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Abstract—The observed phenomena in actual electromagnetic
environment are inevitably contaminated by the background noise
of arbitrary distribution type. Therefore, in order to evaluate the
electromagnetic environment, it is necessary to establish some signal
processing methods to remove the undesirable effects of the background
noise. In this paper, we propose a noise cancellation method for
estimating a specific signal with the existence of background noise of
non-Gaussian distribution. By applying the well-known least mean
squared method for the moment statistics with several orders, a
practical method for estimating the specific signal is derived. The
effectiveness of the proposed theoretical method is experimentally
confirmed by applying it to an estimation problem in actual magnetic
field environment.

1. INTRODUCTION

The specific signal in the actual electromagnetic wave frequently shows
some very complex fluctuation forms of non-Gaussian type owing to
natural, social and human factors [1–3]. Furthermore, the observed
data are inevitably contaminated by the background noise of arbitrary
distribution type [4, 5]. In these situations, it is often desirable to
estimate several evaluation quantities such as the peak value, the
amplitude probability distribution, the average crossing rate, the pulse
spacing and duration distributions, etc. of the specific signal. Without
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losing their mutual relationships, it is indispensable to estimate the
original wave fluctuation form itself of the specific signal based on the
observed noise data.

In this study, a signal processing method for estimating a
specific signal with the existence of background noise of non-Gaussian
distribution forms is proposed. More specifically, by paying attention
to the power state variable for a specific signal in the electromagnetic
environment, which exhibits complex probability distribution forms,
we propose a new type of signal processing method for estimating a
specific signal. In the case of considering the power state variable, a
physical mechanism of contamination by a background noise can be
reflected in the state estimation method by using an additive property
between the specific signal and background noise. The proposed
method positively utilizes the additive property of power state variables
in the derivation processes of the estimation algorithm.

The effectiveness of the proposed theoretical method is experi-
mentally confirmed by applying it to the actual estimation problem in
specific magnetic field environment.

2. BACKGROUND

Hitherto many methodological studies have been reported on the state
estimation for stochastic systems [6–8]. However, many standard
estimation methods proposed previously in a study of stochastic
systems are restricted only to the Gaussian distribution [9, 10]. Several
state estimation methods for nonlinear system have been also proposed
by assuming the Gaussian distribution of system and observation
noises [11–15]. The actual electromagnetic environment often shows
an intricate fluctuation pattern rather than the standard Gaussian
distribution. In our previous studies [16–18], several state estimation
methods for a stochastic environment system with non-Gaussian
fluctuations have been proposed on the basis of expansion expressions
for the probability distribution. Furthermore, state estimation
methods for stochastic systems with complex characteristics and/or
unknown structure have been proposed by using Bayes theorem on
probability distribution [19–21]. Since the above previously reported
estimation algorithms are based on the whole of the probability
distribution, their derivation processes became rather complicated.
Especially, though the unscented Kalman filter (UKF) and particle
filter are useful for non-linear systems, UKF considers only the mean
and variance of variables, and the particle filter needs very complicated
algorithm based on Monte carlo simulation [15, 21].

In this study, instead of focusing on the whole of the probability
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distribution in the previous studies [16–18, 21], by applying the well-
known least mean squared method [22] for the moment statistics with
several orders, a simplified estimation algorithm is derived from the
practical viewpoint.

3. A NOISE CANCELLATION METHOD FOR
ELECTROMAGNETIC ENVIRONMENT

Let us consider the electromagnetic environment with the power state
variable fluctuating in a non-stationary form, and express the system
equation as:

xk+1 = Fxk + Guk, (1)

where xk is the unknown specific signal at a discrete time k, to be
estimated. The statistics of the random input uk and two parameters
F and G can be estimated by the auto-correlation technique [16]. On
the other hand, based on the additive property of power state variables,
the observation yk contaminated by the background noise vk can be
expressed as:

yk = xk + vk. (2)

