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Abstract—This paper addresses the problem of direction of arrival
and time delay estimation, and derives multi-invariance MUSIC (MI-
MUSIC) algorithm therein. The proposed MI-MUSIC, which only
requires one-dimension searching, can avoid the high computational
cost within two-dimension MUSIC (2D-MUSIC) algorithm. It means
that MI-MUSIC algorithm has better performance than that of
ESPRIT and MUSIC, and also can be viewed as a generalization of
MUSIC. Simulation results verify the usefulness of our algorithm.

1. INTRODUCTION

Direction of arrival (DOA) estimation and time delay estimation are
two key problems in the signal processing field. Recently, the problem
of joint angle and time delay estimation has also attracted considerable
attentions, and it has been used for wireless location and emergency
services [1]. A precise DOA and time delay estimation results in a
more accurate location estimate. Joint angle and delay estimation have
been investigated in [2–9], including maximum likelihood method [2],
two dimensional multiple signal classification (MUSIC) algorithm [3, 4],
estimation of signal parameters via rotational invariance techniques
(ESPRIT) algorithm [5, 6], Fourth-order cumulant method [7], parallel
factor analysis (PARAFAC) algorithm [8], etc. In [3], 2D-MUSIC
can be used to estimate the angles of arrival and delays of the
multipath signals using a collection of space-time channel estimates.
In [5], Van der Veen uses ESPRIT to separate and estimate the
phase shifts due to delay and direction-of-incidence. High order
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cumulant method requires the signal statistical properties, and it
needs larger snapshots to get good performance. Also it has heavier
computation load. ESPRIT is a closed-form eigen structure-based
parameter estimation technique which requires data possession of
certain “invariance” structures. An alternative eigen-decomposition
based method to estimate DOAs is MUSIC algorithm, which uses the
noise-subspace eigenvectors of the data correlation matrix to form a
null spectrum and yields the corresponding signal parameter estimates.
Notably, it has also concerned that MUSIC matches some kind of
irregularly-spaced array with high popularity [10]. It has been proved
that 2D-MUSIC algorithm represents an implement for DOA and delay
estimation. However, the requirement of 2D search renders much
higher computational complexity. In this paper, we derive the multi-
invariance MUSIC (MI-MUSIC) algorithm which distinctively reduces
the complexity for angle and delay estimation. We compare their root
mean squared error (RMSE) and costs of computational complexity
against those of conventional algorithms. The proposed MI-MUSIC
algorithm can have better angle and delay estimation performance
than ESPRIT, PARAFAC and MUSIC algorithm. Numerical results
for different array antenna manifolds and a variety of data lengths are
also presented in the simulations.

Notation: (.)∗, (.)T , (.)H , (.)† and || ||F denote the complex
conjugation, transpose, conjugate-transpose, pseudo-inverse and
Forbenius norm, respectively. IP is a P × P identity matrix; ◦ is
Khatri-Rao product; ⊗ is the Kronecker product.

2. DATA MODEL

A total of K rays are transmitting to a base station equipped with
a uniform linear array of M antennas with half-wavelength spacing.
Then, the received baseband signal at the output of the antenna array
can be expressed as

x(t) =
K∑

k=1

a(θk)βkg(t− τk)sk(t) + n(t) (1)

where n(t) is the received noise, which is independent of the signal; βk

is the channel fading of the kth ray; τk is the time delay of the kth ray;
θk is the direction of arrival (DOA) of the kth ray; a(θk) is the array
direction vector for DOA θk; sk(t) is the information-bearing signal of
the kth ray. It is assumed that all sources employ a common pulse
shape g(t). We take sample x(t) at a rate of P times the symbol rate
during L symbol periods and collect samples. Then, construct MP×L
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matrix X

X =




x(0) x(1) . . . x(L− 1)
x( 1

P ) x(1 + 1
P ) . . . x(L− 1 + 1

P )
...

...
...

