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Abstract—A robust semi-deterministic facet model for the computa-
tion of the radar scattering cross section from the ocean-like surface is
presented. As a facet-based theory, it is a more comprehensive model
which can reflect the specular and diffuse configurations, as well as the
mono- and bistatic features. Significant computational efficiency and
good agreement with experimental data are observed, which makes the
proposed facet model well suitable for fast estimation on EM scatter-
ing and synthetic aperture radar (SAR) imagery simulation of marine
scene.

1. INTRODUCTION

Monographic study on microwave remote sensing of the ocean is
an old but vigorous research realm. With the rapid development
of satellite technology, which is employed for gathering information
about the terrestrial or extraterrestrial and leads to the possibility
of using spacecraft in remote sensing of oceanographic parameters,
more and more applications to monitor ocean environment, especially
as ocean synthetic aperture radar (SAR) [1–3], have been exploited
during recent years. To implement these applications, a clear and
comprehensive investigation on the physical processes between the
electromagnetic waves and ocean surface is desirable. Approximate
models, for instance, the two classical surface scattering theories:
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Kirchhoff approximation (KA) [4] and Small perturbation method
(SPM) [5], and many unified theories like the two scale model
(TSM) [6], small-slope approximation (SSA) [7], improved Green’s
function method (IGFM) [8], extended boundary condition method
(EBCM) [9] and integral equation method (IEM) [10], have been
discussed with application to sea scatter modeling. Many of the
methods mentioned above more or less meet the possible limitation on
special rigorous valid conditions, Gaussian spectrum, monostatic radar,
one dimensional surface or insurmountable computational complexity.

Nevertheless, the two scale theory has always been the most
popular approach since it was introduced in 1970’s [11, 12]. The
kernel of the two scale theory is the theoretical division of the real
surface with two types of irregularities: Large waves whose radius of
curvature is great enough for the calculation by KA, and fine ripples
where SPM could be used in scattering simulation. Then the Bragg
scattering contributions of the small ripples would be tilted by the
large scale components. One of the most common two-scale formulas is
accomplished by Fung et al. [13], and is called by the conventional TSM
here for distinction. Accordingly, they evaluate large scale tilt effect
by averaging the backscattering cross section from perturbation theory
over the large scale slopes’ probability distribution. This is a statistical
approach, which encompasses both large waves and small ripples to
obtain an average of the real diffusion coefficient without a particular
sea height map. Additionally, it meets two drawbacks: Firstly, it is
not properly accurate at angles of incidence where specular reflection
from the surface is significant (smaller than about 20◦, in which, the
computational cost is also great because of the action of the lower limit
of − cot θi in the integration); Secondly, although it gives a link budget,
nothing is said about the radar cross section (RCS) fluctuation resulted
by the local characteristics corresponding to the deterministic profile
of a special sea surface. In fact, this local fluctuation is a useful feature
and desirable in ocean SAR imaging model as the SAR raw signal is the
appropriate superposition of returns from each facet [14]. This demand
has sprung the development of the so called “facet-based” approaches
which try to break the surface into slightly rough plane facets with
locally approximation and represent it as a numerical elevation map,
so that the instantaneous radar returns from individual facets could be
obtained in SAR imagery simulation. Comparatively overall analyses
are made on this topic. Franceschetti et al. [3, 14] presented a facet
backscattering model in which the Kirchhoff solution in physical optics
approximation is used to compute the facet’s backscattering. But, in
some cases the scattering properties of the facet are modeled by means
of the Bragg phenomena. This pattern has not been implemented in
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their code. Hasselman et al. [15] introduced a EMH (electromagnetic-
hydrodynamic) two-scale model which was fully developed on the basis
of the standard plane surface Bragg resonance theory, and extended to
the so called “SAR two-scale model”. West et al. [16] also proposed
a slightly-rough facet model which includes both the first-order and
second-order large-scale effects (tilt and curvature). However, the
bistatic configuration of sea scattering was not concerned in all of the
facet models above. Thus, a more comprehensive facet model which
would adequately reflect the specular and diffuse configurations, as well
as the mono- and bistatic features, is in need.