In order to derive an estimation algorithm for a specific signal
based on the noisy observation, we positively pre-establish the
estimates on the power function of xk, as follows:

x̂k = a10 + a11H1

(
yk − y∗k√

Ωk

)
,

x̂2
k = a20 + a21H1

(
yk − y∗k√

Ωk

)
+ a22H2

(
yk − y∗k√

Ωk

)
,

x̂3
k = a30 + a31H1

(
yk − y∗k√

Ωk

)
+ a32H2

(
yk − y∗k√

Ωk

)

+a33H3

(
yk − y∗k√

Ωk

)
,

. . . , (3)

where Hn( ) is Hermite polynomial with nth orders [23, 24], and aij

denote the regression coefficients. Considering (2), two parameters
y∗k(≡< yk|Yk−1 >; expectation on yk conditioned by Yk−1) and Ωk(≡<
(yk − y∗k)

2|Yk−1 >; expectation on (yk − y∗k)
2 conditioned by Yk−1) can

be given by

y∗k = x∗k + v̄k, Ωk = Γk + Rk,

(v̄k =< vk >, Rk =< (vk − v̄k)
2 >) (4)
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with

x∗k ≡< xk|Yk−1 >, Γk ≡< (xk − x∗k)
2|Yk−1 >, (5)

where Yk−1(≡ {y1, y2, . . . , yk−1}) is a set of observation data up to k−1,
and <> denotes an averaging operation with respect to the random
variables.

Next, by applying the well-known least mean squared method
for the moment statistics with several orders, a practical estimation
method is derived. More specifically, the regression coefficients in (3)
are decided so as to minimize the criteria:

J1 = < (xk − x̂k)
2
∣∣Yk−1 >→ Minimize,

J2 = <
(
x2

k − x̂2
k

)2 ∣∣YK−1 >→ Minimize,

J3 = <
(
x3

k − x̂3
k

)2 ∣∣Yk−1 >→ Minimize,

. . . . (6)

After substituting (3) in (6) and differentiating it with respect to each
regression coefficient, and then using the statistical property of Hermite
polynomial, the following relationships are derived.

From ∂J1/∂a10 = ∂J1/∂a11 = ∂J2/∂a20 = ∂J2/∂a21 =
∂J2/∂a22 = 0, we obtain

a10 = x∗k, a11 =
Γk√
Ωk

, a20 = Γk + x∗k
2, (7)

a21+ < H3

(
yk − y∗k√

Ωk

) ∣∣∣Yk−1 > a22

=
1√
Ωk

{(√
Γk

)3
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(
xk − x∗k√

Γk

) ∣∣∣Yk−1 > +2Γkx
∗
k

}
, (8)

< H3

(
yk − y∗k√
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) ∣∣∣Yk−1 > a21 + 2a22

=
2

Ωk

{
Γ2

k +
(√

Γk

)3
< H3

(
xk − x∗k√

Γk

) ∣∣∣Yk−1 > x∗k

}
, (9)

where the following relationships have to be considered in (8) and (9).

<H3

(
yk−y∗k√

Ωk

)∣∣∣Yk−1 >=
1(√
Ωk

)3

{(√
Γk

)3
< H3

(
xk − x∗k√

Γk

)∣∣∣Yk−1 >

+
(√

Rk

)3
< H3

(
vk − v̄k√

Rk

)
>

}
. (10)

By solving the simultaneous equations of (8) and (9), the regression
coefficients a21 and a22 are obtained.
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Furthermore, from ∂J3/∂a30 = ∂J3/∂a31 = ∂J3/∂a32 =
∂J3/∂a33 = 0, we obtain

a30+ < H3

(
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In the derivation of (11)–(14), the assumption is made in practice
that the only third order statistics < H3( )|Yk−1 > of the Hermite
polynomial is considered as non-Gaussian property and the higher
order statistics above the fourth order are zero for the specific signal
used: < Hn( )|Yk−1 >= 0 (n = 4, 5, . . .).

