is centered at f0 and has a symmetrical span of 24f , one should
make sure that the phase change introduced by 4f is strictly less than
π in the whole antenna scale [16]. In other words, a necessary condition
is that 4kRmax ≤ π where 4k is the wavenumber step. To meet such
a condition, the maximal frequency step 4fmax or the half bandwidth
should be limited to c/(2Rmax) according to (15), where Rmax denotes
the maximal extent of the antenna, i.e., the maximum of 4r

4kRmax ≤ π ⇒4fmax ≤ c/(2Rmax) (15)



274 Zhang and Lee

Although e−jk4r plays a dominant role, the contributions from ω and
1/ω also should be considered. In the next step, we expand them
around f0.

ω = (2πf0)(1 +4f/f0)
1/ω = (1/2πf0)(1 + (−4f/f0) + · · ·+ (−4f/f0)n)

(16)

Both in terms of 4f/f0, the complications introduced by ω and
1/ω challenges the quadratic approximation, especially when 4f/f0

turns large. Therefore, to keep 4f/f0 sufficiently small is the other
necessary condition to justify the quadratic approximation. From our
observations, as4f/f0 < 1/3, contributions of high-order terms in (16)
becomes negligible, which suggests that the dominant response remains
in a quadratic form. Therefore, besides 4f < 4fmax, 4f should
satisfy the other condition that 4f/f0 < 1/3. In order to satisfy
the both, the maximum frequency step or the half of the bandwidth
should be limited to the lesser between 4fmax and f0/3, or simply
interpreted as min(f0/3,4fmax). Therefore, specifying the bandwidth
to 2 min(f0/3,4fmax) leads to a reliable quadratic function for each
segment. To be noted, a segment can be alternatively defined as
[fs, fs + 2 min(fs/2,4fmax)] or [fe − 2min(fe/4,4fmax), fe], if the
starting point fs or ending point fe is known. In fact, the solution
to an effective segmentation is not unique. However, good results
can be expected simply by following the above guidelines. Here, we
recommend one of the most natural ways whereby the first segment
is determined by the low end, fL or the high end, fH of the whole
spectrum, and then segmentation proceeds forwards or backwards until
ending up with the other end. Suppose the segments are connected
end to end, the other node of a segment can be properly defined by
the known one and the process of segmentation can be illustrated by
by following recursion, where f(n) and f(n + 1) correspond to the
beginning and ending node of the nth segment.

fn+1 = fn + 2 min(fn/2,4fmax) with f1 = fL

fn+1 = fn − 2min(fn/4,4fmax) with f1 = fH (17)

So far, we have successfully divided the entire band into small segments
and each one corresponds to a quadratic function of Z(f): Z(f) =
Mf2+Cf +K. The coefficient matrices M, C and K can be estimated
given Z(f) at any three frequency points within the segment. Prior
to the pole identification, however, Z(f) should be transformed to
the s-plane. If quadratic function of Z(f) is valid within a segment
[fs, fe], its counterpart Z(s) is fully justified along the truncated axis
of [j2πfs, j2πfe]. Since dominant poles are those with near-zero real
part, one can extend Z(s) to estimate them only if their imaginary part
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is restricted to [2πfs, 2πfe]. Since the poles/residues come as conjugate
pairs, we only need to consider the poles with real frequency. Gathering
the dominant poles si from each spectrum establishes a model as

Q(s) =
∑ Ri

s− si
+

∑ R∗
i

s− s∗i
(18)

3.2. Dominant Pole Identification Using Q-arnoli

Compared to the mature level of the techniques for the linear
system [17], the development of second-order techniques is a relatively
new topic, but has raised growing interest, including Second Order
Arnoldi [18], Second order dominant pole identification [19] and
Quadratic Arnoldi algorithm [11]. In this paper, Quadratic Arnoldi
algorithm (Q-arnoldi) are adopted as the numerical method, in terms
of its remarkable feature of favoring the convergence to the particular
eigenvalues using the strategies of implicit restarting or purging [17].
Known as a memory-efficient and structure-preserving, the core step
of Q-arnoldi is to project a large quadratic system into a subspace of
much smaller dimension via Krylov recurrence relation [11]. In the
reduced subspace, eigentriplets (si,xi,yi) of the original system can
be approximated in a much simpler and efficient way, where si denotes
the eigenvalue, xi and yi are the left and right eigenvectors. Since the
poles of Q1 and Q2 are identical, they can be computed simultaneously
but their residues have to be computed separately via Q-arnoldi. As to
a model Q(s) = cT (Ms2 + Ks + C)−1b, its residues can be estimated
by Ri = (c∗xi)(y∗i b)si provided that xi and yi are well-scaled so that
−y∗i Kxi + s2