In reinvestigation on the two scale composite theories for EM
scattering from ocean surface, the original Bass-Fuks formulation of
the two scale model draws our sight. They seek the scattered field
in the form of the sum of a zero order approximation field (reflected
from the smooth surface) and a first order correction field in small
perturbation parameters. And an integration over an apparently
deterministic profile is involved. This deterministic integration is
well suit for the extension to local facet frame. However, they only
gave the monostatic scattering formula with application to Gaussian
distribution seas [17, 18]. And, withal, in our opinion, their model still
has poor performance in the specular zone.

In this paper, the authors fall to deriving the Bass-Fuks Two Scale
Model (BFTSM) to the bistatic case firstly. Moreover, as a numerical
approach, each facet is characterized locally by the corresponding
simulated slope on large scale oceanic surface generated by Double
Superimposition Method (DSM) [19]. The elementary radar returns
from each facet are computed by a blending scheme of combining
geometric optics limit of the KA (KA-GO) with Bragg components
of BFTSM. Then, a facet-based summation formula of scattering
coefficient is proposed by summing up returns from all the facets.
The proposed model could well account the two types of scattering
processes and monostatic/bistatic configurations. In addition, it also
results significant computational efficiency as well as good accuracy
confirmed by experimental validation.

2. FACET STRUCTURE OF THE OCEAN SCENE

2.1. Large Scale Configuration

Many approaches were developed to describe the electromagnetic
scattering from oceanic surface. The most classical one is the two
scale model, which simplifies the sea wave as a superposition of
two configurations: Gravity wave configuration and capillary wave
configuration. In this case, the surface spectrum is classified by gravity
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wave spectrum and capillary wave spectrum, denoted by Wg and Wc

respectively. The large scale structure is described by the Double
Superimposition Model (DSM) [19], which describes the ocean wave
fluctuating on a fixed point by many cosine wave superimpositions as
follows:

Zij(xi, yj , t) =
M∑

i=1

N∑

j=1

√
2Wg(ωi, θj)∆ωi∆θj

cos(kix cos θj + kiy sin θj − ωit + εij) (1)

where ki, ωi, θi represent the wave number, circle frequency and
direction angle respectively. εij could be selected randomly between
0 ∼ 2π. On deep water, ki and ωi meet the relation with ω2

i = gki.
The gravity wave spectrum Wg is chosen by JONSWAP spectrum as
follows:

Wg(ω, ϕ) = ϕ(ω, ϕ)αg2 1
ω5

exp
[
−5

4

(ωm

ω

)4
]
· γexp

[
− (ω−ωm)2

2σ2ω2
m

]

(2)

ϕ(ω, ϕ) is the spreading function proposed by Stereo Wave Observation
Project:

ϕ(ω, φ) = (1 + p cos 2φ + q cos 4φ) /π, |θ| ≤ π/2 (3)

p = 0.50 + 0.82 exp[−0.5(ω/ωm)4], q = 0.32exp[−0.5(ω/ωm)4], γ is the
peak enhancement factor, σ is the peak width parameter, ωm is the
frequency of the spectral peak, ωm = 22gx̃−0.33/u, x̃ = gx/U2 (x is
the wind fetch, U is the wind speed at 10 m above the mean sea level).

The large scale slope distribution of rough sea profile plays an
important role on oceanic microwave scattering calculations. In
many of the surface scattering theories available, the probability
density distribution of sea slope is described as Gaussian or Weibull
distribution. However, based on the observation data, Cox and Munk
stated that the distribution of sea slope owns non-Gaussian features.
They presented the probability density function of large-scale sea slope
distribution function, so called Cox-Munk PDF [20].