If assuming the Gaussian distribution of the fluctuation after
considering the estimates up to second order statistics in (3), the
following relationships are obtained.

x̂k = x∗k +
Γk

Ωk
(yk − y∗k) , (15)

x̂2
k = Γk + x∗2k − Γ2

k

Ωk
+ 2x∗k

Γk

Ωk
(yk − y∗k) +

Γ2
k

Ω2
k

(yk − y∗k)
2. (16)
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Thus, the variance of estimation error defined by Pk = x̂2
k − x̂2 can be

expressed as

Pk = Γk −
Γ2

k

Γk + Rk
. (17)

Estimates (15) and (17) coincide with the algorithm of Kalman
filter [9, 10]. Therefore, it is obvious the proposed estimation method
includes the Kalman filter as a special case.

Finally, by considering (1), the prediction algorithm essential for
performing the recursive estimation can be expressed as

x∗k+1 = Fx̂k + Gūk, (ūk =< uk >), (18)

Γk+1 = F 2Pk + G2Qk,
(
Qk =< (uk − ūk)2 >

)
, (19)
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(√
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with
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k − x̂2
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k

)
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Therefore, by combining the estimation algorithm of (3) and reflecting
the predictions involving the regression coefficients, which are functions
of x∗k, Γk, < H3((xk−x∗k)/

√
Γk)|Yk−1 > with the prediction algorithms

of (18)–(22) which are given by the functions of x̂k, x̂2
k, x̂3

k, the
recurrence estimation of the specific signal can be achieved.

4. EXPERIMENT

By adopting a personal computer in the actual working environment
as specific information equipment, the proposed method is applied
to estimate the magnetic field leaked from a VDT (Video Display
Terminal) under the situation of playing a computer game. Some
studies on the fluctuation of electromagnetic wave leaked from
electronic equipment in the actual working environment have become
important recently because of the increased use of various information
and communication systems like the personal computer and portable
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radio transmitters, especially concerning the individual and compound
effects on a living body. It is well-known that there are too many
unsolved questions on VDT symptom groups to study, such as the
complaint of general malaise, the effect on a pineal body, an allergic
or stress reaction, any relationship to cataract formation or leulemia
and so on (for example, see references [25, 26]. In these investigations,
one of the first important problems generally pointed out is to find any
quantitative evaluation method. The proposed method in this paper
is a fundamental study to evaluate quantitatively the specific signal on
electromagnetic wave.

More specifically, in the actual office environment of using two
computers, the magnetic field strength leaked from a specific computer
is estimated by regarding the magnetic field from the other computer as
background noise. The data of magnetic field strength of the specific
signal and the background noise were measured respectively by use
of a HI-3603 type electromagnetic field survey meter. By use of the
additive property of the power state variables, the observation data
were obtained. Since the specific magnetic field shows approximately
a constant, the system equation with F = 1, G = 0 in (1) is introduced.
Furthermore, by use of the additive property of power state variables,
the observation equation is expressed as (2). The estimated results in
two cases of assuming a Gaussian property and considering the non-
Gaussian property in the proposed estimation algorithm are shown in
Figs. 1 and 2, respectively. The both results of estimation show good
agreement with the true values in spite of artificially employing three
types of arbitrary initial values. Furthermore, the estimated process
by considering the non-Gaussian property converges more rapidly to
the true values, as compared with the case of assuming the Gaussian
property. In Fig. 2, the “Estimated results” consider the estimation
algorithm in (3) with the higher order statistics of the third order
in addition to the usual first and second orders. The statistics of the
third order of background noise are reflected in the coefficients a21, a22,
a30, a31, a32 and a33 in the estimation algorithm as the non-Gaussian
property. By considering the non-Gaussian property in the estimation
algorithm, accurate estimation results are obtained. It is expected that
more accurate estimates can be obtained by considering the statistics
above the fourth order as non-Gaussian property from the theoretical
viewpoint. Furtermore, a computer simulation is performed in order
to compare the proposed method considering non-Gaussian property
with the case assuming the Gaussian property (cf. Appendix A).