i y
∗
i Mxi = 1 [19].

In this paper, Q-arnoldi is adapted to targeting the dominant poles
within the given spectrum. The following criteria help to define the
wanted eigenvalues.
(i) fs < Im(si) ≤ f(e)
(ii) ρ(si)/ρmax > p with ρ(si) = Ri

Re(si)

The former places a limit to the imaginary part of the poles
corresponding to the segment boundary. And the latter is used to
estimate the dominance ρ defined by the ratio of the residue R(si) to
the real part Re(si). The threshold of p serves to check the dominance
of si in reference to the greatest ρ achieved so far. only the poles
satisfying the both criteria are of our interest and ought to be identified
by Q-arnoldi.

In order to accelerate the convergence towards the interior poles of
a given spectrum, we apply a shift-and-invert Q-arnoldi via a spectral
transformation f(s) = 1/(s− s0) where s0 = j2πf0 is at the center of
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the spectrum. As a result, the sequence to be converged is in the inverse
order of the distance to s0. Specifically speakinh, the eigenvalues with
imaginary part close to 2πf0 converges fast. In addition, because s0

is located at the imaginary axis, convergence tends to the ones having
small real part, one typical identity of a dominant pole. In a word, the
proposed method favors the convergence towards the interior of the
spectrum, especially the dominant ones.

Q-arnoldi will proceeds iteratively until fulfilling the expectation
of the computation. However,the growing iterations will increase
the dimension of the subspace and therefore increase the storage
and computational cost. One remedy is to perform a restart, a
process of reducing the subspace by throwing away that part that is
unlikely to significantly contribute to the convergence of the wanted
eigenvalues. In this paper, approximates failing to satisfy the above
criteria are purged via implicit restarting [11], thus further accelerating
the convergence towards the desired ones. Once all approximates are
purged even after a plenty of explorations, it seems the time to close
the Q-Arnoldi by reasoning that none of desired poles indeed exist
within the specified spectrum. The other condition of terminating the
process is that the convergence reluctantly happens to the undesired
one, which implies that there has no extra poles deserving the further
computation.

To sum up, with the Q-arnoldi method, the dominant poles and
residues of Q1 and Q2 can be computed automatically and efficiently.

3.3. Compensation of the Poles out of Band

The truncation of the spectrum at the extremely high and low
frequencies might miss the dominant poles over there. Generally, the
effect can be simulated by a series of asymptotic terms [20] and the
model can be completed by incorporating them

Q(s) =
∑ Ri

s− si
+

∑ R∗
i

s− s∗i
+

T

s
+

[
E0 + E1s + E2s

2
]

(19)

T
s accounts for the contribution of poles below the bandwidth of
interest while [E0 + E1s + E2s

2] compensates poles at the higher
frequency. The points already computed for the derivation of Z(s)
can be further used to estimate the coefficients via interpolating the
deviation between the approximate model (18) and the exact solutions.

4. NUMERICAL RESULTS AND DISCUSSIONS

An example is given here to test the performance of the proposed
method. The band under investigation spans from fL = 1 GHz to
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Figure 2. Mesh of antenna.

Table 1. Solution to segmentation.