In this work, we seek the large-scale slope matrixes along x or y
directions on the basis of the generated sea height map and denote
them by [αi,j ]M×N and [βi,j ]M×N respectively, where αi,j = ∂Zi,j/∂x,
βi,j = ∂Zi,j/∂y. The slope distributions along x and y direction of
generated two-dimensional rough sea surface are displayed in Fig. 1.
Two main observations may be found: (1) When the wind direction
is chosen to be along x-axis (downwind), a greater width and lower
peek value occurring as the ocean becomes rougher with wind speed
would be found. A comparison is also made between the simulated sea
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slope PDF and Cox-Munk PDF. It shows that they are comparatively
consistent with each other (see in Figs. 1(a) and (b) in detail). The
difference between the PDF and computational result becomes larger
in Fig. 1(b). This slight inconsistency may be caused by the linear
superimposition simplification of the sea waves as described in DSM.
The slopes along x-direction could be reflected sufficiently when the
down wind blows along x-axis. While in y-direction, equivalently to
cross wind, the simulated wave develops insufficiently. A non-linear
process of the wave interaction should be introduced to improve this
issue. However, due to the simulation efficiency, this is not concerned
here. (2) When the wind speed is fixed at 5 m/s, the variations with
the wind direction is investigated in Figs. 1(c) and (d). Since the
wind direction is chosen to be along the x-axis (downwind), the sea
surface has more roughness along x-direction than along y-direction.
Hence this leads to the narrower width and higher peak of curves along
y-direction than along x-direction. While in crosswind direction, it
reverses. (Also see in Figs. 1(c) and (d)) The logical results above
indicate that the mentioned numerical method used to simulate the
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Figure 1. Simulation of large-scale sea slopes.
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large-scale sea slope is feasible.

2.2. Small Scale Configuration

The small surface is described by the capillary spectrum Wc(K), and
adapted to the real surface by a tilting process with large scale slopes.
We chose the Wc(K) as the Pierson’s capillary spectrum:

Wc(K, ϕ) = Wc(k)S(k, ϕ) (4)

where

S(k, ϕ) = a0 + a1

(
1− e−bk2

)
cos 2ϕ

Wc(k) = 0.875·(2π)p−1 ·(1+3k2
/
k2

m

)
g(1−p)/2

[
k

(
1+k2

/
k2

m

)]−(p+1)/2

Detail information for each parameter above could be found in Ref. [13].

3. FACET SCATTERING MODEL

3.1. Bistatic Investigation on Bass-fuks Two Scale Model
(BFTSM)

The interest in bistatic radar application has rapidly increased in
recent years. Bistatic radar can offer extra information which is not
available from the monostatic case because of the different two-way
observation geometry. For instance, for objects that show a low RCS in
monostatic directions, one can find suitable bistatic angles to increase
their RCS to make them visible in radar sensing. It is worth to
point out that, oceanographic bistatic applications, especially for ocean
bistiatc SAR [21, 22], is one of the most important application fields.
Theoretical treatment is made on an assumed two scale model, that
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Figure 2. Geometry of a facet scattering surface.
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is, treating the scattering sea surface as a combination of corrugations
of two different scales. The problem is discussed on the Geometry of
the scattering surface shown in Fig. 2. According to the two scale
scattering model presented by Bass and Fuks [12, 17, 18], we get the
scattering field in case of a dielectric rough surface and a plane incident
wave.

~Es =
k2eikRs

πRs

~E0

∫

S

F
(
p̂0, p̂, α̂, β̂, n̂

)
ζ (~r) η

(
~r, α̂, β̂

)
e−i~q·~rd~r (5)

Wherein most of symbols are defined under Fig. 2, p̂0, p̂ are
the unit polarization vector; α̂ is a unit vector directed from the
transmitter, while β̂ is a unit vector directed to the reception point;
~q = k(β̂ − α̂), and ε indicates the permittivity of the dielectric
surface; n̂ points in the normal direction to the surface S, that is,
n̂ = −Zxx̂− Zyŷ + ẑ/

√
1 + Z2

x + Z2
y , Zx, Zy are the large scale slopes

of each facet; η(~r, α̂, β̂) is for the possible shadowing of the surface
S and may have two values 1 and 0 depending on whether the point
r ∈ S is illuminated or not. The function F (p̂0, p̂, α̂, β̂, n̂) depends on
the incident and scattering angle, different for the two polarizations,
as well as the local normal unit of each facet; its detailed expression is
derived in the Appendix A.