Next, because the statistics of the background noise in (2) are
often unknown, the following noise model is introduced.

vk = αkek + βk, (23)
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Figure 1. Estimation results by
assuming Gaussian property.

Figure 2. Estimation results by
considering non-Gaussian prop-
erty.

where αk and βk are unknown parameters, and ek denotes a random
noise with mean 0 and variance 1. For the simultaneous estimation of
the parameters αk and βk with the specific signal xk, by introducing a
simple dynamical model:

αk+1 = αk, βk+1 = βk, (24)

the estimates for the parameters have to be considered in a
simultaneous form with the estimates of xk. (For the simplification
of the estimation algorithm, only the power functions with first and
second orders are considered):
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(25)

where L
(m−1)
n ( ) in a Laguerre polynomial of n-th order [23, 24], and
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α̂k, α̂2
k, β̂k, β̂2

k denote the estimates of αk, α2
k, βk, β2

k, respectively.
The Laguerre polynomial connected with the Gamma distribution is
suitable for variables defined within only a positive range such as the
electromagnetic signal in a power scale [23, 24]. Furthermore, bij , cij

and dij denote the regression coefficients expressing in Appendix B.
Considering (2) and (23), two parameters m∗

k and s∗k can be given by

m∗
k ≡

(y∗k)
2

Ωk
, s∗k ≡

Ωk

y∗k
,

y∗k = x∗k + β∗k, Ωk = Γk + Γαk
+ Γβk

+ (α∗k)
2 (26)

with

α∗k ≡< αk|Yk−1 >, Γαk
≡< (αk − α∗k)

2
∣∣Yk−1 >,

β∗k ≡< βk|Yk−1 >, Γβk
≡< (βk − β∗k)2

∣∣Yk−1 > . (27)

Through the same calculation process as the estimation algorithm in
Section 2, a practical estimation method is derived. Furthermore,
considering the system equation of the specific signal in (1) and the
dynamical model of the parameters in (24), the prediction algorithm
can be derived. The estimation algorithm by applying the proposed
noise cancellation method to actual electromagnetic environment is
illustrated in Fig. 3 as a flow chart.

The proposed method is applied to estimate the magnetic field
leaked from a VDT in the actual office environment of using four
computers as shown in Fig. 4. The magnetic field strength leaked
from a specific computer denoted by ¬ is estimated by regarding

Figure 3. Flow chart of the estimation algorithm by the proposed
noise cancellation method.
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the magnetic field from other three computers as background noise.
The statistics of the specific signal and the background noise are
shown in Table 1. Fig. 5 shows the estimated results of the specific
signal. For reasons of comparison, the result obtained by the well-
known extended Kalman filter [11] based on the Gaussian distribution
is also shown in this figure, as a trial. The estimation results using
the proposed method based on the Laguerre polynomial connected
with Gamma distribution show good agreement with the true values
in spite of artificially employing several types of arbitrary initial
values. The result from the extended Kalman filter, on the other
hand, fluctuates around the true values and shows relatively large
estimation error. The corresponding root-mean squared errors of
the estimation by the proposed method in three kinds of initial
values and the extended Kalman filter are shown in Table 2. From
this table, we can find numerically that the proposed method shows
more accurate estimation than the result by the extended Kalman
filter. The proposed estimation algorithm utilizes recursively the
observation data. Therefore, though the estimates sometimes show
large estimation error in the case when the signal suddenly changes,
the estimation algorithm can recover rapidly the stability according to
obtaining new observation data. Moreover, the proposed method can
apply to complex situation of the EM sources without the restriction
of uniformity and symmetry like Fig. 4.

The above results clearly show the effectiveness of the proposed
method for application to the observation contaminated by the
background noise.

Figure 4. A schematic drawing of the experiment.
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Table 1. Statistics of the specific signal and the background noise.

Statistics of specific signal Statistics of background noise
Mean [A/m] Standard Deviation Mean [A/m] Standard Deviation

[A/m] [A/m]
12.1 0.0310 9.11 0.110

Table 2. Root mean squared error for the estimation of magnetic field
(in A/m).