No 1 2 3 4
Solution 1 (GHz) [1, 2] [2, 4] [4, 8] [8, 12]
Solution 2 (GHz) [1, 1.5] [1.5, 3] [3, 6] [6, 12]

fH = 12 GHz. In order to test the generality of this method, we use
an arbitrary antenna picked by a shape generator [21] (as shown in
Fig. 2) as an illustration. Regardless of the specific configuration, only
the maximum dimension Rmax is of concern for confining 4fmax. In
this case Rmax = 0.052m, 4fmax approximate 3 GHz. According to
the recursion step introduced by (17), two solutions are presented in
Table 1. Solution 1 carries segmentation from fL, whereas Solution 2
performs reversely. However, both is consisted of 4 segments. If
segments are connected end to end, only 9 points is needed for deriving
Z(s). Based on the quadratic approximation of Z(s) within each
segment, the input impedance is calculated and plotted in Fig. 3,
which verifies that both solutions provide good agreement to the exact
solution. The following results is based on Solution 1.

Subsequently, Q-Arnoldi is implemented. The initial dimension of
subspace is chosen to be 10; convergence tolerance is set to 10−10, and
the dominance threshold p is specified to 10%. Table 2 lists the final
results. Depended on these 4 poles si and residues Ri, reduced models
of Q1 and Q2 can be established according to (18). The approximate
results shown in Fig. 4 and Fig. 5 indicate the reduced models are
capable of capturing the significant tendencies. Resonances happen at
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Table 2. Poles and residues.
si (GHz) Ri of Q1 (×10−3) Ri of Q2 (×10−3)

−0.3400 + 2.0620j −0.2672− 0.1217j 0.8578 + 0.4409j
−0.5897 + 5.6621j 0.1886 + 0.0578j 0.5491− 0.5936j
−1.5559 + 9.4470j 0.1078 + 0.3106j 1.7762− 0.0446j
−2.8700 + 11.9520j 0.0024 + 0.0053j 0.6716− 0.2228j

the frequencies near the imaginary part of poles. As shown in both
Fig. 4 and Fig. 5, Q1 and Q2 achieved local minimum or maximum
around 2.0620 GHz and 5.6621 GHz. Though the intensity is not so
severe as the former two, the resonant tendency can be also detected
around 9.4470 GHz and 11.9520 GHz. The mismatch to the exact
solution is attributed to the neglect of the dominant poles outside and
is addressed through the compensation of (19). The refined models
of (19) result in the improved accuracy and agreement with exact
solutions, as also plotted Fig. 4 and Fig. 5.

Based on reduced models of Q1 and Q2, HTA(s) can be synthesized
according to (9) and the result has been presented in Fig. 6, which
validates the accuracy of our approach. It should be noted that the

propagation term e
−sR

c

4πR is left out of the result for a better resolution
of comparison.
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Figure 5. Model of Q2.
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Figure 6. Model of HTA(s).

For this example, some features can be summarized as follows:

• Throughout this example, only 4 segments are involved and only 9
points are needed not only for the derivation of Z(s), but also for
the estimation of the coefficients of asymptotic terms in (19). In
addition, model-building only depends on 4 dominant poles with
the fast identification of Q-Arnoldi. These facts strongly prove
the substantial saving on the computational time.

• Throughout this example, no human factors are involved and
no knowledge specific to the problem are needed except for the
maximum dimension of the antenna body.

5. CONCLUSIONS

This paper has proposed a method capable of fulfilling a reduced model
of transfer function of a UWB antenna system. The process is free of
any human factor and suitable for any antenna system. The benefits of
this method is several folded. The first is that the efficiency has been
highly enhanced. In a sense, only the points required to interpolate
Z(s) are directly computed and only the dominant poles are identified
by handling a low dimensional model. Therefore, the computation cost
has been substantially reduced. The second is that it largely reduces
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the risk of yielding the nonphysical results such as the pseudo poles
since the method is founded upon the physical formulations instead
of purely depending on the samples. Another remarkable feature of
this approach is that separate modeling of Q1 and Q2 allows for the
separate analysis and design of the feeding model and the propagation
channel. For example, the characteristics of Q2 provide the practical
guidelines for the design of the feeding model or the loading model such
as the coplanar waveguide, which is widely adopted for broadening the
bandwidth of UWB antennas. The characteristics of Q1 are helpful
to construct the appropriate propagation channel. Therefore, the
separate analysis of Q1 and Q2 leads to more insightful understanding
of the entire antenna system.
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