3.2. Slope-deterministic Facet Model (SDFM)

In the following context, we are only concerned with the surface
contribution, while neglecting the multiple scattering totally. As
a numerical method, the large-scale sea surface can be fit into
approximately by sufficient small plane facets, centered on the grid
points. Accordingly, some facets may be in a specular configuration,
while others in a diffuse configuration. The scattering coefficient by
near-specular facets can be computed under the geometric optics limit
of the Kirchhoff approximation (KA-GO) [5]:

σKA = πk2q2 |Up0p|2 Prob/q4
z (6)

where Prob is the Cox-Munk PDF [20]. Up0p is polarization-dependent
coefficients [5].

Since the scattering field in the bistatic formula of BFTSM is
obtained in Eq. (5), in case of a plane incident wave, we can get:

σTSM =4πR2 〈EsE
∗
s 〉/A=8k4σ2

〈
Fp0pF

∗
p0p

〉
W (q⊥, ϕ) S(θi, θs)/A (7)

where σ2 is the height variance of the small scale at resonant scattering
wave number; q⊥ is the projection of the vector ~q (~q = k(β̂− α̂)) on to
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the plane tangent at the point ~r (r ∈ S), and it is given by q⊥ =

|~q|
√

1− (n̂ · ~q/|~q|)2; W (kx, ky) is the two dimensional normalized
ocean wave spectrum density and it is expressed in term of the capillary
spectrum by σ2W (K, ϕ) = Wc(K,ϕ)/K [6], Wc(K, ϕ) is defined by
Eq. (4). Thus, Eq. (7) can be rewritten by

σTSM = 8k4S(θi, θs)
〈
Fp0pF

∗
p0p

〉
Wc(Kl, ϕ)/Kl/A (8)

where Kl (Kl = q⊥) is the water wave number for resonant scattering.
S(θi, θs) is employed to evaluate the shadowing effect, which is
discussed by Bourlier et al. [23] in detail. Therefore, from Eq. (8),
it could be concluded that, the returns from different facets are
proportional to the instantaneous Bragg Fourier components of the
capillary spectrum, which leads to statistically independence.

Due to filter out the roughness components (some facets) for
which the small perturbation method is inadequate, we ignore the wave
number contribution by setting Eq. (8) to zero for Kl lower than the
cut-off wave number kd. It remains no unified guideline for the selection
of the cutoff wave number kd. Different authors make different choices,
which range from Johnson et al. [24] kd = k/2; Brown [25] kd = k/3;
Durden and Vesecky [26] kd = k/5; Jackson et al. [27] kd = k/3 to
kd = k/6; Donelan and Pierson [28] kd = k/40. A strong analysis
is made by Hasselmann et al. [15]. They stated that the separation
wave number kd should be at least an order of magnitude smaller than
the incident wave number. In order to satisfy the requirements of GO
for the long-wave reflection field and the Bragg scattering theory, they
restricted the kd by 0.05k cos θi ¿ kd ¿ k sin θi, where θi denotes
the incident angle. In this regime, the dependence of the results on
the choice of kd is weak, so that the choice kd = k/5 was applied in
their model. Soriano et al. [29] claimed that the dependence on the
choice of kd could be eliminated if the SPM is replaced by the first-
order SSA in the two-scale combination. The influence of kd on the
BFTSM responsible for the Bragg scattering is discussed in Fig. 3.
As one can see, at smaller cutoffs, the BFTSM term dominates more
in the specular angles (smaller than 20◦). Here, we choose kd = k/4
empirically.