Proposed Method Extended Kalman
(Initial value: x̂0 [A/m]) Filter

0.0901 (14.0)
0.0475 (12.0) 0.162
0.0568 (10.0)

Figure 5. Estimated results by the proposed method (—; x̂0 = 14
[A/m], − · −; x̂0 = 12 [A/m], − · ·−; x̂0 = 10 [A/m]) and by the
extended Kalman filter (. . .), (◦; observed data, • true values).

5. CONCLUSION

In this study, we investigated the random signal in an actual
electromagnetic environment. More specifically, a dynamic method
for estimating the specific signal based on the noisy observation data
contaminated by the background noise was theoretically established.
By applying the well known least mean squared method, simplified



318 Orimoto and Ikuta

estimation algorithm was derived. The validity and usefulness of the
proposed theory were experimentally confirmed by applying it to the
actual magnetic field environment.

The proposed approach is obviously quite different from the
ordinary approach, and it is still at an early stage of study. Thus
there are a number of problems to be investigated in the future,
building on the results of the basic study in this paper. Some of
the problems are shown in the following. (i) The proposed method
should be applied to other estimation problems in electromagnetic
environment, and the practical usefulness should be verified in these
situations. (ii) The proposed theory should be extended further to
more complicated situations involving multi-signal sources. (iii) In
order to estimate more precisely the specific signal, it is essential to
consider the higher order statistics in the algorithm of power functional
form given by (3) and (25). From a theoretical viewpoint, the proposed
algorithm can be constructed with higher precision, by employing many
of the power functions of higher order. From a practical viewpoint,
however, reliability tends to be lower for the higher order statistics. It
is necessary then to investigate up to what order the power functions
can be reasonably determined, based on the non-Gaussian property of
the phenomena. (iv) The proposed method should be applied to other
fields such as noise cancellation in speech recognition and evaluation
of sound environment under existence of background noise of non-
Gaussian property.
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APPENDIX A. COMUPUTER SIMULATION

We focus our attention on the specific signal xk with non-Gaussian
properties, describing the following system and observation equations:

xk+1 = 0.8xk + 5uk, yk = xk + cvk. (A1)

Random numbers of the uniform distribution are used as uk and vk.
The coefficient c denotes a parameter to adjust the magnitude of
the external noise vk. A comparison between two estimated results
considering non-Gaussian property and assuming Gaussian property
(i.e., < H3((xk − x∗k)/

√
Γk)|Yk−1 >=< H3((yk − y∗k)/

√
Ωk)|Yk−1 >=<

H3((vk − v̄k)/
√

Rk) >= 0 in the regression coefficients of (9)–(14)), is
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shown in Fig. A1, in the case of the parameter c = 11 and the initial
value of estimation: x̂0 = 30. The results estimated by considering
non-Gaussian property show better agreement with the true values
than the results in the case of assuming Gaussian property. The
root-mean squared errors of the estimation in several values of the
parameter c and several initial values are shown in Table A1. In
all cases, the estimates considering non-Gaussian property show more
accurate estimation than the results assuming Gaussian property.

Figure A1. Comparison between two estimated results in the case
when c = 11 and x̂0 = 30.

Table A1. Root mean squared error of the estimation.

c Initial value Considering non- Assuming

Gaussian property Gaussian property

5 10 1.749 1.775

5 20 2.679 2.694

5 30 3.748 3.758

8 10 2.368 2.380

8 20 3.187 3.188

8 30 4.168 4.205

11 10 2.779 2.935

11 20 3.637 3.701

11 30 4.639 4.711
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APPENDIX B. REGRESSION COEFFICIENTS OF (25)

b10 = x∗k, b11 = −Γxk

y∗k
, b20 = Γxk

+ (x∗k)
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. (B1)

c10 = α∗k, c11 = 0, c20 = Γαk
+ (α∗k)
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(
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d10 = β∗k, d11 = −Γβk

y∗k
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Γβk
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