...
x(1− 1

P ) x(2− 1
P ) . . . x(L− 1

P )


 (2)

We take the discrete Fourier transform of the oversampled antenna
output, and obtain a matrix which satisfies the model [3],

X̄ = [Fτ ◦Aθ]ΓS + Ē =




AθD1(Fτ )
AθD2(Fτ )

...
AθDP (Fτ )


SE + Ē (3)

where Aθ = [a(θ1), . . . ,a(θK)] ∈ CM×K is the direction matrix;
Γ = diag[β1 . . . βK ] ∈ CK×K is the channel fading matrix; Fτ ◦ Aθ

is Khatri-Rao product; S ∈ CK×L is the source matrix; SE = ΓS;
Dp(.) is to extract the pth row of its matrix argument and construct
a diagonal matrix out of it. Ē is the noise component; Fτ ∈ CP×K

is a delay matrix, which element [Fτ ]p,k = e−j2πτk(p−1)/P . For the
signal model in (3), the covariance matrix R̂x can be estimated by
R̂x = X̄X̄H

/L, which is denoted by

R̂x = EsDsEH
s + EnDnEH

n (4)

where Ds stands for a K × K diagonal matrix whose diagonal elements
contain the largest K eigenvalues, and Dn stands for a diagonal matrix
whose diagonal entries contain the smallest MP −K eigenvalues. Es is
the matrix composed of the eigenvectors corresponding to the largest
K eigenvalues of R̂x, while En represents the matrix including the rest
eigenvectors.

3. MUSIC-LIKE ALGORITHMS FOR ANGLE AND
DELAY ESTIMATION

According to Eq. (4), we construct the 2D-MUSIC spatial spectrum
function

f2dmusic(τ, θ) =
1

[f(τ)⊗ a(θ)]HEnEH
n [f(τ)⊗ a(θ)]

where

f(τ) = [1 exp(−j2πτ/P ) . . . exp(−j2π(P − 1)τ/P ))]T (5)

a(θ) = [1 exp(−jπ sin θ) . . . exp(−jπ(M − 1) sin θ)]T (6)
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here we have the K largest peaks of f2dmusic(τ, θ) taken as the estimates
of the angles and delays. Since 2D-MUSIC requires an exhaustive
two-dimension searching, its approach is normally inefficient due to
high computational cost. In the following subsections, we present MI-
MUSIC algorithm, which qualifies for the angle and delay estimation
just through one-dimension searching.

3.1. Multi-invariance MUSIC Algorithm for Angle and
Delay Estimation

MI-MUSIC algorithm can be viewed as a generalization of MUSIC
and has been proposed for DOA estimation with the exploitation of
array invariance [11]. In this subsection, the idea of MI-MUSIC has
been adopted to estimate DOA and delay. Assuming that no noise is
presented, the signal subspace Es in Eq. (4) can be denoted as

Es =




AθD1(Fτ )
AθD2(Fτ )

...
AθDP (Fτ )


T =




Aθ

AθΦ
...

AθΦP−1


T = ΛT

= [f(τ1)⊗ a(θ1), . . . , f(τK)⊗ a(θK)]T (7)
where T is a K ×K full-rank matrix, Φ = diag{[exp(−j2πτ1/P ) . . .
exp(−j2πτK/P )]} is the rotational matrix, Λ = [f(τ1) ⊗
a(θ1), . . . , f(τK)⊗a(θK)]. The signal in Eq. (7) is with multi-invariance
characteristic, and we can use MI-MUSIC algorithm [11] for angle
and delay estimation. According to (7), Λ = EsT−1 can be eas-
ily obtained, then the signal subspace fitting is given in this form
T̂, Λ̂ = arg min