It has clear physical grounds to revise the TSM by a combination
of KA with TSM contributions, rather than adding KA to SPM [26, 30].
Andreas et al. [30] released a “semi-deterministic” frame under which
the facet context is locally characterized by the so-called “bistatic local
angles” at a deterministic surface profile. They restrict the specular
reflection zone with the local specular angles approximately below 20◦,
and introduce a weight factor to smooth the transition between the
specular and diffuse region. Although the factor needs a theoretical
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treatment of a more clear explain. Accordingly, we present a facet-
based summation formula in which the elementary radar returns from
respective facets are computed by the semi-deterministic scheme of
combining geometric optics limit of the KA (KA-GO) with Bragg
components of the extended BFTSM. It is quite similar to the scheme
presented by Andreas et al.. In contrast, however, we relate the local
configurations mainly to the sea slopes of the large scale profile and
the Bragg-scattering part of the wave number spectrum. The implicit
weight factor which is relevant to smooth the break point result by the
region transition and the “local angle” division are not used. In order
to apply the facet Bragg theory, the facet must be large in comparison
with the wavelength of the incident radiation in the facet plane, and
be sufficiently small as it can still be regarded as a plane [15]. We
postulate the discrete facets are in proper size, so that the KA and
TSM can be used in the local summation frame. In our treatment, the
surface is generated by 300× 300 facets, and the respective resolution
has been considered as 1×1 meters. This is a statistical approach, and,
experimentally, in the semi-deterministic diagram, the RCS average
does not depend much upon the facet size [30]. Then, under a “semi-
deterministic” scheme, the total scattering coefficient can be obtained
by summing up returns from all the Bragg facets, including the non-
Bragg contributions governed by Eq. (6):

σp0p∑ =
S(θi, θs)

A

M∑

i=1

N∑

j=1

[
8k4F p0p

i,j F p0p∗
i,j Wc(Kl, ϕ)/Kl

+πk2q2
∣∣∣Up0p

i,j

∣∣∣
2
Prob/q4

z

]∣∣∣∣
Zyij={Zyij∈[βij ]}

Zxij={Zxij∈[αij ]|Zxij>− cot θi}
(9)

Due to avoid illuminating the rear of the tilted facets, the slopes
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along the x direction are limited above − cot θi. A is the area of the
generated sea surface.

Under the facet scheme, the monostatic average varied with
incident angles is obtained as a blend of KA-GO and k/4 cutoff Bragg
components of BFTSM (also see in Fig. 3), when the incident frequency
is set to 14.0 GHz, for VV and HH polarizations. Fig. 4 displays
the simulated returns from individual facets in the backscattering
direction as the incident angle equals to 40◦. Other parameters are
fixed as: Wind direction: upwind; VV polarization; incident frequency:
14.0GHz; wind speed: 5m/s; sea simulation plot: 300 m× 300m.
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Figure 5. Experiment validation on impact of wind direction: (a) For
VV polarization; (b) for HH polarization.

Table 1. The cost time on calculating the backscattering coefficienta.

Comparison
Item

Generated
sea model

HH polarization VV polarization

CTSM No need 333.687 s 410.343 s
SDFM 21.875 s 87.297 s 87.375 s

aThe calculating parameters: a) Incident angle range: 1◦ ∼ 89◦,
f = 14.0Ghz; u = 6.267m/s, sea area 200× 200m2, Upwind; b)
computer capacity: Inter(R) Core(TM) 2 Quad CPU 2.50 GHz

2.49GHz, 2.0GB.
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4. RESULTS ANALYSIS AND EXPERIMENTAL
VALIDATION

Numerical validation is discussed on the basis of the experiment
by W. L. JONES et al. in 1970s [31]. They had been measured
the scattering signatures of the ocean over a range of surface wind
speeds from 3 m/s to 23.6 m/s, typically wind directions and different
polarizations. As the chosen spreading function can’t describe the
difference between downwind and upwind direction, the validation
is only discussed in crosswind and downwind direction. Relative
research on upwind/downwind asymmetry goes back to the literature
on Modulation Transfer Function (MTF) presented by Romeiser et
al. [32]. At a wind speed of 3m/s, Figs. 5(a) and (b) show the
comparisons with the measured data in VV and HH polarizations
respectively. While in a wide range of sea states, from 3m/s to
23.6m/s, validation results are displayed in Fig. 6, (a) for VV
polarization and (b) for HH polarization. From the numerical examples
above, we find that our simulation is consistent with the experiment
data well. In addition, high computational efficiency in our calculation
on the backscattering coefficient could be observed, comparing with
the conventional TSM (CTSM) [13], see in Table 1, in detail.

The bistatic configurations are discussed in Figs. 7 and 8. And
the parameters are fixed as follows: The transmitter incident azimuth
angle is equal to 0◦, incident wave frequency is 14.0 GHz, the receiver
azimuth is set to 0◦, the receiver scattering angle is varied from −80◦
to 80◦ and the wind direction is in downwind case. Fig. 7 shows the

2 4 6 8 10 12 14 16 18 20 22 24 26 28
-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

M
o

n
o

s
ta

ti
c
 s

c
a

tt
e

ri
n

g
 c

o
e

ff
ic

ie
n

t 
(d

B
)

u        (m/s)19.5m

2 4 6 8 10 12 14 16 18 20 22 24 26 28
-50

-40

-30

-20

-10

0

10

20

(a) (b)

M
o

n
o

s
ta

ti
c
 s

c
a

tt
e

ri
n

g
 c

o
e

ff
ic

ie
n

t 
(d

B
)

u        (m/s)19.5m

Figure 6. Experiment validation on impact of wind speed: (a) For
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Figure 8. Comparison on SDFM
with SSA1.

bistatic simulations by SDFM for two wind speeds, 5 m/s and 8 m/s,
respectively, and the transmitter incident angle is 40◦. As is apparent,
the maximum energy is received around the specular direction 40◦, and
it decreases when the wind speed increases, which is a logical result.
Fig. 8 compares the results yielded by the first order SSA [33] with
SDFM for 5 m/s in HH and VV polarizations respectively, while the
transmitter incident angle is 50◦. It shows good agreement between
SSA and SDFM, as the difference remains within about 2 dB.

5. CONCLUSION

A slope-deterministic facet model for the computation of the radar
scattering cross section from the ocean-like surface is presented. As a
numerical theory, it is a more comprehensive facet model which can
reflect the specular and diffuse configurations, as well as the mono-
and bistatic configurations. Combining all of these features under the
facet-based frame may be outlined for the first time. Finally, the good
agreement between the model results and available experimental data
encourages us to employ the proposed model for further investigations
on bistatic realistic SAR imagery simulations of marine scene.
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APPENDIX A.

As defined under the geometry in Fig. 2, the related parameters can
be denoted as follows:

α̂ = sin θi cosϕix̂ + sin θi sinϕiŷ − cos θiẑ

β̂ = sin θs cosϕsx̂ + sin θs sinϕsŷ + cos θsẑ

p̂0h = − sinϕix̂ + cosϕiŷ

p̂0v = − cos θi cosϕix̂− cos θi sinϕiŷ − sin θiẑ

p̂h = − sinϕsx̂ + cos ϕsŷ

p̂v = cos θs cosϕsx̂ + cos θs sinϕsŷ − sin θsẑ

Then, the function F (p̂0, p̂, α̂, β̂, n̂) can be expressed as:

Fp0p =
aa0(1− ε)

(b + aε)(b0 + a0ε)

{
ε− 1
a + b

[
β̂ × (n̂× p̂0)

]