T,Λ
‖Λ− ÊsT−1‖2

F , where Ês is the estimate of Es. The

subspace fitting can be also denoted as

T̂, Λ̂ = arg min tr
(
ΛHΠ⊥

Ês
Λ

)
(8)

where Π⊥
Ês

= IMP − Ês(ÊH
s Ês)−1ÊH

s , tr(.) denotes the sum of the
elements of the principal diagonal of the matrix. Consider now the
minimization of Eq. (8), which becomes,

f(τk),a(θk) = arg min
∑K

k=1
[f(τk)⊗ a(θk)]

H Π⊥
Ês

[f(τk)⊗ a(θk)] (9)

Also, the minimization for Eq. (9) can be attained by searching for the
deepest K minimum in the following criterion,

V(φ, θ) = [f(τ)⊗ a(θ)]HΠ⊥
Ês

[f(τ)⊗ a(θ)]

= a(θ)H [f(τ)⊗ IM ]HΠ⊥
Ês

[f(τ)⊗ IM ]a(θ)

= a(θ)HQ(τ)a(θ)

(10)
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where Q(τ) = [f(τ)⊗ IM ]HΠ⊥
Ês

[f(τ)⊗ IM ]. Eq. (10) is the problem of

quadratic optimization. We also consider the constraint of eT
1 a(θ) = 1,

where e1 = [1, 0, . . . , 0]T ∈ RM×1 has been added to eliminate
the trivial solution a(θ) = 0M . The optimization problem can be
reconstructed with the linear constraint minimum variance solution,
for which we have

min
τ

a(θ)HQ(τ)a(θ), s.t. eT
1 a(θ) = 1 (11)

Make solution to Eq. (11), which is shown as

τ̂ = arg min
τ

1
eT

1 Q(τ)−1e1
= arg max

τ
eT

1 Q(τ)−1e1 (12)

Searching τ , we find the K largest peaks of the (1, 1) element of Q(τ)−1.
Note that the K largest peak should correspond to the delays. With
respect to Eq. (12), another denotation can be given by

V(φ, θ) = [f(τ)⊗ a(θ)]HΠ⊥
Ês

[f(τ)⊗ a(θ)]

= f(τ)H [IP ⊗ a(θ)]HΠ⊥
Ês

[IP ⊗ a(θ)]f(τ)

= f(τ)HP(θ)f(τ)

(13)

where P(θ) = [IP ⊗ a(θ)]HΠ⊥
Ês

[IP ⊗ a(θ)]. Similarly, the solution for
θ is

θ̂ = arg max
θ

eT
2 P(θ)−1e2 (14)

where e2 = [1, 0, . . . , 0]T ∈ RP×1. Searching θ ∈ [−90◦, 90◦], we find
the K largest peaks of the (1, 1) element of P(θ)−1. Note also that the
K largest peak should correspond to DOAs.

Till now, we have achieved the proposal for multi-invariance
MUSIC-based algorithm for DOA and delay estimation. We show
the major steps of MI-MUSIC as follows: Step 1. Perform the eigen-
decomposition operation for the covariance matrix R̂x to Ês, and
calculate Π⊥

Ês
; Step 2. Searching τ , we find the K largest peaks of the

(1, 1) element of Q(τ)−1 with respect to Eq. (12) to get the estimate
of delays; Step 3. Searching θ, we find the K largest peaks of the (1, 1)
element of P(θ)−1 with respect to Eq. (14) to get the estimate of DOAs.
It is pointed out that when the coherent signals impinge the antenna
array, the source matrix is not full rank, and we can use the smoothing
technique to solve this problem.

3.2. Complexity Analysis

In contrast, our algorithm can have heavier computational load than
ESPRIT and MUSIC and lower complexity than 2D-MUSIC. ESPRIT
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requires O(LM2P 2 + M3P 3 + 2K2(M − 1)P + 2K2(P − 1)M + 6K3),
while 2D-MUSIC costs O(LM2P 2+M3P 3+n2[2MP(MP −K)+MP]);
MUSIC algorithm needs O(LMP2 + LM2P + M3 + P 3 + n[2P (P −
K) + 2M(M −K) + P + M ]), and our algorithm (MI-MUSIC) urges
O(LM2P 2 + M3P 3 + M2P 2K + n[M3P 2 + M2P 3 + M3P + MP3 +
P 2 +M2]). Among the three methods stated above, n can be the total
times for their searching steps in each algorithm. In the PARAFAC
algorithm [8], the complexity of each trilinear alternating least squares
(TALS) iteration is O(3K3 + 2MPLK+ 3K2(MP + ML + PL + M +
P + L)), and the number of iterations depends on the three way data
to be decomposed.