+
ε− 1

a0 + b0

[
β̂ × (β̂ × (n̂× (α̂× p̂0)))

]

+
(ε− 1)2

(a + b)(a0 + b0)

[
β̂ × (n̂× (n̂× (α̂× p̂0)))

]

+(ε− 1)(n̂ · p̂0)
[
β̂ × (β̂ × n̂)

]
+

[
β̂ × (β̂ × p̂0)

]}

=
aa0(1−ε)

(b+aε)(b0+a0ε)

{
ε−1
a + b

[
(β̂ · p̂0)(n̂ · p̂)−(p̂0 · p̂)−a(p̂0 · p̂)

]

−(ε−1)(n̂ · p̂0)(n̂ · p̂) +
(ε− 1)2

(a+b)(a0+b0)

[
(α̂ · β̂)(n̂ · p̂0)(n̂ · p̂)

−a(α̂ · p̂) +a0(β̂ · p̂0)(n̂ · p̂)− aa0(p̂0 · p̂)
]}

(A1)

where, a0 = cos θi, b0 =
√

ε− sin2 θi, a = n̂ · β̂, b =
√

ε− 1 + a2.
For the sake of briefness, Let d = 1/

√
1 + Zx2 + Zy2, Ap0p = p̂0·p̂,

Bp0p = (n̂ · p̂0)(n̂ · p̂), Cp0p = (β̂ · p̂0)(n̂ · p̂), Dp0p = (n̂ · p̂0)(α̂ · p̂),
Qp0p = (α̂ · β̂)Bp0p − a(α̂ · p̂), then, n̂ = d (−Zxx̂− Zyŷ + ẑ), and
Eq. (A1) can be simplified:

Fp0p =
aa0(1− ε)

(b+aε)(b0+a0ε)

{
ε−1
a+b

[Cp0p−aAp0p]−Ap0p − (ε− 1)Bp0p

+
(ε−1)2

(a+b)(a0+b0)
[Qp0p +a0Cp0p−aa0Ap0p]+

1− ε

a0+b0
[Dp0p+a0Ap0p]

}
(A2)
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Avv =cos θi cosϕi cos θs cosϕs+cos θi sinϕi cos θs sinϕs−sin θi sin θs

Bvv =−d2 (Zx cos θi cosϕi + Zy cos θi sinϕi − sin θi)
× (−Zx cos θs cosϕs − Zy cos θs sinϕs − sin θs)
Cvv =−d (−Zx cos θs cosϕs − Zy cos θs sinϕs − sin θs)
× (− cos θi cosϕi sin θs cosϕs − cos θi sinϕi sin θs sinϕs − sin θi cos θs)
Dvv =−d (Zx cos θi cosϕi + Zy cos θi sinϕi − sin θi)
× (sin θi cosϕi cos θs cosϕs + sin θi sinϕi cos θs sinϕs + cos θi sin θs)
Qvv =−Bvv (sin θi cosϕi sin θs cosϕs+sin θi sinϕi sin θs sinϕs

− cos θi cos θs)+a (sin θi cosϕi cos θs cosϕs + sin θi sinϕi cos θs sinϕs

− cos θi sin θs)
Ahh =− cosϕi cosϕs − sinϕi sinϕs

Bhh =−d2(Zx sinϕi−Zy cosϕi)(Zx sinϕs−Zy cosϕs)
Chh =−d(Zx sinϕs−Zy cosϕs)(−sinϕi sin θs cosϕs+cos ϕi sin θs sinϕs)
Dhh =−d(Zx sinϕi−Zy cosϕi)(−sin θi cosϕi sinϕs+sin θi sinϕi cosϕs)
Q

hh
=−Bhh(sin θi cosϕi sin θs cosϕs+sin θi sinϕi sin θs sinϕs

− cos θi cos θs) + a(sin θi sinϕi cosϕs−sin θi cosϕi sinϕs)

Similarly, the parameters above can be obtained for cross
polarizations.
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