4. SIMULATION RESULTS

We present Monte Carlo simulations that assess the performance of our
algorithm. We assume binary phase shift keying (BPSK) modulated
signal. Note that L, K, M and P are the number of snapshots,
rays, antennas and oversampling rate, respectively. In the following
simulations, we assume that there are three noncoherent rays to
arrive at array antenna. Their DOAs are 10◦, 20◦, 30◦, and their
corresponding delays are 0.1 chip, 0.3 chip, 0.5 chip, respectively. The
number of sources can be estimated based on Akaike’s information
criterion and Rissanen’s Minimum description length principle. We

define RMSE =
√

1
500

∑500
n=1 (ân,k − ak)2, where ân,k is the estimated

angle/delay for kth ray of the nth trial; ak is the prefect angle/delay
of the kth ray.
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Figure 1. The angle and delay estimation performance with MI-
MUSIC at SNR = 25 dB.
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Figure 1 presents angle and delay estimation results of MI-MUSIC
algorithm with M = 8, P = 10, L = 100 and SNR = 25 dB, where the
spectrum peaks at the angles/delays can be clearly observed. From
Fig. 1, we find that MI-MUSIC algorithm works well. Fig. 2 shows the
angle and delay estimation performance for ray 2 with M = 8, P = 10
and L = 50, where we compare MI-MUSIC algorithm with ESPRIT,
PARAFAC and MUSIC methods. It is indicated in Fig. 2 that among
the four algorithms, MI-MUSIC algorithm that we presented has better
angle/delay estimation performance than ESPRIT, PARAFAC and
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Figure 2. The angle and delay estimation performance comparison
with L = 50.
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Figure 3. Angle and delay estimation with different L.
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Figure 4. Angle and delay estimation with different M .
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Figure 5. Angle and delay estimation with different P .

MUSIC algorithms. MUSIC has the worst angle/delay estimation
performance among the four algorithms. Fig. 3 depicts the algorithmic
performance comparisons where MI-MUSIC has been adopted, and the
simulation is shown for ray 3 with different L (the same M = 8, P = 10
as Fig. 2). It is indicated that the performance of angle and delay
estimation becomes better with L increasing.

Figure 4 illustrates the angle and delay estimation performance
by MI-MUSIC algorithm for ray 2 with different M . It is clearly
shown that the estimation performance of MI-MUSIC is gradually
improved with the number of antennas increasing. Multiple antennas
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Figure 6. Angle and delay estimation with different K.

improve angle and delay estimation performance because of diversity
gain. Fig. 5 presents the angle and delay estimation performance by
MI-MUSIC algorithm for ray 2 with different P . It is clearly shown
that the estimation performance of MI-MUSIC is gradually improved
with increasing P . Fig. 6 displays the algorithmic performance of MI-
MUSIC under different K when M = 8, P = 10, and L = 100. From
Fig. 6, we conclude that angle and delay estimation performance levels
are down with the increment of source numbers.

5. CONCLUSION

In this paper, we have derived the MI-MUSIC algorithm, which avoids
the high computational cost within 2D-MUSIC, for blind joint angle
and delay estimation. We demonstrate that MI-MUSIC can have
much better performance for angle and delay estimation in contrast
to ESPRIT, PARAFAC and MUSIC algorithms. Our algorithm can
work well in other array manifolds and expand the adoptions, and it
can be regarded as a generalization of MUSIC.
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